
Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free

Tianlong Chen1*, Zhenyu Zhang1*, Yihua Zhang2*, Shiyu Chang3, Sijia Liu2,4, Zhangyang Wang1

1University of Texas at Austin, 2Michigan State University,
3University of California, Santa Barbara, 4 MIT-IBM Watson AI Lab

{tianlong.chen, zhenyu.zhang, atlaswang}@utexas.edu,

{zhan1908, liusiji5}@msu.edu, chang87@ucsb.edu

Abstract

Trojan attacks threaten deep neural networks (DNNs) by
poisoning them to behave normally on most samples, yet to
produce manipulated results for inputs attached with a par-
ticular trigger. Several works attempt to detect whether a
given DNN has been injected with a specific trigger dur-
ing the training. In a parallel line of research, the lot-
tery ticket hypothesis reveals the existence of sparse sub-
networks which are capable of reaching competitive per-
formance as the dense network after independent training.
Connecting these two dots, we investigate the problem of
Trojan DNN detection from the brand new lens of spar-
sity, even when no clean training data is available. Our
crucial observation is that the Trojan features are signif-
icantly more stable to network pruning than benign fea-
tures. Leveraging that, we propose a novel Trojan network
detection regime: first locating a “winning Trojan lottery
ticket” which preserves nearly full Trojan information yet
only chance-level performance on clean inputs; then re-
covering the trigger embedded in this already isolated sub-
network. Extensive experiments on various datasets, i.e.,
CIFAR-10, CIFAR-100, and ImageNet, with different net-
work architectures, i.e., VGG-16, ResNet-18, ResNet-20s,
and DenseNet-100 demonstrate the effectiveness of our pro-
posal. Codes are available at https://github.com/
VITA-Group/Backdoor-LTH .

1. Introduction
Data-driven techniques for artificial intelligence (AI),

such as deep neural networks (DNNs), have powered a
technological revolution in a number of key application ar-
eas in computer vision [6, 28, 47, 66]. However, a criti-
cal shortcoming of these pure data-driven learning systems
is the lack of test-time and/or train-time robustness: They
often learn ‘too well’ during training – so much that (1)
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Figure 1. Overview of our proposal: Weight pruning identifies the
‘winning Trojan ticket’, which can be leveraged for Trojan detec-
tion and recovery.

the learned model is oversensitive to small input pertur-
bations at testing time (known as evasion attacks) [1, 48];
(2) toxic artifacts injected in the training dataset can be
memorized during model training and then passed on to
the decision-making process (known as poisoning attacks)
[26, 43]. Methods to secure DNNs against different kinds
of ‘adversaries’ are now a major focus in research, e.g., ad-
versarial detection [4, 24, 75, 79, 80, 86] and robust train-
ing [58, 83, 91]. In this paper, we focus on the study of
Trojan attacks (also known as backdoor attacks), the most
common threat model on data security [27, 69]. In particu-
lar, we aim to address the following question:

(Q) How does the model sparsity relate to its train-time
robustness against Trojan attacks?

Extensive research work on model pruning [2,35–37,39,
44, 49, 49, 56, 59–61, 63, 65, 95] has shown that the weights
of an overparameterized model (e.g., DNN) can be pruned
(i.e., sparsified) without hampering its generalization abil-
ity. In particular, Lottery Ticket Hypothesis (LTH), first
developed in [18], unveiled that there exists a subnetwork,
when properly pruned and trained, that can even perform
better than the original dense neural network. Such a sub-
network is called a winning lottery ticket. In the past, the
model sparsity (achieved by pruning) was mainly studied in
the non-adversarial learning context, and thereby, the gen-
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eralization ability is the only metric to define the quality of
a sparse network (i.e., a ticket) [8–10,12,18–22,57,90,92].
Beyond generalization, some recent work started to ex-
plore the connection between model sparsity and model
robustness [31, 34, 70, 84, 88]. However, nearly all ex-
isting works restricted model robustness to the prediction
resilience against test-time (prediction-evasion) adversarial
attacks [15, 23, 81], hence not addressing our question (Q).

To the best of our knowledge, the most relevant works
to ours include [40,84], which showed a few motivating re-
sults about pruning vs. Trojan attack. Nevertheless, their
methods are either indirect [40] or need an ideal assump-
tion on the access to the clean (i.e., unpoisoned) finetuning
dataset [84]. Specifically, the work [40] showed that it is
possible to generate a Trojan attack by modifying model
weights. However, there was no direct evidence showing
that the Trojan attack is influenced by weight pruning. Fur-
ther, the work [84] attempted to promote model sparsity to
mitigate the Trojan effect of an attacked model. However,
the pruning setup used in [84] has a deficiency: It was as-
sumed that finetuning the pruned model can be conducted
over the clean validation dataset. In practice, such an as-
sumption is too ideal for achieving if the user has no access
to the benign dataset. This assumption also prevents us from
understanding the true cause of Trojan mitigation, since the
possible effect of model sparsity is entangled with finetun-
ing on clean data.

Different from [40, 84], we aim to tackle the research
question (Q) in a more practical backdoor scenario - without
any access to clean training samples. Moreover, our work
bridges LTH and backdoor model detection by (i) identi-
fying a crucial subnetwork (that we call ‘winning Trojan
ticket’; see Fig. 1) with almost unimpaired backdoor infor-
mation and near-random clean-set performance; (ii) recov-
ering the trigger with the subnetwork and then detecting the
backdoor model. We summarize our contributions below:

• We establish the connection between model sparsity
and Trojan attack by leveraging LTH-oriented iterative
magnitude pruning (IMP). Assisted by LTH, we pro-
pose the concept of Trojan ticket to uncover the prun-
ing dynamics of the Trojan model.

• We reveal the existence of a ‘winning Trojan ticket’,
which preserves the same Trojan attack effectiveness
as in the unpruned model. We propose a linear mode
connectivity (LMC)-based Trojan score to detect such
a winning ticket along the pruning path.

• We show that the backdoor feature encoded in the win-
ning Trojan ticket can be used for reverse engineering
of Trojan attack for ‘free’, i.e., with no access to clean
training samples nor threat model information.

• We demonstrate the effectiveness of our proposal in
detecting and recovering Trojan attacks with vari-

ous poisoned DNNs using diverse Trojan trigger pat-
terns (including basic backdoor attack and clean-label
attack) across multiple network architectures (VGG,
ResNet, and DenseNet) and datasets (CIFAR-10/100
and ImageNet). For example, our Trojan recovery
method achieves 90% attack performance improve-
ment over the state-of-the-art Trojan attack estimation
approach if the clean-label Trojan attack [94] is used
by the ground-truth adversary.

2. Related Works
Pruning and lottery tickets hypothesis (LTH). Prun-
ing removes insignificant connectivities in deep neural net-
works [35,49]. Generally, its overall pipeline consists of the
following one-shot or iterative cycles: (1) training the dense
neural networks for several epochs; (2) eliminating redun-
dant weights with respect to certain criteria; (3) fine-tuning
derived sparse networks to recover accuracy. Puning ap-
proaches can be roughly categorized the magnitude-based
and the optimization-based. The former zeroes out a por-
tion of model weights by thresholding their statistics such
as weight magnitudes [36, 44], gradients [59], Taylor coef-
ficients [37,49,60,61], or hessian [87]. The latter usually in-
corporates sparsity-promoting regularization [39, 56, 95] or
formulates constrained optimization problems [2,33,63,65].

As a new rising sub-field in pruning, the lottery ticket hy-
pothesis (LTH) [18] advocates that dense neural networks
contain a sparse subnetwork (a.k.a. winning ticket) ca-
pable of training from scratch (i.e., the same random ini-
tialization) to match the full performance of dense mod-
els. Later investigations point out [19, 67] that the origi-
nal LTH can not scale up to larger networks and datasets
unless leveraging the weight rewinding techniques [19, 67].
LTH and its variants have been widely explored in plenty
of fields [8–10, 12, 21, 22, 57, 90, 92] like image genera-
tion [7, 12, 45] and natural language processing [9, 21].

Backdoor robustness - Trojan attacks and defenses.
Trojan attacks. Various Trojan (or backdoor) attacks on
deep learning models have been designed recently. The at-
tack features stealthiness since the attacked model will be-
have normally on clean images but classify images stamped
with a trigger from any source class into the maliciously
chosen target class. One of the mainstream Trojan attacks
is trigger-driven. As the most common way to launch an at-
tack, the adversary injects an attacker-specific trigger (e.g.
a local patch) into a small fraction of training pictures and
maliciously label them to the target class [11,30,52,54,55].

Another category of backdoor attack, known as clean-
label backdoor attack [64,71,96], keeps the ground-truth la-
bel of the poisoned samples consistent with the target labels.
Instead of manipulating labels directly, it perturbs the data
of the target class through adversarial attacks [58], so that
the representations learned by the model are distorted in the
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embedded space towards other victim or base classes. Thus,
label perturbation becomes implicit and less detectable.
Trojan defenses. To alleviate the backdoor threat, numerous
defense methods can be grouped into three paradigms: (1)
data pre-processing, (2) model reconstruction, and (3) trig-
ger recovery. The first category introduces a pre-processing
module before feeding the inputs into the network, chang-
ing the pattern of the potential trigger attached or hidden in
the samples [16,77,78]. The second class aims at removing
the learned trigger knowledge by manipulating the Trojan
model, so that the repaired model will function quite well
even in the presence of the trigger [51, 93].

This paper focuses on the third category, the trigger
recovery-based defenses. The rationale behind this cate-
gory is to detect and synthesize the backdoor trigger at
first, followed by the second step to suppress the effect
of the synthesized trigger. Some previous research detects
and mitigates backdoor models based on abnormal neu-
ron responses [4, 80, 86], feature representation [75], en-
tropy [24], evolution of model accuracy [72]. Utilizing
clean testing images, Neural Cleanse (NC) [79] obtains po-
tential trigger patterns and calculates minimal perturbation
that causes misclassification toward every putative incorrect
label. Backdoor model detection is then completed by the
MAD outlier detector, which identifies the class with the re-
markably small minimal perturbation among all the classes.
NC shows that the recovered trigger resembles the original
trigger in terms of both shape and neuron activation. Similar
ideas were explored in [5, 32, 51, 85]. However, the recov-
ered triggers from the aforementioned methods suffer from
occasional failures in detecting the true target class.

Backdoor meets pruning. Fine-pruning serves as a clas-
sical defense approach [40,53], which trims down the “cor-
rupted” neurons to destroy and get rid of Trojan patterns.
Note that these investigations do not explore the weight
sparsity. A follow-up work [84] measures the sensitivity
of Trojan DNNs by introducing adversarial weight pertur-
bations, and then prunes selected sensitive neurons to pu-
rify the injected backdoor. Another recent work [89] exam-
ines the vanilla LTH under the context of federated learning.
They demonstrate that LTH is also vulnerable to backdoor
attacks, and offer a federated defense by using the ticket’s
structural similarity – a totally different focus from ours.

3. Preliminaries and Problem Setup
This section provides a brief background on the Trojan

attack and model pruning. We then motivate and present the
problem of our interest, aiming at exploring and exploiting
the relationship between weight pruning and Trojan attacks.

Trojan attack and Trojan model. Trojan attack is one
of the most commonly-used data poisoning attacks [29]: It
manipulates a small portion of training data, including their

Figure 2. Overview of Trojan attack.

features by injecting a Trojan trigger (e.g., a small patch or
sticker on images) and/or their labels modified towards the
Trojan attack targeted label. The Trojan attack then serves
as a ‘backdoor’ and enforces a spurious correlation between
the Trojan trigger and the model training. The resulting
model is called Trojan model, which causes the backdoor-
designated incorrect prediction if the trigger is present at
the testing time, otherwise, it behaves normally. In Fig. 2,
we demonstrate an example of the misbehavior of a Trojan
model in image classification.

It is worth noting that the Trojan attack is different
from the test-time adversarial attack, a widely-studied threat
model in adversarial learning [48, 58]. There exist three
key differences. (i) Trojan attack occurs at the training
time through data poisoning. (ii) Trojan model exhibits
the input-agnostic adversarial behavior at the testing time
only if the Trojan trigger is present at an input example (see
Fig. 2). (iii) Trojan model is stealthy for the end user since
the latter has no prior knowledge on data poisoning.

Model pruning and lottery ticket hypothesis (LTH).
Model pruning aims at extracting a sparse sub-network from
the original dense network without hampering the model
performance. LTH, proposed in [18], formalized a model
pruning pipeline so as to find the desired sub-network,
which is called ‘winning ticket’. Formally, let f(x; θ) de-
note a neural network with input x and model parameter
θ ∈ Rd. And let m ∈ {0, 1}d denote a binary mask on top
of θ to encode the locations of pruned weights (correspond-
ing to zero entries in m) and unpruned weights (correspond-
ing to non-zero entries in m), respectively. The resulting
pruned model (termed as a ‘ticket’) can then be expressed
as (m⊙ θ), where ⊙ is the elementwise product. LTH sug-
gests the following pruning pipeline:

① Initialize a neural network f(x; θ0), where θ0 is a ran-
dom initialization. And initialize a mask m of all 1s.

② Train f(x;m ⊙ θ0) to obtain learned parameters θ
over the dataset D.

③ Prune p% parameters in θ per magnitude. Then, cre-
ate a new sparser mask m from the old one.

④ Reset the remaining parameters to their values in θ0,
creating the new sparse network (m ⊙ θ0). Then, go back
to ② and repeat.

The above procedure forms the iterative magnitude prun-
ing (IMP), which repeatedly trains, prunes, and resets the
network over n rounds. LTH suggests that each round
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prunes p1/n% of the weights on top of the previous round
(In our case, p = 20% same as [18]). The key insight from
LTH is: There exists a winning ticket, e.g., (m⊙ θ0), which
when trained in isolation, can match or even surpass the test
accuracy of the well-trained dense network [18].

Problem setup. Model pruning has been widely studied
in the context of non-poisoned training scenarios. However,
it is less explored in the presence of poisoned training data.
In this paper, we ask:

How is weight pruning of a Trojan model intertwined
with Trojan attack ability if the pruner has no access to
clean training samples and is blind to attack knowledge?

To formally set up our problem, let Dp denote the possi-
bly poisoned training dataset. By LTH pruning, the sparse
mask m and the finetuned model parameters θ (based on
m) are learned from Dp, without having access to clean
data. Thus, different from the ‘winning ticket’ found from
LTH over the clean dataset D, we call the ticket, i.e., the
sparse model (m ⊙ θ), Trojan ticket; see more details in
the next section. We then investigate how the benign and
adversarial performance of Trojan tickets varies against the
pruning ratio p%. The benign performance of a model will
be measured by the standard accuracy (SA) against clean
test data. And the adversarial performance of a model will
be evaluated by the attack success rate (ASR) against poi-
soned test data using the train-time Trojan trigger. ASR is
given by the ratio of correctly mis-predicted test data (to-
wards backdoor label) over the total number of test samples.

4. Uncover Trojan Effect from Sparsity
In this section, we begin by presenting a motivating ex-

ample to demonstrate the unusual pruning dynamics of Tro-
jan ticket (i.e., pruned model over the possibly poisoned
training data set Dp). We show that sparsity, together with
the approach of linear model connectivity (LMC) [19], can
be used for Trojan detection and recovery.

Pruning dynamics of Trojan ticket: A warm-up.
Throughout the paper, we will follow the LTH-based prun-
ing method to find the pruning mask m. In order to preserve
the potential Trojan properties, we will not reset the non-
zero parameters in θ to the random initialization θ0 when a
desired sparsity ratio p% is achieved at the last iteration of
IMP. Recall that the resulting subnetwork (m⊙ θ) is called
a Trojan ticket. To examine the sensitivity of the Trojan
ticket to the possibly poisoned dataset Dp, we then create a
k-step finetuned Trojan ticket (m ⊙ θ(k)), where θ(k) is
the k-step finetuning of θ given m under Dp. Our rationale
behind these two kinds of tickets is elaborated on below.

• If there does not exist a Trojan attack, then the above
two tickets should share similar pruning dynamics. As will
be evident later, this could be justified by LMC (linear
model connectivity).

• If there exists Trojan attack, then the two tickets re-
sult in substantially distinct adversarial performance. Since
Trojan model weights encode the spurious correlation with
the Trojan trigger [79,80], pruning without finetuning could
characterize the impact of sparsity on the Trojan attack, in
contrast to pruning with finetuning over Dp.

Figure 3. The pruning dynamics of Trojan ticket (dash line) and
10-step finetuned ticket (solid line) on CIFAR-10 with ResNet-
20s and gray-scale basic backdoor trigger [30]. For comparison,
the Trojan score (2) is also presented.

In Fig. 3, we present a warm-up example to illustrate the
pruning dynamics of the Trojan ticket (m ⊙ θ) and its k-
step finetuned version (m ⊙ θ(k)), where we select k = 10
(see the choice of k in Appendix. A2). As we can see, there
exists a peak Trojan ticket in the extreme sparsity regime
(p% > 99.97%), with the preserved Trojan performance
(measured by Trojan score that will be defined later). The
key takeaway from Fig. 3 is that the performance stability
of the Trojan ticket (m⊙ θ) and the k-step finetuned ticket
(m⊙ θ(k)) can be used to indicate the Trojan attack effect.

Trojan detection by LMC. To quantify the stability of
Trojan tickets, we propose to use the tool of linear model
connectivity (LMC) [17, 25], which returns the error bar-
rier between two neural networks along a linear path. In the
context of model pruning, the work [19] showed two sparse
neural networks found by IMP could be linearly connected
even if they suffer different optimization ‘noises’, e.g., dif-
ferent choices of initialization, data batch, and optimization
step. Spurred by the aforementioned work, we adopt LMC
to measure the stability of the Trojan ticket (m⊙ θ) v.s. the
k-step finetuned Trojan ticket (m⊙ θ(k)).

Formally, let E(ϕ) denote the training error of a model ϕ.
Given two neural networks ϕ1 and ϕ2, LMC then defines the
error barrier between ϕ1 and ϕ2 along a linear path below:

esup(ϕ1, ϕ2) = max
α∈[0,1]

E(αϕ1 + (1− α)ϕ2), (1)

which is the highest error when linearly interpolating be-
tween the models ϕ1 and ϕ2. If we set ϕ1 = m ⊙ θ and
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ϕ2 = m ⊙ θ(k), then LMC yields the following stability
metric, termed Trojan score:

STrojan =esup(m⊙ θ,m⊙ θ(k))

− E(m⊙ θ) + E(m⊙ θ(k))

2
, (2)

where the second term is used as an error baseline of using
two pruned models. As suggested by [19], if there exists
no Trojan attack during model pruning, then E(m ⊙ θ) ≈
E(m⊙θ(k)) ≈ esup(m⊙θ,m⊙θ(k)), leading to STrojan =
0. Assisted by model pruning and LMC, we can then use the
Trojan score (2) to detect the existence of a Trojan attack.
This gives a novel Trojan detector without resorting to any
clean data, which has been known as a grand challenge in
Trojan AI1. However, most importantly, the relationship be-
tween model pruning and Trojan attack can be established
through Trojan ticket and its Trojan score STrojan.

As shown in Fig. 3, the sparse network (m ⊙ θ) with
the peak Trojan score STrojan maintains the highest ASR
(attack success rate) in the extreme pruning regime. We
term such a Trojan ticket as the winning Trojan ticket.

Reverse engineering of Trojan attack. We next ask if
the winning Trojan ticket better memorizes the Trojan trig-
ger than the original dense model. To tackle this problem,
we investigate the task of reverse engineering of Trojan at-
tack [32, 79, 80], which aims to recover the Trojan targeted
label and/or the Trojan trigger from a Trojan model.

Formally, let x′(z, δ) = (1− z)⊙ x+ z ⊙ δ denote the
poisoned data with respect to (w.r.t.) an example x ∈ Rn,
where δ ∈ Rn denotes the element-wise perturbations, and
z ∈ {0, 1}n is a binary mask to encode the positions where
a Trojan trigger is placed. Given a Trojan model ϕ, our
goal is to optimize the Trojan attack variables (z, δ) so as to
unveil the properties of the ground-truth Trojan attack. Fol-
lowing [32, 79, 80], this leads to the optimization problem

min
z∈{0,1}n,δ

Ex[ℓatk(x
′(z, δ);ϕ, t)] + γh(z, δ), (3)

where x denotes the base images (that can be set by noise
images) to be perturbed, ℓatk(x′;ϕ, t) denotes the targeted
attack loss, with the perturbed input x′, victim model ϕ,
and the targeted label t, h is a certain regularization func-
tion that controls the sparsity of z and the smoothness of
the estimated Trojan trigger z ⊙ δ, and γ > 0 is a regu-
larization parameter. In (3), we specify ℓatk as the C&W
targeted attack loss [3] and h as the regularizer used in [32].
To solve the problem (3), the convex relaxation approach is
used similar to [80], where the binary variable z is relaxed
to its convex probabilistic hull. Once the solution (z∗, δ∗)

1https://www.iarpa.gov/index.php/research-programs/trojai

to problem (3) is obtained, the work [79] showed that the
Trojan attack targeted label can be deduced from the label t
associated with the least norm of the recovered Trojan trig-
ger z∗ ⊙ δ∗. That is, tTrojan = argmint ∥z∗(t) ⊙ δ∗(t)∥1,
where the dependence of z∗ and δ∗ on the label choice t is
shown explicitly. Sec. 5 will show that if we set the victim
model in (3) by the winning Trojan ticket, then it yields a
much higher accuracy of estimating the Trojan attack tar-
geted label than baseline approaches.

5. Experiments
5.1. Implementation details

Networks and datasets. We consider a broad range of
model architectures including DenseNet-100 [42], ResNet-
20s [38], ResNet-18 [38], and VGG-16 [73] on diverse
datasets such as CIFAR-10 [46], CIFAR-100 [46], and Re-
stricted ImageNet (R-ImageNet) [13, 76], with 9 classes.

Configuration of Trojan attacks. To justify the identi-
fied relationship between the Trojan model and weight spar-
sity, we consider two kinds of Trojan attacks across dif-
ferent model architectures and datasets as described above.
The studied threat models include (i) Basic Backdoor At-
tack, also known as BadNet-type Trojan attack [29], and
(ii) Clean Label Backdoor Attack [94], which have been
commonly used as a benchmark for backdoor and data poi-
soning attacks [69]. Their difference lies in that Trojan-
(i) adopts the heuristics-based data poisoning strategy and
Trojan-(ii) is crafted using an optimization procedure and
contains a less noticeable trigger pattern. For both attacks,
the Trojan trigger (with size 5 × 5 for CIFAR-10/100 and
64× 64 for R-ImageNet) is placed in the upper right corner
of the target image and is set using either a gray-scale square
like [29] or an RGB image patch like [68]. And the training
data poisoning ratio is set by 1% and the Trojan targeted la-
bel is set by class 1. We refer readers to Sec. A1 for more
detailed hyperparameter setups of the above Trojan attacks.

Training and evaluation. For CIFAR-10/100, we train
networks for 200 epochs with a batch size of 128. An SGD
optimizer is adopted with a momentum of 0.9 and a weight
decay ratio of 5×10−4. The learning rate starts from 0.1 and
decay by 10 times at 100 and 150 epoch. For R-ImageNet,
we train each network for 30 epochs and 1024 batch size,
using an SGD optimizer with 0.9 momentum and 1× 10−4

weight decay. The initial learning rate is 0.4 with 2 epochs
of warm-up and then decline to 1

10 at 8, 18, and 26 epoch.
All models have achieved state-of-the-art SA (standard ac-
curacy) in the absence of the Trojan trigger. To measure the
performance of Trojan backdoor injection, we test the SA
of each model on a clean test set and ASR (attack success
rate) on the same test set in the presence of Trojan trigger.

In the task of reverse engineering Trojan attacks, we
solve the problem (3) following the optimization method
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used in [79] which includes two stages below. First, prob-
lem (3) is solved under each possible label choice of t. Sec-
ond, the Trojan targeted label is determined by the label
associated with the least ℓ1-norm of the recovered Trojan
trigger ∥z ⊙ δ∥1. By default, we use 100 noise images
(generated by Gaussian distribution N (0, 1)) to specify the
base images x in (3). For comparison, we also consider the
specification of base images using 100 clean images drawn
from the benign data distribution.

Figure 4. The pruning dynamics and Trojan scores on CIFAR-10
with ResNet-20s using the RGB Trojan triggers. The peak Trojan
score precisely characterizes the winning Trojan ticket. Results of
clean-label Trojan triggers are presented in Appendix A2.

5.2. Experiment results

5.2.1 Existence of winning Trojan ticket

We investigate the pruning dynamics of a Trojan ticket (m⊙
θ) (i.e., the pruned Trojan network built upon the original
model θori with sparse mask m and model weights θ) versus
the pruning ratio p%. Following Sec. 4, we also examine the
k-step finetuned Trojan ticket (m ⊙ θ(k)). Throughout the
paper, we choose k = 10 to best locate the winning Trojan
tickets as demonstrated in the ablation of Appendix A2. We
remark that the finetuner has only access to the poisoned
dataset rather than an additional benign dataset.

In Fig. 4, we demonstrate the SA and ASR performance
of the Trojan ticket and its finetuned ticket versus the net-
work sparsity. Recall that SA and ASR characterize the
benign accuracy and the Trojan attack performance of a
model, respectively. For comparison, we also present the
LMC-based Trojan score (2). Our key finding, consistent
with Fig. 3, is that in the extreme pruning regime, there
exists a winning Trojan ticket with the peak Trojan score
across multiple Trojan attack types, datasets, and neural net-
work architectures.

The more specific observations and insights of Fig. 4 are
elaborated on below. As we can see, in the non-extreme
sparsity regime (p% < 90%), the Trojan ticket and its fine-
tuned variant preserve both the benign performance (SA)

and the Trojan performance (ASR) of the dense model θori
(associated with the leftmost pruning point in Fig. 4). This
implies that the promotion of non-extreme sparsity in θori
cannot mitigate the Trojan effect, and the resulting Trojan
ticket behaves similarly to the normally pruned network by
viewing from its benign performance. However, in the ex-
treme sparsity regime (p% > 99), the pure sparsity promo-
tion leads to the ASR performance significantly different
from SA, e.g., ASR = 94.49% vs. SA = 11.38% in the top
plot of Fig. 4. And the phenomenon is weakened after fine-
tuning the Trojan ticket, as indicated by the reduced ASR in
Fig. 4. These observations yield two implications. First, the
Trojan model exhibits a ‘fingerprint’ in the extreme spar-
sity regime, where ASR is preserved but SA reduces to the
nearly-random performance (because of this extreme prun-
ing level). Such a fingerprint is called winning Trojan ticket
termed in Sec. 4 due to its high ASR. Second, this superior
Trojan behavior is not well-maintained after the weight fine-
tuning, suggesting that the Trojan effect is mostly encoded
by the sparse pattern of the winning Trojan ticket. We also
visualize the loss landscape of winning Trojan tickets in Ap-
pendix A2. Last but not the least, the winning Trojan ticket
is associated with the peak Trojan score (2), which can thus
be leveraged as a powerful tool for Trojan detection.

5.2.2 Backdoor properties of winning Trojan ticket

In Fig. 5, we next investigate the backdoor properties em-
bedded in the winning Trojan ticket, which is identified by
the peak Trojan score (see examples in Fig. 4). Our key
findings are summarized below. (i) Among dense and var-
ious sparse networks, the winning Trojan ticket needs the
minimum perturbation to reverse engineering of the Tro-
jan targeted label tTrojan found by (3). The performance
of our approach outperforms the baseline method, named
Neural Cleanse (NC) [79]. (ii) The recovered trigger pattern
(z∗(tTrojan) ⊙ δ∗(tTrojan)) using (3) indeed yields a valid
Trojan attack of high ASR. (iii) By leveraging the winning
Trojan ticket, we can achieve the Trojan trigger recovery
for ‘free’. That is, the high-quality Trojan attack can be re-
covered using only ‘noise image inputs’ when solving the
problem (3). We highlight that the aforementioned findings
(i)-(iii) are consistent across different Trojan attack types,
datasets, and model architectures.

In each sub-plot of Fig. 5, we demonstrate the ℓ1 norm
of the recovered Trojan trigger (z∗(t) ⊙ δ∗(t)) by solving
the problem (3) at different specifications of the class la-
bel t and the victim model ϕ. We enumerate all the pos-
sible choices of t and examine three types of victim mod-
els, given by the winning Trojan ticket (with the peak Tro-
jan score), the originally dense Trojan model (used by NC
[79]), and the non-Trojan dense model (that is normally-
trained over the benign training dataset). Multiple sub-
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Figure 5. The ℓ1 norm values of recovered Trojan triggers for all labels. The plot title signifies adopted network architecture, trigger type,
and the images used for reverse engineering on CIFAR-10. Class “1” in the red box is the true (or oracle) target label for Trojan attacks.
✓/✗ indicates whether or not the detected label with the least ℓ1 norm matches the truth target label.

plots of Fig. 5 correspond to our experiments across differ-
ent model architectures, different ground-truth Trojan trig-
ger types, and different input images used to solve problem
(3). It is clear from Fig. 5 that in all experiments, our iden-
tified Trojan ticket yields the least perturbation norm of the
recovered Trojan trigger at the Trojan targeted label (i.e.,
t = tTrojan). The rationale behind the minimum perturba-
tion criterion is that if there exists a backdoor ‘shortcut’
in the Trojan model (with high ASR), then an input im-
age only needs the very tiny perturbation optimized towards
t = tTrojan [79]. As a result, one can detect the target la-
bel by just monitoring the perturbation norm. Moreover,
we observe that the baseline NC method (associated with
the dense Trojan model) [79] lacks stability. For example,
it fails to identify the correct target label at the use of the
RGB trigger (e.g., Fig. 5 [d]). Further, we note that the non-
Trojan model does not follow the minimum perturbation-
based detection rule.

In Tab. 1, we present the attack performance (ASR) of
the recovered Trojan trigger versus the different choice of
the ground-truth Trojan trigger type (i.e., gray-scale, RGB,
and clean-label trigger). As we can see, even if the base-
line NC method (associated with the dense Trojan model)
can correctly identify the target label, the quality of the re-
covered Trojan trigger is poor, justified by its much lower
ASR than ours. In particular, when the clean-label attack
was used in the Trojan model, our approach (by leveraging
the winning Trojan ticket) leads to over 90% ASR improve-
ment. In Tab. 2, we present the ASR of the recovered Tro-
jan trigger under different model architectures and datasets.
Consistent with Tab. 1, the use of the winning Trojan ticket

Table 1. Performance of recovered triggers with ResNet-20s on
CIFAR-10 across diverse Trojan triggers, including gray-scale,
RGB, and clean-label triggers. ✓/✗ mean the detected label is
matched/unmatched with the true target label.

Gray-scale Trigger (Detected, ℓ1) ASR

Dense baseline [32] (“1”, 196.8) ✓ 71.4%
Winning Trojan ticket (“1”, 68.0) ✓ 91.2%

RGB Trigger (Detected, ℓ1) ASR

Dense baseline [32] (“1”, 78.7) ✓ 48.0%
Winning Trojan ticket (“1”, 29.8) ✓ 99.6%

Clean-label Trigger (Detected, ℓ1) ASR

Dense baseline [32] (“1”, 48.6) ✓ 9.6%
Winning Trojan ticket (“1”, 14.0) ✓ 99.8%

significantly outperforms the baseline approach, not only in
ASR but also in the correctness of the detected target label
based on the minimum perturbation criterion.

In Tab. 3, we examine how the choice of base images in
the Trojan recovery problem (3) affects the estimated Trojan
quality. In contrast to the use of 100 noise images randomly
drawn from the standard Gaussian distribution, we also con-
sider the case of using 100 clean images drawn from the be-
nign data distribution. As we can see, our approach based
on the winning Trojan ticket yields superior Trojan recovery
performance to the baseline method in both settings of base
images. Most importantly, the quality of our recovered Tro-
jan trigger is input-agnostic: The 99.6% ASR is achieved
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Table 2. Performance of recovered triggers with RGB Trojan
attack across diverse combinations of network architectures and
datasets, i.e., (Vgg-16, CIFAR-10), (ResNet-20s, CIFAR-100),
(ResNet-18, R-ImageNet).

(VGG-16, CIFAR-10) (Detected, ℓ1) ASR

Dense baseline [32] (“1”, 83.3) ✓ 33.6%
Winning Trojan ticket (“1”, 15.0) ✓ 100.0%

(ResNet-20s, CIFAR-100) (Detected, ℓ1) ASR

Dense baseline [32] (“1”, 149.9) ✓ 13.8
Winning Trojan ticket (“1”, 132.7) ✓ 98.7

(ResNet-18, R-ImageNet) (Detected, ℓ1) ASR

Dense baseline [32] (“9”, 13.9) ✗ 9.8
Winning Trojan ticket (“1”, 193.1) ✓ 98.7

Table 3. Performance of recovered triggers with random noise
images (‘free’) v.s. benign clean images. The RGB Trojan attack
on CIFAR-10 and ResNet-20s are used for the reverse engineering.

Noise Images (‘Free’) (Detected, ℓ1) ASR

Dense baseline [32] (“1”, 78.7) ✓ 48.0%
Winning Trojan ticket (“1”, 29.8) ✓ 99.6%

Clean Images (Detected, ℓ1) ASR

Dense baseline [32] (“1”, 174.6) ✓ 72.6%
Winning Trojan ticket (“1”, 40.4) ✓ 99.8%

using just noise images without having access to any benign
images. This is a promising finding of Trojan recovery ‘for
free’ given the zero knowledge about how the Trojan attack
is injected into the model training pipeline. The superior-
ity of our approach can also be justified from the visualized
Trojan trigger estimates in Fig. 6. Compared to the baseline
NC [79], the more clustered and the sparser Trojan trigger
is achieved with much higher ASR shown in Tab. 3. More-
over, we remark that compared to [74] which needs human
intervention to craft the sparse trigger estimate, ours pro-
vides an automatic way to reverse engineer the valid and
the sparse Trojan trigger.

Ablation study. In Appendix A2, we provide more abla-
tions on the sensitivity of our proposal to the sparse net-
work selection, the configurations of Trojan triggers and
LTH pruning, and other pruning methods. Meanwhile, vi-
sualizations of winning Trojan tickets’ sparse connectivities
and loss landscape geometry are also presented. Lastly, we
further offer extra experiment results on advanced Trojan
attackers [62], more poisoned and un-poisoned datasets.
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Figure 6. Visualization of recovered Trojan trigger patterns from
dense Trojan models and winning Trojan tickets. ResNet-20s on
CIFAR-10 and ResNet-18 on ImageNet with RGB triggers are
used here. The first row shows the random base images used for
solving the problem (3), which is a challenging scheme from [80].

6. Conclusion and Discussion
This paper as pioneering research bridges the lottery

ticket hypothesis towards the goal of Trojan trigger detec-
tion without any available clean data by a two-step decom-
position of first locating a winning Trojan ticket with nearly
full backdoor and little clean information; then leveraging
it to recover the trigger patterns. The effectiveness of our
proposals is comprehensively validated across trigger types,
network architecture, and datasets.

As the existence of backdoor attacks has aroused increas-
ing public concern on the safe adoption of third-party mod-
els, this method provides model suppliers (like the Caffe
Model Zoo) with an effective way to inspect the to-be-
released models while not requiring any other clean dataset.
Nevertheless, we admit pruning indeed slows down the
pipeline and in our future work, we seek to provide a more
computationally efficient method, that can scale up to larger
and deeper models. This work is designed to defend mali-
cious attackers, but it might also be abused, which can be
constrained by issuing strict licenses.
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