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Abstract

We present Mobile-Former, a parallel design of Mo-
bileNet and transformer with a two-way bridge in between.
This structure leverages the advantages of MobileNet at lo-
cal processing and transformer at global interaction. And
the bridge enables bidirectional fusion of local and global
features. Different from recent works on vision transformer,
the transformer in Mobile-Former contains very few to-
kens (e.g. 6 or fewer tokens) that are randomly initial-
ized to learn global priors, resulting in low computational
cost. Combining with the proposed light-weight cross at-
tention to model the bridge, Mobile-Former is not only
computationally efficient, but also has more representation
power. It outperforms MobileNetV3 at low FLOP regime
from 25M to 500M FLOPs on ImageNet classification. For
instance, Mobile-Former achieves 77.9% top-1 accuracy at
294M FLOPs, gaining 1.3% over MobileNetV3 but saving
17% of computations. When transferring to object detec-
tion, Mobile-Former outperforms MobileNetV3 by 8.6 AP
in RetinaNet framework. Furthermore, we build an effi-
cient end-to-end detector by replacing backbone, encoder
and decoder in DETR with Mobile-Former, which outper-
forms DETR by 1.3 AP but saves 52% of computational
cost and 36% of parameters. Code will be released at
https://github.com/aaboys/mobileformer.

1. Introduction

Recently, vision transformer (ViT) [10,34] demonstrates
the advantage of global processing and achieves significant
performance boost over CNNs. However, when constrain-
ing the computational budget within 1G FLOPs, the gain of
ViT diminishes. If we further challenge the computational
cost, MobileNet [16, 17, 28] and its extensions [12, 19] still
dominate their backyard (e.g. fewer than 300M FLOPs for
ImageNet classification) due to their efficiency in local pro-
cessing filters via decomposition of depthwise and point-
wise convolution. This in turn naturally raises a question:

Figure 1. Overview of Mobile-Former, which parallelizes Mo-
bileNet [28] on the left side and Transformer [38] on the right side.
Different from vision transformer [10] that uses image patches
to form tokens, the transformer in Mobile-Former takes very few
learnable tokens as input that are randomly initialized. Mobile
(refers to MobileNet) and Former (refers to transformer) commu-
nicate through a bidirectional bridge, which is modeled by the pro-
posed light-weight cross attention. Best viewed in color.

How to design efficient networks to effectively en-
code both local processing and global interaction?

A straightforward idea is to combine convolution and vision
transformer. Recent works [11, 40, 41] show the benefit of
combining convolution and vision transformer in series, ei-
ther using convolution at the beginning or intertwining con-
volution into each transformer block.

In this paper, we shift the design paradigm from series to
parallel, and propose a new network that parallelizes Mo-
bileNet and transformer with a two-way bridge in between
(see Figure 1). We name it Mobile-Former, where Mobile
refers to MobileNet and Former stands for transformer. Mo-
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Figure 2. Comparison among Mobile-Former, efficient CNNs
and vision transformers, in terms of accuracy over FLOPs. The
comparison is performed on ImageNet classification. Mobile-
Former consistently outperforms both efficient CNNs and vision
transformers in low FLOP regime (from 25M to 500M MAdds).
Note that we implement Swin [23] and DeiT [34] at low computa-
tional budget from 100M to 2G FLOPs. Best viewed in color.

bile takes an image as input and stacks mobile (or inverted
bottleneck) blocks [28]. It leverages the efficient depthwise
and pointwise convolution to extract local features. Former
takes a few learnable tokens as input and stacks multi-head
attention and feed-forward networks (FFN). These tokens
are used to encode global features of the image.

Mobile and Former communicate through a two-way
bridge to fuse local and global features. This is crucial since
it feeds local features to Former’s tokens as well as intro-
duces global views to every pixel of feature map in Mobile.
We propose a light-weight cross attention to model this bidi-
rectional bridge by (a) performing the cross attention at the
bottleneck of Mobile where the number of channels is low,
and (b) removing projections on query, key and value (WQ,
WK , W V ) from Mobile side.

This parallel structure with a bidirectional bridge lever-
ages the advantages of both MobileNet and transformer.
Decoupling of local and global features in parallel leverages
MobileNet’s efficiency in extracting local features as well as
transformer’s power in modeling global interaction. More
importantly, this is achieved in an efficient way via a thin
transformer with very few tokens and a light-weight bridge
to exchange local and global features between Mobile and
Former. The bridge and Former consume less than 20% of
the total computational cost, but significantly improve the
representation capability. This showcases an efficient and
effective implementation of part-whole hierarchy [15].

Mobile-Former achieves solid performance on both im-
age classification and object detection. For example, it
achieves 77.9% top-1 accuracy on ImageNet classification
at 294M FLOPs, outperforming MobileNetV3 [16] and
LeViT [11] by a clear margin (see Figure 1). More im-
portantly, Mobile-Former consistently outperforms both ef-

ficient CNNs and vision transformers from 25M to 500M
FLOPs (see Figure 2), showcasing the usage of transformer
at the low FLOP regime where efficient CNNs dominate.

When transferring from image classification to object
detection, Mobile-Former significantly outperforms Mo-
bileNetV3 as backbone in RetinaNet [21], gaining 8.6 AP
(35.8 vs. 27.2 AP) with even less computational cost. In
addition, we build an efficient end-to-end detector by using
Mobile-Former to replace backbone and encoder/decoder in
DETR [1]. Using the same number of object queries (100),
it gains 1.3 AP over DETR (43.3 vs. 42.0 AP) but has sig-
nificantly fewer FLOPs (41G vs. 86G) and smaller model
size (26.3M vs. 41.3M).

2. Related Work

Light-weight CNNs: MobileNets [16, 17, 28] efficiently
encode local features by stacking depthwise and pointwise
convolutions. ShuffleNet [26, 47] uses group convolution
and channel shuffle to simplify pointwise convolution. Mi-
croNet [19] presents micro-factorized convolution to han-
dle extremely low FLOPs by lowering node connectivity
to enlarge network width. Dynamic operators [4, 5, 18, 44]
boost performance for MobileNet with negligible computa-
tional cost. Other efficient operators include butterfly trans-
form [36], cheap linear transformations in GhostNet [12],
and using additions to trade multiplications in AdderNet [3].
In addition, MixConv [31] explores mixing up multiple ker-
nel sizes, and Sandglass [49] flips the structure of inverted
residual block. EfficientNet [30,32] and TinyNet [13] study
the compound scaling of depth, width and resolution.

Vision transformers (ViTs): Recently, ViT [10] and its
follow-ups [9, 23, 34, 35, 37, 45, 50, 51] achieve impressive
performance on multiple vision tasks. The original ViT re-
quires training on large dataset such as JFT-300M. DeiT
[34] introduces training strategies on the smaller ImageNet-
1K dataset. Later, hierarchical transformers are proposed
to handle high resolution images. Swin [23] computes self-
attention within shifted local windows and CSWin [9] fur-
ther improves it by introducing cross-shaped window. T2T-
ViT [45] progressively converts an image to tokens by re-
cursively aggregating neighboring tokens. HaloNet [37] im-
proves speed, memory usage and accuracy by two exten-
sions (blocked local attention and attention downsampling).

Combination of CNN and ViT: Recent works [7,11,29,40,
41] show advantages of combining convolution and trans-
former. BoTNet [29] improves both instance segmentation
and object detection by just using self-attention in the last
three blocks of ResNet [14]. ConViT [7] presents a gated
positional self-attention for soft convolutional inductive bi-
ases. CvT [40] introduces depthwise/pointwise convolution
before multi-head attention. LeViT [11] and ViTC [41] use
convolutional stem to replace the patchify stem and achieve
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clear improvement. In contrast to these series design, our
method parallelizes MobileNet and transformer with bidi-
rectional cross attention in between, providing an efficient
and effective solution at low FLOP regime.
Parallel architectures: compared to parallel architectures
like Conformer [27] and CrossViT [2], our Mobile-Former
uses significantly fewer tokens (6 vs. 196) that are initial-
ized from learnable embeddings rather than linear projec-
tion of image patches. This significantly reduces the com-
putational cost and showcases the usage of transformer in
very low FLOPs (26M–508M).

3. Our Method: Mobile-Former
In this section, we first overview the design of Mobile-

Former (see Figure 1), and then discuss details within a
Mobile-Former block (see Figure 3). Finally, we show the
network specification and variants with different FLOPs.

3.1. Overview

Parallel structure: Mobile-Former parallelizes MobileNet
and transformer, and connects them by bidirectional cross
attention (see Figure 1). Mobile (refers to MobileNet) takes
an image as input (X ∈ RHW×3) and applies inverted bot-
tleneck blocks [28] to extract local features. Former (refers
to transformer) takes learnable parameters (or tokens) as in-
put, denoted as Z ∈ RM×d where M and d are the num-
ber and dimension of tokens, respectively. These tokens
are randomly initialized. Different from vision transformer
(ViT) [10], where tokens project the local image patch lin-
early, Former has significantly fewer tokens (M ≤ 6 in this
paper), each represents a global prior of the image. This
results in much less computational cost.
Low cost two-way bridge: Mobile and Former commu-
nicate through a two-way bridge where local and global
features are fused bidirectionally. The two directions are
denoted as Mobile→Former and Mobile←Former, respec-
tively. We propose a light-weight cross attention to model
them, in which the projections (WQ, WK , W V ) are re-
moved from Mobile side to save computations, but kept at
Former side. The cross attention is computed at the bot-
tleneck of Mobile where the number of channels is low.
Specifically, the light-weight cross attention from local fea-
ture map X to global tokens Z is computed as:

AX→Z =
[
Attn(z̃iW

Q
i , x̃i, x̃i)

]
i=1:h

WO, (1)

where the local feature X and global tokens Z are split
into h heads as X = [x̃1 · · · x̃h], Z = [z̃1 · · · z̃h] for multi-
head attention. The split for the ith head z̃i ∈ RM× d

h is
different to the ith token zi ∈ Rd. WQ

i is the query pro-
jection matrix for the ith head. WO is used to combine
multiple heads together. Attn(Q,K, V ) is the standard at-
tention function [38] over query Q, key K, and value V

Figure 3. Mobile-Former block that includes four modules: Mo-
bile sub-block modifies inverted bottleneck block in [28] by re-
placing ReLU with dynamic ReLU [5]. Mobile→Former uses
light-weight cross attention to fuse local features into global fea-
tures. Former sub-block is a standard transformer block including
multi-head attention and FFN. Note that the output of Former is
used to generate parameters for dynamic ReLU in Mobile sub-
block. Mobile←Former bridges from global to local features.

as softmax(QKT

√
dk

)V . [·]1:h denotes the concatenation of h
elements. Note that the projection matrices for the key and
value are removed from Mobile side, while the project ma-
trix WQ

i for the query is kept at Former side. Similarly, the
cross attention from global to local is computed as:

AZ→X =
[
Attn(x̃i, z̃iW

K
i , z̃iW

V
i )

]
i=1:h

, (2)

where WK
i and W V

i are the projection matrices for the key
and value at Former side. The projection matrix of the query
is removed from Mobile side.

3.2. Mobile-Former Block

Mobile-Former consists of stacked Mobile-Former
blocks (see Figure 1). Each block has four pillars: a Mobile
sub-block, a Former sub-block, and two-way cross attention
Mobile←Former and Mobile→Former (shown in Figure 3).

Input and output: Mobile-Former block has two inputs:
(a) local feature map X ∈ RHW×C , which has C channels
over height H and width W , and (b) global tokens Z ∈
RM×d, where M and d are the number and dimension of
tokens, respectively. Note that M and d are identical across
all blocks. Mobile-Former block outputs the updated local
feature map X ′ and global tokens Z ′, which are used as
input for the next block.
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Mobile sub-block: As shown in Figure 3, Mobile sub-block
takes the feature map X as input and its output is taken
as the input for Mobile←Former. It is slightly different
to the inverted bottleneck block in [28] by replacing ReLU
with dynamic ReLU [5] as the activation function. Different
from the original dynamic ReLU, in which the parameters
are generated by applying two MLP layers on the average
pooled feature, we save the average pooling by applying the
two MLP layers (θ in Figure 3) on the first global token out-
put z′

1 from Former. Note that the kernel size of depthwise
convolution is 3×3 for all blocks.
Former sub-block: Former sub-block is a standard trans-
former block including a multi-head attention (MHA) and a
feed-forward network (FFN). Expansion ratio 2 (instead of
4) is used in FFN. We follow [38] to use post layer normal-
ization. Former is processed between Mobile→Former and
Mobile←Former (see Figure 3).

Mobile→Former: The proposed light-weight cross atten-
tion (Equation 1) is used to fuse local features X to global
tokens Z. Compared to the standard attention, the projec-
tion matrices for key WK and value WV (on the local fea-
tures X) are removed to save computations (see Figure 3).

Mobile←Former: Here, the cross attention (Equation 2) is
opposite to Mobile→Former, fusing global tokens (as key
and value) to local features (as query). We keep the projec-
tion matrices for the key WK and value W V , but remove
the projection matrix for the query WQ to save computa-
tions, as shown in Figure 3.

Computational complexity: The four pillars of a Mobile-
Former block have different computational costs. Given an
input feature map with size HW × C, and M global to-
kens with d dimensions, Mobile consumes the most com-
putations O(HWC2). Former and the two-way bridge
have light weight, consuming less than 20% of the to-
tal computational cost. Specifically, Former has com-
plexity O(M2d + Md2) for self attention and FFN.
Mobile→Former and Mobile←Former share the complex-
ity O(MHWC +MdC) for cross attention.

3.3. Network Specification

Architecture: Table 1 shows a Mobile-Former architec-
ture with 294M FLOPs for image size 224×224, which
stacks 11 Mobile-Former blocks at different input resolu-
tions. All blocks have six global tokens with dimension
192. It starts with a 3×3 convolution as stem and a lite
bottleneck block [19] at stage 1, which expands and then
squeezes the number of channels by stacking a 3×3 depth-
wise and a pointwise convolution. Stage 2–5 consists of
Mobile-Former blocks. Each stage handles downsampling
by a downsample variant denoted as Mobile-Former↓ (see
supplementary material for details). The classification head
applies average pooling on the local features, concatenates

Stage Input Operator exp size #out Stride
tokens 6×192 – – – –
stem 2242×3 conv2d, 3×3 – 16 2

1 1122×16 bneck-lite 32 16 1

2 1122×16 Mobile-Former↓ 96 24 2
562×24 Mobile-Former 96 24 1

3 562×24 Mobile-Former↓ 144 48 2
282×48 Mobile-Former 192 48 1

4

282×48 Mobile-Former↓ 288 96 2
142×96 Mobile-Former 384 96 1
142×96 Mobile-Former 576 128 1

142×128 Mobile-Former 768 128 1

5

142×128 Mobile-Former↓ 768 192 2
72×192 Mobile-Former 1152 192 1
72×192 Mobile-Former 1152 192 1
72×192 conv2d, 1×1 – 1152 1

head

72×1152 pool, 7×7 – 1152 –
12×1152 concat w/ cls token – 1344 –
12×1344 FC – 1920 –
12×1920 FC – 1000 –

Table 1. Specification for Mobile-Former-294M. “bneck-lite”
denotes the lite bottleneck block [19]. “Mobile-Former↓” denotes
the variant of downsample block.

with the first global token, and then passes through two fully
connected layers with h-swish [16] in between.
Mobile-Former variants: Mobile-Former has seven mod-
els with different computational costs from 26M to 508M
FLOPs. They share the similar architecture, but have differ-
ent width and height. We follow [41] to refer our models by
their FLOPs, e.g. Mobile-Former-294M, Mobile-Former-
96M. The details of network architecture for these models
are listed in the supplementary material.

4. Efficient End-to-End Object Detection
Mobile-Former can be easily used for object detection in

both backbone and head, providing an efficient end-to-end
detector. Using the same number of object queries (100), it
outperforms DETR [1], but uses much lower FLOPs.

Backbone–Head architecture: We use Mobile-Former
blocks in both backbone and head (see Figure 4), which
have separate tokens. The backbone has six global tokens
while the head has 100 object queries generated similarly
to DETR [1]. Different from DETR that has a single scale
( 1
32 or 1

16 ) in the head, Mobile-Former head employs multi-
scales ( 1

32 , 1
16 , 1

8 ) in low FLOPs due to its computational
efficiency. The upsampling is achieved via bilinear interpo-
lation followed by adding the feature output from the back-
bone (with the same resolution). All object queries progres-
sively refine their representation across scales from coarse
to fine, saving the manual process in FPN [20] to allocate
objects across scales by size. We follow DETR to use pre-
diction FFNs and auxiliary losses in the head during the
training. The head is trained from scratch and the backbone
is pretrained on ImageNet. Our end-to-end Mobile-Former
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Figure 4. Mobile-Former for object detection. Both backbone
and head use Mobile-Former blocks (see Figure 1, 3). The back-
bone has 6 global tokens while the head has 100 object queries.
All object queries pass through multiple resolutions ( 1

32
, 1

16
, 1

8
)

in the head. Similar to DETR [1], feed forward network (FFN) is
used to predict class label and bounding box. Best viewed in color.

detector is computationally efficient. The total cost of E2E-
MF-508M that uses Mobile-Former-508M as backbone and
nine Mobile-Former blocks in the head is 41.4G FLOPs,
significantly less than DETR (86G FLOPs). But it outper-
forms DETR by 1.3 AP (43.3 vs. 42.0 AP). The details of
head structure is listed in supplementary material.

Spatial-aware dynamic ReLU in backbone: We extend
dynamic ReLU in the backbone from spatial-shared to
spatial-aware by involving all global tokens to generate pa-
rameters, rather than just using the first one, as these to-
kens have different spatial focuses. Let us denote the pa-
rameter generation of the spatial-shared dynamic ReLU as
θ = f(z1), where z1 is the first global token and f(·) is
modeled by two MLP layers with ReLU in between. By
contrast, the spatial-aware dynamic ReLU generates param-
eters θi per spatial position i in a feature map, by using all
global tokens {zj} as follows:

θi =
∑
j

αi,jf(zj), s.t.
∑
j

αi,j = 1, (3)

where αi,j is the attention between the feature at position i
and token zj . Its calculation is cheap by just normalizing
the cross attention obtained in Mobile→Former along to-
kens {zj}. Spatial-aware dynamic ReLU is on par with its
spatial-shared counterpart on image classification, but gains
1.1 AP on COCO object detection (see Table 10).

Adapting position embedding in head: Different from
DETR [1] that shared the position embedding of object

queries across all decoder layers, we refine the position em-
bedding after each block in the head as the feature map
changes per block. Let us denote the feature and position
embedding of a query at the kth block as qf

k and qp
k, re-

spectively. The sum of them (qf
k + qp

k) is used to compute
cross attention between object queries and feature map as
well as self attention among object queries, after which the
feature embedding is updated as the input for the next block
qf
k+1. Here, we adapt the position embedding based upon

the feature embedding as:

qp
k+1 = qp

k + g(qf
k+1), (4)

where the adaptation function g(·) is implemented by two
MLP layers with ReLU in between. Thus, object queries
can adapt their positions across blocks based on the content.

5. Experimental Results
We evaluate the proposed Mobile-Former on both Ima-

geNet classification [8], and COCO object detection [22].

5.1. ImageNet Classification

Image classification experiments are conducted on Ima-
geNet [8] that has 1000 classes, including 1,281,167 images
for training and 50,000 images for validation.

Training setup: The image resolution is 224×224. All
models are trained from scratch using AdamW [24] opti-
mizer for 450 epochs with cosine learning rate decay. A
batch size of 1024 is used. Data augmentation includes
Mixup [46], auto-augmentation [6], and random erasing
[48]. Different combinations of initial learning rate, weight
decay and dropout are used for models with different com-
plexities, which are listed in the supplementary material.
Comparison with efficient CNNs: Table 2 shows the com-
parison between Mobile-Former and classic efficient CNNs:
(a) MobileNetV3 [16], (b) EfficientNet [30], and (c) Shuf-
fleNetV2 [26] and its extension WeightNet [25]. The com-
parison covers the FLOP range from 26M to 508M, orga-
nized in seven groups based on similar FLOPs. Mobile-
Former consistently outperforms efficient CNNs with even
less computational cost except the group around 150M
FLOPs, where Mobile-Former costs slightly more FLOPs
than ShuffleNet/WeightNet (151M vs. 146M/141M), but
achieves significantly higher top-1 accuracy (75.2% vs.
69.4%/72.4%). This demonstrates that our parallel design
improves the representation capability efficiently.
Comparison with ViTs: In Table 3, we compare Mobile-
Former with multiple variants (DeiT [34], T2T-ViT [45],
PVT [39], ConViT [7], CoaT [42], ViTC [41], Swin [23])
of vision transformer. All variants use image resolution
224×224 and are trained without distillation from a teacher
network. Mobile-Former achieves higher accuracy but uses
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Model Input #Params MAdds Top-1
MobileNetV3 Small 1.0× [16] 1602 2.5M 30M 62.8
Mobile-Former-26M 2242 3.2M 26M 64.0
MobileNetV3 Small 1.0× [16] 2242 2.5M 57M 67.5
Mobile-Former-52M 2242 3.5M 52M 68.7
MobileNetV3 1.0× [16] 1602 5.4M 112M 71.7
Mobile-Former-96M 2242 4.6M 96M 72.8
ShuffleNetV2 1.0× [26] 2242 2.3M 146M 69.4
ShuffleNetV2 1.0×+WeightNet 4× [25] 2242 5.1M 141M 72.4
MobileNetV3 0.75× [16] 2242 4.0M 155M 73.3
Mobile-Former-151M 2242 7.6M 151M 75.2
MobileNetV3 1.0× [16] 2242 5.4M 217M 75.2
Mobile-Former-214M 2242 9.4M 214M 76.7
ShuffleNetV2 1.5× [26] 2242 3.5M 299M 72.6
ShuffleNetV2 1.5×+WeightNet 4× [25] 2242 9.6M 307M 75.0
MobileNetV3 1.25× [16] 2242 7.5M 356M 76.6
EfficientNet-B0 [30] 2242 5.3M 390M 77.1
Mobile-Former-294M 2242 11.4M 294M 77.9
ShuffleNetV2 2× [26] 2242 7.4M 591M 74.9
ShuffleNetV2 2×+WeightNet 4× [25] 2242 18.1M 573M 76.5
Mobile-Former-508M 2242 14.0M 508M 79.3

Table 2. Comparing Mobile-Former with efficient CNNs eval-
uated on ImageNet [8] classification.

Model Input #Params MAdds Top-1
T2T-ViT-7 [45] 2242 4.3M 1.2G 71.7
DeiT-Tiny [34] 2242 5.7M 1.2G 72.2
ConViT-Tiny [7] 2242 6.0M 1.0G 73.1
ConT-Ti [43] 2242 5.8M 0.8G 74.9
ViTC [41] 2242 4.6M 1.1G 75.3
ConT-S [43] 2242 10.1M 1.5G 76.5
Swin-1G [23] ‡ 2242 7.3M 1.0G 77.3
Mobile-Former-294M 2242 11.4M 294M 77.9
PVT-Tiny [39] 2242 13.2M 1.9G 75.1
T2T-ViT-12 [45] 2242 6.9M 2.2G 76.5
CoaT-Lite Tiny [42] 2242 5.7M 1.6G 76.6
ConViT-Tiny+ [7] 2242 10.0M 2G 76.7
CrossViT-9† [2] 2242 8.8M 2G 77.1
DeiT-2G [34] ‡ 2242 9.5M 2.0G 77.6
CoaT-Lite Mini [42] 2242 11.0M 2.0G 78.9
BoT-S1-50 [29] 2242 20.8M 4.3G 79.1
Swin-2G [23] ‡ 2242 12.8M 2.0G 79.2
Mobile-Former-508M 2242 14.0M 508M 79.3

Table 3. Comparing Mobile-Former with vision transformer
variants evaluated on ImageNet [8] classification. Here, we
choose ViT variants that use image resolution 224×224 and are
trained without distillation from a teacher network. We group ViT
models based on FLOPs (using 1.5G as threshold) and rank them
based on top-1 accuracy. ‡ indicates our implementation.

3∼4 times less computational cost. This is because that
Mobile-Former uses significantly fewer tokens to model
global interaction and leverages MobileNet to extract local
features efficiently. Note that our Mobile-Former (trained
in 450 epochs without distillation) even outperforms LeViT
[11] which leverages the distillation of a teacher network
and much longer training (1000 epochs). Our method
achieves higher top-1 accuracy (77.9% vs. 76.6%) but uses
fewer FLOPs (294M vs. 305M) than LeViT.

Model #Params MAdds Top-1 Top-5
Mobile (using ReLU) 6.1M 259M 74.2 91.8
+ Former and Bridge 10.1M 290M 76.8(+2.6) 93.2(+1.4)

+ DY-ReLU in Mobile 11.4M 294M 77.8(+1.0) 93.7(+0.5)

Table 4. Ablation of Former+bridge and dynamic ReLU evalu-
ated on ImageNet classification. Mobile-Former-294M is used.

Accuracy–FLOP plot: Figure 2 compares Mobile-Former
with more CNN models (e.g. GhostNet [12]) and vision
transformer variants (e.g. Swin [23] and DeiT [34]) in one
plot. We implement Swin and DeiT from 100M to 2G
FLOPs, by carefully reducing network width and height.
Mobile-Former clearly outperforms both CNNs and ViT
variants, showcasing the parallel design to integrate Mo-
bileNet and transformer. This demonstrates that the trans-
former can also contribute to the low FLOP regime with
proper architecture design.

5.2. Ablations

In this subsection, we show Mobile-Former is effective
and efficient via several ablations performed on ImageNet
classification. Here, Mobile-Former-294M is used and all
models are trained for 300 epochs. Moreover, we summa-
rize interesting observations on the visualization of the two-
way bridge between Mobile and Former.

Mobile-Former is effective: Mobile-Former is more ef-
fective than MobileNet as it encodes global interaction via
Former, resulting in more accurate prediction. As shown
in Table 4, adding Former and bridge (Mobile→Former
and Mobile←Former) only costs 12% of the computational
cost, but gains 2.6% top-1 accuracy over the baseline that
uses Mobile alone. In addition, using dynamic ReLU [5] in
Mobile sub-block (see Figure 3) gains additional 1.0% top-
1 accuracy. Note that the parameters in dynamic ReLU is
generated by using the first global token. This validates our
parallel design in Mobile-Former. We also find that increas-
ing kernel size (3×3→ 5×5) of the depthwise convolution
in Mobile only introduces negligible gain (see supplemen-
tary material), as the reception field of Mobile is enlarged
by fusing global features from Former.

Mobile-Former is efficient: Mobile-Former is not only ef-
fective in encoding both local processing and global interac-
tion, but achieves this efficiently. Ablations below show that
Former only requires a few global tokens with low dimen-
sion. In addition, the efficient parallel design of Mobile-
Former is stable when removing FFN in Former or replac-
ing multi-head attention with position mixing MLP [33].

Number of tokens in Former: Table 5 shows the ImageNet
classification results for using different number of global
tokens in Former. The token dimension is 192. Interest-
ingly, even a single global token achieves a good perfor-
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#Tokens #Params MAdds Top-1 Top-5
1 11.4M 269M 77.1 93.2
3 11.4M 279M 77.6 93.6
6 11.4M 294M 77.8 93.7
9 11.4M 309M 77.7 93.8

Table 5. Ablation of the number of tokens on ImageNet classifi-
cation. Mobile-Former-294M is used.

Token Dimension #Params MAdds Top-1 Top-5
64 7.3M 277M 76.8 93.1

128 9.1M 284M 77.3 93.5
192 11.4M 294M 77.8 93.7
256 14.3M 308M 77.8 93.7
320 17.9M 325M 77.6 93.6

Table 6. Ablation of token dimension on ImageNet classification.
Mobile-Former-294M is used.

Attention FFN #Params MAdds Top-1 Top-5
MHA ✓ 11.4M 294M 77.8 93.7
MHA ✗ 9.8M 284M 77.5 93.6

Pos-Mix-MLP ✓ 10.5M 284M 77.3 93.5

Table 7. Ablation of multi-head attention (MHA) and FFN on
ImageNet classification. Mobile-Former-294M is used.

mance (77.1% top-1 accuracy). Additional improvement
(0.5% and 0.7% top-1 accuracy) is achieved when using 3
and 6 tokens. The improvement stops when more than 6 to-
kens are used. Such compactness of global tokens is a key
contributor to the efficiency of Mobile-Former.

Token dimension: Table 6 shows the results for different to-
ken lengths (or dimensions). Here, six global tokens are
used in Former. The accuracy improves from 76.8% to
77.8% when token dimension increases from 64 to 192, but
converges when higher dimension is used. This further sup-
ports the efficiency of Former. With six tokens of dimension
192, the total computational cost of Former and the bridge
only consumes 12% of the overall budget (35M/294M).

FFN in Former: As shown in Table 7, removing FFN intro-
duces a small drop in top-1 accuracy (−0.3%). Compared to
the important role of FFN in the original vision transformer,
FFN has limited contribution in Mobile-Former. We be-
lieve this is because FFN is not the only module for channel
fusion in Mobile-Former. The 1×1 convolution in Mobile
helps the channel fusion of local features, while the projec-
tion matrix WO in Mobile→Former (see Equation 1) con-
tributes to the fusion between local and global features.

Multi-head attention (MHA) vs. position-mixing MLP: Ta-
ble 7 shows the results of replacing multi-head attention
(MHA) with token/position mixing MLP [33] in both For-
mer and bridge (Mobile→Former and Mobile←Former).
The top-1 accuracy drops from 77.8% to 77.3%. MLP has
more efficient implementation by a single matrix multipli-

Model AP AP50 AP75 APS APM APL
MAdds #Params

(G) (M)
Shuffle-V2 [26] 25.9 41.9 26.9 12.4 28.0 36.4 2.6 (161) 0.8 (10.4)
MF-151M 34.2 53.4 36.0 19.9 36.8 45.3 2.6 (161) 4.9 (14.4)
Mobile-V3 [16] 27.2 43.9 28.3 13.5 30.2 37.2 4.7 (162) 2.8 (12.3)
MF-214M 35.8 55.4 38.0 21.8 38.5 46.8 3.9 (162) 5.7 (15.2)
ResNet18 [14] 31.8 49.6 33.6 16.3 34.3 43.2 29 (181) 11.2 (21.3)
MF-294M 36.6 56.6 38.6 21.9 39.5 47.9 5.5 (164) 6.5 (16.1)
ResNet50 [14] 36.5 55.4 39.1 20.4 40.3 48.1 84 (239) 23.3 (37.7)
PVT-Tiny [39] 36.7 56.9 38.9 22.6 38.8 50.0 70 (221) 12.3 (23.0)
ConT-M [43] 37.9 58.1 40.2 23.0 40.6 50.4 65 (217) 16.8 (27.0)
MF-508M 38.0 58.3 40.3 22.9 41.2 49.7 9.8 (168) 8.4 (17.9)

Table 8. COCO object detection results in RetinaNet frame-
work. All models are trained on train2017 for 12 epochs (1×)
from ImageNet pretrained weights, and tested on val2017. We
use initial MF (e.g. MF-508M) to refer Mobile-Former. MAdds
and #Params are in the format of “backbone (total)”. MAdds is
based on the image size 800×1333.

cation, but is not adaptive to different input images.
Mobile-Former is explainable: We observe three inter-
esting patterns in the two-way bridge (Mobile→Former
and Mobile←Former). First, from low to high levels, the
global tokens change their focus from edges/corners, to
foreground/background, and finally on the most discrimina-
tive region. Second, the cross attention has more diversity
across tokens at lower levels than high levels. Thirdly, the
separation between foreground and background is found at
middle layers of Mobile←Former. The detailed visualiza-
tion is shown in the supplementary material.

5.3. Object Detection

Object detection experiments are conducted on COCO
2017 [22] that contains 118K training and 5K validation im-
ages. We evaluate Mobile-Former in two detection frame-
works: (a) comparing with other backbone networks in
RetinaNet [21] that has dense proposals, and (b) end-to-end
comparison with DETR [1] where proposals are sparse.
RetinaNet training setup: We follow standard settings of
RetinaNet and replace the backbone with Mobile-Former to
generate multi-scale feature maps. All models are trained
for 12 epochs (1×) from ImageNet pretrained weights.
DETR training setup: All Mobile-Former models are
trained for 300 epochs on 8 GPUs with 2 images per GPU.
AdamW optimizer is used with initial learning rate 1e-5 for
the backbone and 1e-4 for the head. The learning rate drops
by a factor of 10 after 200 epochs. The weight decay is 1e-4
and dropout rate is 0.1. BatchNorm layers in the ImageNet
pretrained Mobile-Former backbone are frozen. The head
includes 100 object queries with 256 channels.
Efficient and effective backbone in RetinaNet: In Ta-
ble 8, we compare Mobile-Former with both CNNs (ResNet
[14], MobileNetV3 [16], ShuffleNetV2 [26]) and vision
transformers (PVT [39] and ConT [43]). Mobile-Former
outperforms MobileNetV3 and ShuffleNetV2 by 8.3+ AP
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Model AP AP50 AP75 APS APM APL
MAdds #Params

(G) (M)
DETR [1] 42.0 62.4 44.2 20.5 45.8 61.1 86 41.3
DETR-DC5 [1] 43.3 63.1 45.9 22.5 47.3 61.1 187 41.3
E2E-MF-508M 43.3 61.8 46.8 24.6 47.0 60.4 41.4 26.3
E2E-MF-294M 40.5 58.8 43.5 20.6 44.0 56.9 24.1 24.9
E2E-MF-214M 39.3 57.3 42.1 19.9 42.4 56.6 17.8 20.1
E2E-MF-151M 37.2 54.5 39.9 17.4 39.8 54.9 12.7 14.8

Table 9. End-to-end object detection results on COCO. All
models are trained on train2017 and tested on val2017.
DETR baselines are trained for 500 epochs, while our Mobile-
Former models are trained for 300 epochs. We use initial E2E-
MF (e.g. E2E-MF-508M) to refer end-to-end Mobile-Former de-
tectors. MAdds is based on image size 800×1333.

under similar computational cost. Compared to ResNet
and transformer variants, Mobile-Former achieves higher
AP with significantly less FLOPs. Specifically, Mobile-
Former-508M takes 9.8G FLOPs in backbone but achieves
38.0 AP, outperforming ResNet-50, PVT-Tiny, and ConT-
M which consume 7 times more computation (65G to 84G
FLOPs) in the backbone. This showcases Mobile-Former
as an effective and efficient backbone in object detection.
Efficient and effective end-to-end detector: Table 9 com-
pares end-to-end Mobile-Former detectors (denoted by pre-
fix E2E-MF) with DETR [1]. All models use 100 object
queries. Our E2E-MF-508M gains 1.3 AP over DETR but
consumes fewer FLOPs (48%), fewer model parameters
(64%) and fewer training epochs (300 vs. 500). It is even on
par with DETR-DC5 that has four times more FLOPs. The
other three Mobile-Former variants achieve 40.5, 39.3 and
37.2 AP with 24.1G, 17.8G and 12.7G FLOPs respectively,
providing more compact end-to-end detectors.
Ablations of key components: Table 10 shows the effects
of three proposed components in the end-to-end Mobile-
Former detector: (a) spatial-aware dynamic ReLU in back-
bone, (b) multi-scale Mobile-Former head, and (c) adapting
position embedding. E2E-MF-508M is used and all models
are trained for 300 epochs. Compared to DETR trained in
300 epochs, replacing ResNet-50 backbone with MF-508M
saves computations but has 1.2 AP drop. Adding spatial-
aware dynamic ReLU gains 1.1 AP (39.4 → 40.5). Then
using multi-scale Mobile-Former head to replace DETR’s
encoder/decoder gains another 0.9 AP (40.5→ 41.4). De-
tection of small/medium objects is improved, while a slight
drop is found in large objects. Finally, adapting position
embedding gains additional 1.9 AP. The three components
are complementary, gaining 3.9 AP (39.4→ 43.3) in total.

6. Limitations and Discussions
Although Mobile-Former has faster inference than Mo-

bileNetV3 [16] and ShuffleNetV2 [26] for large images, it
is slower as the image becomes smaller. Please see supple-
mentary material for comparison among Mobile-Former-

Backbone SP-DY Head Adapt AP AP50 AP75 APS APM APL
ReLU PE

ResNet-50 DETR 40.6 61.6 42.7 19.9 44.3 60.2
MF-508M DETR 39.4 59.4 41.3 18.0 42.7 58.8
MF-508M ✓ DETR 40.5 60.7 42.4 19.0 44.0 60.0
MF-508M ✓ MF-Head 41.4 60.4 43.9 21.1 45.0 59.3
MF-508M ✓ MF-Head ✓ 43.3 61.8 46.8 24.6 47.0 60.4

Table 10. Ablation of end-to-end Mobile-Former on COCO
object detection. All models are trained on train2017 for 300
epochs and tested on val2017. The first line is the baseline of
DETR [1] trained in 300 epochs. MF-508M refers to Mobile-
Former-508M backbone. SP-DY-ReLU refers to spatial-aware dy-
namic ReLU in backbone. DETR head includes 6 encoder and 6
decoder layers with resolution 1

32
. MF head includes 9 Mobile-

Former blocks (5, 2, 2 at resolution 1
32

, 1
16

, and 1
8

respectively).

214M, MobileNetV3 Large, and ShuffleNetV2 2× on CPU
inference latency. Mobile-Former is more accurate than
the two baselines (76.7% vs. 75.2% vs. 74.9% top-1
on ImageNet). The comparison is performed on multi-
ple image sizes due to the resolution variation across tasks
(e.g. classification, detection). As image resolution de-
creases, Mobile-Former loses its leading position to Mo-
bileNetV3. This is because Former and embedding pro-
jections in Mobile→Former and Mobile←Former are reso-
lution independent, and their PyTorch implementations are
not as efficient as convolution. Thus, the overhead is rela-
tive large when image is small, but becomes negligible as
image size grows. The runtime of Mobile-Former can be
further improved by optimizing the implementation of these
components. We will investigate these in the future work.

Another limitation is that Mobile-Former is not efficient
in parameters especially when performing image classifi-
cation, due to the parameter-heavy classification head. For
instance, the head of Mobile-Former-294M consumes 4.6M
of total 11.4M parameters (40%). This problem is mitigated
when switching to object detection, due to the removal of
image classification head. In addition, Former and two-way
bridge are computationally but not parametrically efficient.

7. Conclusion
This paper presents Mobile-Former, a new parallel de-

sign of MobileNet and Transformer with two-way bridge
in between to communicate. It leverages the efficiency of
MobileNet in local processing and the advantage of Trans-
former in encoding global interaction. This design is not
only effective to boost accuracy, but also efficient to save
computational cost. It outperforms both efficient CNNs and
vision transformer variants with a clear margin on image
classification and object detection in the low FLOP regime.
Furthermore, we build an end-to-end Mobile-Former detec-
tor that outperforms DETR but consumes significantly less
computations and parameters. We hope Mobile-Former en-
courage new design of efficient CNNs and transformers.
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