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Abstract

Although detection with Transformer (DETR) is increas-
ingly popular, its global attention modeling requires an
extremely long training period to optimize and achieve
promising detection performance. Alternative to existing
studies that mainly develop advanced feature or embed-
ding designs to tackle the training issue, we point out that
the Region-of-Interest (RoI) based detection refinement can
easily help mitigate the difficulty of training for DETR
methods. Based on this, we introduce a novel REcurrent
Glimpse-based decOder (REGO) in this paper. In partic-
ular, the REGO employs a multi-stage recurrent process-
ing structure to help the attention of DETR gradually fo-
cus on foreground objects more accurately. In each pro-
cessing stage, visual features are extracted as glimpse fea-
tures from RoIs with enlarged bounding box areas of detec-
tion results from the previous stage. Then, a glimpse-based
decoder is introduced to provide refined detection results
based on both the glimpse features and the attention mod-
eling outputs of the previous stage. In practice, REGO can
be easily embedded in representative DETR variants while
maintaining their fully end-to-end training and inference
pipelines. In particular, REGO helps Deformable DETR
achieve 44.8 AP on the MSCOCO dataset with only 36
training epochs, compared with the first DETR and the De-
formable DETR that require 500 and 50 epochs to achieve
comparable performance, respectively. Experiments also
show that REGO consistently boosts the performance of
different DETR detectors by up to 7% relative gain at the
same setting of 50 training epochs. Code is available via
https://github.com/zhechen/Deformable-
DETR-REGO.

1. Introduction
Object detection aims to locate and recognize foreground

objects from images. In recent years, deep learning has
made rapid development in object detection. With deep
convolutional neural networks [18, 19, 27, 33, 46], vari-
ous powerful detectors have been developed [4, 22, 32, 37].
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Figure 1. Concept of the proposed recurrent glimpse-based de-
coder (REGO) for augmenting the training of attention modeling
in Detection with Transformer (DETR). Using original DETR re-
sults, the REGO performs a multi-stage Region-of-Interest (RoI)
based attention modeling refinement procedure by gradually fo-
cusing on more accurate areas. In each stage, glimpse features are
extracted and a glimpse-based decoder is employed to provide re-
fined detection outputs based on both the glimpse features and the
attention modeling output of the previous stage. The REGO main-
tains the fully end-to-end pipeline of different DETR methods and
can improve their training performance promisingly.

In general, modern detectors produce redundant results
and require Non-Maximum Suppression (NMS) to reduce
the redundancy in detection. Different from this popular
paradigm, Detection with Transformer (DETR) [3] applied
Transformer [39] for detection and is the first fully end-to-
end detector that avoids the need for NMS. In particular, a
Transformer is a powerful attention-based encoder-decoder
pipeline for translating an input sequence to the target se-
quence. By formulating the detection task as a direct set
prediction problem, the authors of DETR managed to trans-
late visual features into a set of detection results based on
the global attention modeling of a Transformer. Despite
benefits, the DETR suffers from a difficult training problem.
Using MS COCO dataset [24], the original DETR requires
500 training epochs to obtain promising performance, while
the other popular detectors like FPN [22] only require less
than 36 epochs to get similar results. Even using a machine
with 8 powerful V100 GPUs, a DETR detector costs more
than 10 days to finish the training [3].

By addressing the training problem, researchers found
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that the lack of effective locality modeling could affect the
training of attention modeling in DETR methods. For ex-
ample, Zhu et al. [48] analyzed that the Transformer would
distribute almost uniform attentional weights to all features
initially. It is then necessary to apply long training epochs
to make the Transformer learn to focus on sparse and mean-
ingful local areas. To tackle this issue, researchers de-
veloped advanced multi-scale feature encoding [9, 12] and
object embedding designs [28, 41] to improve the locality
modeling in Transformer before final detection, so that the
attention of Transformer can be trained more efficiently and
the detection results can be improved properly.

Different from existing methods, we propose that the
training of the attention modeling in DETR can be easily
improved based on Region-of-Interest (RoI). More specif-
ically, considering local areas around bounding boxes de-
tected by DETR as RoIs that may contain objects, we can
directly restrict the attention of DETR by only focusing
on these RoIs. Therefore, modeling the features within
RoIs can help introduce more locality inductive biases in
DETR and thus improve its training efficiency effectively.
In fact, researchers have demonstrated that gradual refine-
ments according to RoIs can boost training and detection
performance for two-stage [15, 32] and multi-stage detec-
tors [2,32]. Nevertheless, these multi-stage detection meth-
ods mainly follow RCNN detection methodology [16] for
training and inference which still requires NMS. To our best
knowledge, the RoI-based refinement for attention model-
ing in DETR has rarely been studied.

To develop a proper RoI-based DETR refinement
method, we take inspiration from the glimpse mechanism
as studied in the work [29] which extracted features from
a few selected local areas of different scales as glimpses
and applied a recurrent network to encode the glimpse in-
formation. Similar to DETR, this glimpse method also for-
mulates the visual understanding as a sequence translation
task and has proven to be effective for image recognition.
We follow this mechanism and propose a novel recurrent
glimpse-based decoder (REGO) module to help existing
DETR methods relieve training difficulty and improve de-
tection performance.

The proposed REGO module refines DETR with multi-
stage processing. Taking detection and attention modeling
outputs of the original DETR as initial states, each stage of
REGO first extracts glimpse features from local areas sur-
rounding the detected bounding boxes. Then, a Transformer
decoder is employed to translate the glimpse features based
on previous attention modeling outputs into augmented at-
tention modeling outputs and refined detection results. For
early stages, we extract glimpse features from the local ar-
eas at larger scales w.r.t. the detected bounding box areas,
enabling the incorporation of rich contexts to boost the de-
tection that can possibly be unreliable in early stages. After

multiple stages of processing, the REGO performs a coarse-
to-fine RoI-based refinement which is shown to be effective
for improving the training of different DETR methods.

To sum up, the contributions of this paper are three-fold:

• We proposed a novel RoI-based refinement module
that can effectively tackle the difficult training prob-
lem for the attention modeling in DETR and improve
detection performance.

• The REGO is easy-to-implement and is a comple-
mentary module that can be embedded in different
DETR variants. It keeps the fully end-to-end detection
pipeline of DETR while accelerating convergence and
improving detection performance for different DETR
methods effectively.

• Extensive experiments show that the REGO helps de-
liver promising performance using only 36 training
epochs with a DETR pipeline, which is 13× shorter
than the first DETR method. Moreover, REGO also
consistently boosts the performance of different DETR
methods by up to 7% relative gain using the same 50
training epochs.

2. Related Work

Object Detection Modern detectors [7, 8, 17, 22, 32] gen-
erally make dense detection of objects appeared on the im-
ages. For example, the widely used regional proposal net-
work (RPN) [32] scans every location on the feature map
of the backbone like ResNet [18] and generates proposal
windows that may cover foreground objects. This produces
plenty of redundant proposals, e.g., an object can be cov-
ered by different but highly overlapped proposals, which
is disadvantageous to make sparse predictions. To allevi-
ate this problem, one-stage methods [21,23,26,31] develop
augmented networks to ensure that they can directly pro-
vide compact detection results. Two-stage methods [17,32]
attempt to refine the proposal bounding boxes based on the
features extracted with RoIPooling [15] or RoIAlign [17].
Nevertheless, both one-stage and two-stage detectors rely
on the hand-designed NMS procedure to remove redun-
dancy, which is heuristic and separated from the end-to-end
learning pipeline, leading to many inaccurate predictions re-
mained after NMS. Alternatively, recently introduced detec-
tion with Transformer [3] can provide a set of object detec-
tion results without requiring NMS. However, DETR suf-
fers from frustratingly difficult training problem.
Improvement of Transformer in Computer Vision
The training difficulty of DETR is a common issue in
Transformer-based computer vision methods [11, 38, 40].
By addressing the training problem, many researchers
found that locality modeling is important for improving the
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training of attention in DETR [36, 43, 47]. Some meth-
ods [30] developed advanced local window-based method
for improving efficiency. In object detection, researchers
mainly develop advanced feature encoding and embedding
designs to help tackle this problem. The Deformable DETR
[48] applied deformable operations [9] to better focus on a
few local areas at different scales in the Transformer. The
method SMCA [12] introduced multi-scale co-attention to
improve DETR with refined local representations. In ad-
dition, other studies like Conditional DETR [28] and An-
chor DETR [41] tend to improve the spatial embedding in
Transformer to help accelerate training. These two methods
enhance the locality modeling of Transformer by making
attention focus on potentially valuable areas on the image
learned with positional embeddings. Unlike these meth-
ods that require careful designs, we argue that the RoIs
which naturally correspond to local areas can also improve
the training of attention modeling in DETR. A more re-
lated method is the iterative refinement used in Deformable
DETR [48]. We note that this method does not use RoIs
and it mainly improves performance by re-using all the re-
gression outputs of DETR. Our RoI method can improve
attention modeling and is orthogonal to this method. Ex-
periments show that the cooperation of this method and our
REGO achieves state-of-the-art performance.
RoI-based Improvement for Object Detection Re-
searchers have proved that the detection results can be pro-
gressively improved by refining classification and local-
ization w.r.t. RoIs [2, 6, 14, 25, 44]. For example, MR
CNN [13] introduced an iterative procedure to alternate be-
tween scoring and bounding box refinement based on RoIs.
The CascadeRCNN [2] repeated the RoI-based detection
head of the Faster RCNN [32] several times for refinement.
Despite effectiveness, such type of RoI-based refinement
methodology can not be directly applied to the fully end-to-
end pipeline of DETR because they rely on different opti-
mization goals and still require NMS. More recently, some
methods, like Efficient DETR [45], TSP-RCNN [35], and
SparseRCNN [34], also uses RoIs to achieve improved per-
formance with a Transformer and can also avoid the NMS.
However, we argue that these methods are still based on the
typical two-stage detection pipeline like Faster RCNN [32]
and they only apply Transformer mainly to approximate
NMS. These methods do not directly tackle the difficult
training problem for attention modeling in DETR.

In summary, exploring end-to-end RoI-based refinement
for improving the training of attention modeling in DETR
remains a missing part in literature.

3. Preliminary
Here, we briefly review the DETR. More details can be

found at [3, 39].
Multi-head Attention Multi-head attention deals with

query, key, and value inputs. It correlates query and key
and then aggregates values according to the correlation re-
sults. Following [39], the multi-head attention splits fea-
tures into different ’heads’ and performs self-attention or
cross-attention in each head. The features of different heads
will be concatenated together and fed into a linear projec-
tion to obtain the final output. Formally, to help describe
a multi-head attention, we suppose that Xq ∈ RLq×C is
a query tensor where Lq refers to its sequence length and
C is its feature dimension. We follow the formulations of
DETR [3] and unify the key and value into the same ten-
sor: Xkv ∈ RLkv×C which is the the key-value sequence of
length Lkv . The multi-head attention, abbreviated as ”A”,
can be formulated as:

A(Xq, Xkv) = WA
[
A(X1

q , X
1
kv), . . . ,A(XM

q , XM
kv )

]
,
(1)

where WA ∈ RC×C is a trainable linear projection matrix,
M is the number of heads, and [. . .] refers to concatenation
operation. The Xi

q ∈ RLq×C′
and Xi

kv ∈ RLkv×C′
are

query and key-value tensors of the i-th head (i = 1, . . .M ),
respectively, where C ′ = C

M . In each head, the following
operation is performed:

A(Xi
q, X

i
kv) = Ai

qkvX
i
kv, (2)

where Ai
qkv represents the attentional weights: Ai

qkv =

Softmax(
Xi

q(X
i
kv)

T

√
C′ ).

DETR Pipeline The DETR applies an encoder-decoder
pipeline to translate the input features into a set of de-
tection results. During training, Hungarian matching [20]
is performed to assign the detection results with the most
matched ground-truths. The encoder-decoder consists of a
visual feature encoding phase and a detection result decod-
ing phase. The feature encoding investigates the relations
between visual features from different locations. It applies
several encoding layers to augment the encoded represen-
tation. We suppose the backbone network extracts features
into: X ∈ RH×W×C where H,W represents the height and
width, respectively, and C is the feature dimension. In each
encoding layer, a multi-head self-attention module is em-
ployed, that is, query, key, and value tensors are the same:
Xq = Xkv . The input feature X also integrates a positional
embedding to encode position information. Suppose the
output of the encoding phase is Henc ∈ RHW×C . Then, de-
tection decoding phase perform detection based on Henc. It
begins from object query embeddings Ebox ∈ RNd×C and
applies cross-attention as described in Eq. (1) with Henc

for making predictions. The Nd here represents the number
of predicted objects. Suppose the decoded feature is Hdec,
then Hdec = A(Ebox, Henc). With the Hdec, the decoding
phase performs classification and bounding box coordinate
regression, obtaining Ocls ∈ RNd×Nc and Obox ∈ RNd×4,
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Figure 2. The overview of the REGO (top row) and the detailed structure of the i-th processing stage in REGO.

respectively, where Nc represents the number of object cat-
egories. To this end, we have:{

Ocls = Fcls(Hdec)
Obox = Fbox(Hdec)

, (3)

where Fcls and Fbox are functions that map the decoded
feature Hdec into the desired outputs respectively. The two
functions are implemented based on linear projection and
multi-layer perception, respectively.

4. Recurrent Glimpse-based Decoder
Different from existing methods, we propose a recurrent

glimpse-based decoders (REGO) to perform RoI-based de-
tection refinement method for improving attention model-
ing in DETR. The REGO consists of two major compo-
nents. The first one is a multi-stage recurrent processing
structure that progressively augments attention modeling
outputs and improves the detection of DETR, and the sec-
ond one is the glimpse-based decoder that is used in each
stage to explicitly perform the refinement. Figure 2 shows
the detailed pipeline.

4.1. Multi-stage Recurrent Processing

Built upon detection results and attention decoding out-
puts from original DETR, we propose a recurrent process-
ing pipeline to help the DETR gradually attend to more
meaningful areas to avoid long training periods for optimiz-
ing the attention of DETR. In general, the proposed recur-
rent processing structure is a multi-stage pipeline. In each
stage, previously detected bounding boxes are used to ob-
tain RoIs for extracting glimpse features. Then, glimpse
features are translated according to previous attention de-
coding outputs into refined attention decoding outputs for

describing detected objects. The refined attention decod-
ing outputs can provide improved detection results. Thus,
for the i-th processing stage, we propose to detect objects
according to:{

Ocls(i) = Fcls(Hdec(i))
Obox(i) = Fbox(Hdec(i)) +Obox(i− 1)

, (4)

where Ocls/box(i) represent the classification and bound-
ing box regression outputs of the i-th recurrent processing
stage, respectively, and Hdec(i) represents the refined atten-
tion of this stage after decoding. Then, to obtain a proper
representation of Hdec(i), we use the following formula-
tion:

Hdec(i) = [Hg(i), Hdec(i− 1)], (5)

where Hg(i) is the translated glimpse features according
to Hdec(i − 1), and [. . .] refers to concatenation operation.
Reusing Hdec(i− 1) in Eq. (5) not only improves the atten-
tion of previous stages, but also help maintain consistency
in the produced detection results across different stages,
which could help reduce the variations in the Hungarian
matching loss in later stages The study [35] has proven that
reducing the randomness of the matching loss is beneficial
for accelerating convergence. The calculation of translated
glimpse features Hg(i) will be discussed with more details
in the next section. For the first stage where i = 0, we use
the outputs of original DETR, as described in Eq. (3), to
represent Ocls(0), Obox(0), and Hdec(0).

4.2. Glimpse-based Decoder

During the i-th processing stage, the glimpse-based de-
coder collects visual features from areas around the detected
bounding boxes Obox(i−1) from the previous stage. It then
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performs cross-attention to model the relations between the
collected features and previous attention outputs and com-
pute translated glimpse features Hg(i) of current stage.

In particular, we denote the extracted visual features as
V (i) for the i-th stage, terming as the glimpse feature.
Then, we translate it according to the previous attention out-
puts into a refined attention modeling outputs for detection.
Multi-head cross-attention is applied to fulfill the transla-
tion, i.e.,

Hg(i) = A(V (i), Hdec(i− 1)). (6)

Note that we use the attention outputs from the last layer of
the decoder in original DETR to define Hdec(0). It is also
worth mentioning that either the V (i) or the Hdec(i − 1)
can be used as the query in A. Both settings can correlate
glimpse features with previous attention outputs properly
and can all improve the training of DETR. We simply found
that above formulation achieves 0.5 point higher in AP on
COCO dataset [24].

To extract the glimpse features V (i), we perform the fol-
lowing operation based on Obox(i− 1):

V (i) = fext

(
X,R

(
Obox(i− 1), α(i)

))
, (7)

where the function fext represents the feature extraction op-
eration, R represents the RoI computation, and α(i) a scalar
factor. In particular, the function R computes RoIs by en-
larging the areas of bounding boxes detected by Obox(i−1)
with a factor of α. Then, we use the RoIAlign [17] tech-
nique to implement fext. The symbol X here represents the
features obtained with the backbone network.

Since the original detection results could be unreliable at
first, we tend to extract glimpse features from a larger area
around each detection result for refinement in early stages,
so that contexts can be incorporated and target objects can
be properly captured within the glimpse areas. In later pro-
cessing stages, we gradually narrow the area for extract-
ing glimpse features to achieve more precise detection with
more local details. In other words, the α(i) in REGO starts
from a large number and then decreases its value for later
stages of the REGO. The detailed setting of α(i) can be
found in the following section.

4.3. Implementation Details

The proposed REGO is a plug-and-play module for dif-
ferent DETR methods. It only has two major hyperparam-
eters, i.e. the number of recurrent stages and the enlarging
ratios α of each stage. To reduce the manual tuning efforts,
we unify the two hyperparameters into a single one. More
specifically, we constrain that the last recurrent stage has an
enlarging ratio equals to 1. Then, when we add a new re-
current stage before the last stage, we increase the enlarging

ratio by 1 for the added stage. In other words, if we use 3 re-
current stage, then α(3), α(2), α(1) = 3, 2, 1, respectively.
Therefore, we only need to investigate the influence of num-
ber of recurrent stages. In addition, we follow the original
DETR and apply auxiliary losses to enhance the training of
intermediate outputs of the glimpse-based decoders and ap-
ply LayerNorm [1] to help regularize the decoded glimpse
representation Hdec(i).

For each recurrent stage of the REGO, we use the de-
coder architecture of the original DETR for glimpse fea-
ture translation, but we do not use encoders and only use
2 decoding layers for a decoder. In decoders, the self-
attention of encoders brings marginal benefits but con-
sumes more computational resources, e.g. for REGO-
DeformabelDETR-R50, adding the self-attention layers for
all stages only improves AP, AP50, and AP75 by 0.1, -0.1,
0.2, respectively, while introducing around 4 more GFLOPs
and 9M more parameters. Without encoders, the complex-
ity of the decoder in REGO is much smaller than the de-
coder used in the original DETR methods. The complex-
ity analysis is presented in the experiment section. Besides
the number of stages, we present other implementation de-
tails as follows. Firstly, we follow the default settings of
the RoIAlign [17] and uses a 7 by 7 window for feature ex-
traction. In addition, when extracting glimpse features, we
attempt to use features from different levels of backbone in
both multi-scale and single-scale DETR methods, but note
that we do not use the FPN [22] to save costs. Also, the
number of RoIs depends on the output of DETR and the
number of stages. We will present more details in supple-
mentary materials.

5. Experiment
5.1. Setup

We follow existing DETR methods [3] and perform eval-
uation using the MS COCO [24] dataset which has 118k
training images and 5k validation images. We follow the
MS COCO protocol and report the performance using the
evaluation metrics of average precision (AP), AP at 0.5, AP
at 0.75, and AP for small, medium, and large objects. The
validation set is mainly used for evaluation.

We apply our method on the original DETR [3] and De-
formable DETR [48] using their released codes. For train-
ing, we follow the original settings of the released codes for
fair comparison, except that we also perform experiments
with much fewer training epochs. For example, the original
DETR detectors adopt 500 or 50 training epochs, while we
mainly evaluate our method with 50 or 36 training epochs.

5.2. Performance Evaluation

In this section, we perform comprehensive comparison
between the current DETR methods and our method. Ta-
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Detectors Backbone Epochs AP AP50 AP75 APS APM APL GFLOPs #Params (M)
FCOS [37] R50 36 41.0 59.8 44.1 26.2 44.6 52.2 177 32
Faster RCNN - FPN [22] R50 36 40.2 61.0 43.8 24.2 43.5 52.0 180 42
Faster RCNN - FPN [22] R101 36 42.0 62.5 45.9 25.2 45.6 54.6 246 61
Mask RCNN [17] X101 36 44.5 64.9 48.7 27.6 48.3 57.7 457 102
Cascade Mask RCNN [2, 5] X101 36 46.6 65.1 50.6 29.3 50.5 60.1 627 135
TSP-RCNN [35] R50 96 45.0 64.5 49.6 29.7 47.7 58.0 188 -
Efficient DETR [45] R50 36 44.2 62.2 48.0 28.4 47.5 56.6 159 35
Sparse RCNN [34] R50 36 44.5 63.4 48.2 26.9 47.2 59.5 - -
DETR [3] R50 500 42.0 62.4 44.2 20.5 45.8 61.1 86 41
DETR-DC5 [3] R50 500 43.3 63.1 45.9 22.5 47.3 61.1 187 41
UP-DETR [10] R50 300 42.8 63.0 45.3 20.8 47.1 61.7 86 41
Conditional DETR [28] R50 50 40.9 61.8 43.3 20.8 44.6 59.2 90 44
Anchor DETR [41] R50 50 44.2 64.7 47.5 24.7 48.2 60.6 151 -
SMCA [12] R50 50 43.7 63.6 47.2 24.2 47.0 60.4 152 40
SMCA [12] R101 50 44.4 65.2 48.0 24.3 48.5 61.0 218 58
DETR∗ [3, 28, 48] † 50 39.3 60.3 41.4 18.5 42.4 57.5 88 44
DETR∗-DC5 [3, 28, 48] † R50 50 41.3 62.8 43.6 21.0 44.5 59.4 189
REGO-DETR∗ (ours) 50 42.3 60.5 46.2 26.2 44.8 57.5 112
REGO-DETR∗-DC5 (ours) R50 50 44.0 62.6 47.8 26.5 45.2 62.9 213 58

Deformable DETR [48] R50 36† 42.7 61.4 46.7 25.9 46.2 56.6 173 4050 43.8 62.6 47.7 26.4 47.1 58.0
36 44.8 63.8 48.7 27.0 48.0 60.2REGO-Deformable DETR (ours) R50 50 45.9 65.2 49.7 27.6 48.9 61.5 190 54

R50 50 46.4 65.3 50.6 30.0 49.8 61.4 173 40
R101 50 47.2 66.6 51.1 28.5 50.9 62.4 240 59Deformable DETR∗∗ [48]†

X101 50 47.7 67.2 51.4 29.3 51.2 62.8 417 105
R50 50 47.6 66.8 51.6 29.6 50.6 62.3 190 54

R101 50 48.5 67.0 52.4 29.5 52.0 64.4 257 73REGO-Deformable DETR ∗∗ (ours)
X101 50 49.1 67.5 53.1 30.0 52.6 65.0 434 119

Table 1. Results of different detectors on the MS COCO val split. Baseline results are shaded. ∗ Improve with 300 queries, reference
points, and focal loss [28, 48]. ∗∗ Improve with iterative box refinement and two-stage processing. † Reproduced using released code.

ble 1 shows the overall results on MS COCO val dataset.
In particular, we thoroughly investigate the performance of
applying REGO on different DETR methods using different
backbone networks and different training epochs.

Comparison with different DETR methods We have ap-
plied our proposed REGO on two major DETR detectors
for evaluation. This include the vanilla DETR [3] method
improved with 300 queries, reference points, and focal loss
as described by [48] and the Deformable DETR [48]. We
also presented the reported performance of RCNN-based
methods [2, 22, 32, 34, 35, 37] and other DETR variants
[10, 12, 28, 41, 45]. From the results in Table 1, we can ob-
serve that our method consistently improves different R50-
based baseline methods by around 2 points in AP using 50
epochs. For example, using the original DETR, we boosts
the performance from 39.3 AP to 42.3 AP at 50 training
epochs. Moreover, by further cooperating with iterative
box refinement and two-stage processing when using the
Deformable DETR as baseline, the REGO helps improve
the AP from 46.4 to 47.6 which is the highest score in all
the compared DETR methods trained with 50 epochs and
R50 backbone. This demonstrates that our proposed REGO
is effective for improving DETR by gradually attending to

more accurate object areas with RoIs.

Comparison at Fewer Training Epochs By applying the
REGO on the Deformable DETR, we also compare the de-
tection performance obtained at 36 training epochs used
by many traditional detection methods [22, 37]. Accord-
ing to the Table 1, we help the Deformable DETR achieve
44.8 AP using 36 training epochs while the original De-
formable DETR only achieves 42.7 with 36 epochs. Un-
der the same training period, our method also helps sur-
pass FPN and FCOS greatly. We also performed an extra
experiment of REGO-DeformableDETR-X101 also trained
with 36 epochs, obtaining 48.1, 67.4, 52.0 in AP, AP50, and
AP75, respectively, which are higher than the CascadeR-
CNN [2], proving that our REGO can reduce training costs
for DETR effectively.

Comparison with Different Backbones We also investi-
gate the effectiveness of REGO on different backbone net-
works, including R50 [18], R101 [18], and X101 [42]. Be-
sides the improvements over R50 network, the results in
Table 1 also show that REGO continues to improve the
baseline DETR method with both R101 and X101 networks
promisingly. In particular, with X101 backbone network,
our Deformable DETR + REGO detector achieves the high-
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Figure 4. Histogram of correct detection results on the val set
at different settings, i.e., different IoU w.r.t. ground-truths and in
different REGO stages. Note that the number of correct detection
results of different stages share a similar amount (∼ 30k boxes).

est AP among many state-of-the-art object detectors.
Convergence Analysis We further study the impact of
REGO on actual convergence. Fig. 3 shows the detailed
convergence curves of the Deformable DETR and the De-
formable DETR with REGO. It shows that the REGO ef-
fectively speeds up the convergence and boosts the model
performance promisingly comparing to the baseline. In par-
ticular, REGO helps achieve comparable performance with
the baseline using only 30 epochs, i.e., 40% less than the
complete 50 training epochs used in the baseline. Compar-
ing to the first DETR which requires 500 epochs, the REGO
can help reduce about 94% of the total training period.
Complexity Analysis The extra computational complexity
brought by the REGO is around 17 GFLOPs, which is only
around 10% of the complexity of a Deformable DETR-R50
model while bringing around 28% acceleration in training
(36 epochs v.s. 50 epochs). Furthermore, the complexity of
our method remains the same when using larger and deeper
backbone networks like R101 and X101 because of the

Glimpse Stages AP AP50 AP75 APS APM APL

Deformable DETR [48] 43.8 62.6 47.7 26.4 47.1 58.0
1 Stage (α = 1) 45.1 63.0 46.4 24.7 46.0 60.0
2 Stage (α = 2, 1) 45.6 65.1 49.3 27.4 48.7 61.2
3 Stage (α = 3, 2, 1) 45.9 65.2 49.7 27.6 48.9 61.5
4 Stage (α = 4, 3, 2, 1) 45.9 65.5 50.3 28.5 49.0 61.1

Table 2. Hyper-parameter study of the number of stages in REGO.
Deformable DETR [48] is used as baseline.

Glimpse Scale AP AP50 AP75 APS APM APL

1x 45.9 65.2 49.7 27.6 48.9 61.5
1.5x 45.8 65.0 50.1 27.6 48.9 61.3
2x 45.7 65.0 49.9 27.8 48.6 59.9

Table 3. Hyper-parameter study of the glimpse scale in REGO.
REGO is implemented with 3 stages.

identical implementation. The extra complexity w.r.t. these
larger backbone network-based DETR are only around 7%,
while the REGO brings more improvement rather than in-
creasing depth of backbone networks. For example, the
X101 improves R50 with 1.3 points in AP (46.4 to 47.7)
for Deformable DETR at the cost of another 244 GFLOPs,
while the REGO achieves similar results (47.6) with only
extra 17 GFLOPs using the R50 backbone. Furthermore,
we can also show in the supplementary materials that the
Deformable DETR trained with REGO can already achieve
around 1 point higher AP even without using REGO dur-
ing inference, which means that the REGO directly helps
original DETR learn better attention and offers detection
improvement during inference for free.

5.3. Ablation Study

Analysis of Different REGO Stages We first present the
detection performance of applying different numbers of
REGO stages in Table 2. The evaluated stages range from
1 to 4 where the glimpse scale in each stage varies accord-
ingly as described in Section 4.3. We also present the base-
line Deformable DETR result as reported in the paper [48].
The results show that the REGO with different numbers of
stages improves the baseline performance greatly. A sin-
gle processing stage can increase the mAP by more than 1
point. Applying more stages leads to further improvement.
The performance of 3 and 4 stages is the best among com-
pared settings. Although REGO with 4 stages achieves fa-
vorable performance, its improvement over the setting of 3
stages is marginal, implying that adding more than 3 pro-
cessing stages in REGO could result in diminished benefits.
We also disentangle the enlarging ratio from the 3-stage set-
ting, i.e. making α=1,1,1, and only obtain 45.3 in mAP,
showing that the glimpse design is useful.

We also study the quality of detection results from differ-
ent stages in a 3-stage REGO module. A histogram chart of
the numbers of correct detection results at different settings
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Deformable DETR + REGO (ours)

Deformable DETR

Figure 5. Visual detection results of the baseline Deformable DETR [48] and its variant with REGO. Green boxes are detection results
while red boxes are ground-truths.

of Intersect-over-Union (IoU) w.r.t. ground-truths is shown
in Fig. 4. A detection result is correct only if its IoU to a
ground-truth is higher than 0.5 and its predicted label aligns
with the ground-truth. In addition, the numbers of total de-
tection results for different stages are similar, i.e., around
30k boxes. Therefore, with the similar amount of correct
detection results, the chart shows that all the REGO stages
(red bars) help produce more accurate detection results than
the baseline (blue bars) and their counterparts with fewer
stages (yellow and green bars) for the right-most two groups
of detection results. For example, the results of REGO with
3 stages contain more correct detection results whose IoU
scores w.r.t. ground-truths are higher than 0.9. These re-
sults demonstrates that REGO with more stages continues
to refine the detection by focusing on objects in the coarse-
to-fine ROIs and learning better feature representations.
Analysis of Different Scales of Glimpse Area Table 3
shows the performance comparison of using different scales
of glimpse area. The 1x, 1.5x, and 2x in the table repre-
sent the ratios of enlarging glimpse scales. For example,
if using 2x and the default glimpse scales are 3.0, 2.0, 1.0
times larger than the previously detected bounding boxes,
the actual glimpse scales are 6.0, 3.0, 2.0 times larger, re-
spectively. We can find that the 1x setting already achieves
the highest AP, and other settings achieve comparable but
slightly lower AP. This suggests it is inappropriate to en-
large glimpse areas aggressively for implementing REGO.

5.4. Qualitative Results

We present some visual detection results to better illus-
trate the impact of REGO. We choose Deformable DETR

[48] with R50 as baseline. Fig. 5 shows the results.
Note that we choose the detection results whose confidence
scores are higher than 0.5 for better visualization. From the
figure, we can observe that the REGO indeed helps reduce
both false positive and false negative results for the baseline
method. Besides, the REGO can also help investigate the
relations between different detected bounding boxes with
the help of glimpse-based decoders. We will present some
visual examples of the object relations learned with REGO
in the supplementary materials.

6. Conclusion

We introduce a novel and effective technique, called RE-
current Glimpse-based decOder (REGO), to improve the
Detection with Transformer (DETR) methods. By incorpo-
rating recurrent processing structure and learning glimpse
features from coarse-to-fine RoIs, the REGO shows to both
accelerate the convergence speed and boost the detection
performance of different DETR methods consistently. We
hope this study can contribute to future research on end-to-
end and efficient detection methodologies.

Social Impacts and Limitations Our method can benefit
various applications like self-driving. A potential limitation
is that we still need several GPU days for training which
is environmental costly. This can be mitigated by further
improving the efficiency of both our REGO and the DETR.
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