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Abstract

Adversarial learning has achieved remarkable perfor-
mances for unsupervised domain adaptation (UDA). Exist-
ing adversarial UDA methods typically adopt an additional
discriminator to play the min-max game with a feature ex-
tractor. However, most of these methods failed to effectively
leverage the predicted discriminative information, and thus
cause mode collapse for generator. In this work, we ad-
dress this problem from a different perspective and design
a simple yet effective adversarial paradigm in the form of
a discriminator-free adversarial learning network (DALN),
wherein the category classifier is reused as a discrimina-
tor, which achieves explicit domain alignment and category
distinguishment through a unified objective, enabling the
DALN to leverage the predicted discriminative information
for sufficient feature alignment. Basically, we introduce a
Nuclear-norm Wasserstein discrepancy (NWD) that has defi-
nite guidance meaning for performing discrimination. Such
NWD can be coupled with the classifier to serve as a discrim-
inator satisfying the K-Lipschitz constraint without the re-
quirements of additional weight clipping or gradient penalty
strategy. Without bells and whistles, DALN compares favor-
ably against the existing state-of-the-art (SOTA) methods on
a variety of public datasets. Moreover, as a plug-and-play
technique, NWD can be directly used as a generic regular-
izer to benefit existing UDA algorithms. Code is available at
https://github.com/xiaoachen98/DALN.

1. Introduction

Deep neural networks (DNN5s) have achieved a significant
progress in many computer vision tasks [4,5, 16,37]. How-
ever, the success of these methods highly depends on large
amounts of annotated data [13,47,51], which is extremely
time-consuming and expensive to obtain. Moreover, due to

*indicates equal contribution.
Corresponding author.
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(a) Bi-classifier (b) Extra Discriminator (c) Ours
Figure 1. Illustration of different adversarial paradigms, in which
G, C, and D denote the feature extractor, task-specific classifier,
and discriminator, respectively. Different from typical paradigms
that adopt an (a) additional classifier C’ (called bi-classifier) or (b)
additional discriminator D, we present a different perspective for
UDA and introduce a simple but effective adversarial paradigm
illustrated in (c), in which the original task-specific classifier C'
is reused as a implicit discriminator, achieving explicit domain
alignment and category distinguishment via a unified objective.

the discrepancy [31,32] between training data and real-world
testing data, the DNN model trained on annotated data may
suffer from a dramatic performance decline in testing set
despite extensive annotation efforts. To address this problem,
unsupervised domain adaptation (UDA) [6, 9,30, 48], which
aims to transfer knowledge from a labeled source domain to
an unlabeled target domain in the presence of a domain shift,
has been deeply explored.

Inspired by the theoretical analysis of Ben-David et al. [2],
the existing UDA methods usually explore the idea of learn-
ing domain-invariant feature representations. Generally,
these methods can be categorized into two branches, i.e.,
moment matching methods [20, 24, 25,43, 49] and adver-
sarial learning methods [11, 12,25,39]. Moment matching
methods explicitly reduce the domain shift by matching
a well-defined distribution discrepancy of the source and
target domain features. Adversarial learning methods im-
plicitly mitigate the domain shift by playing an adversarial
min-max two-player game, which drives the generator to
extract indistinguishable features to fool the discriminator.
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Encouraged by the remarkable performance achieved by ad-
versarial learning, increasingly more researchers have been
devoted to developing a UDA method based on an adversar-
ial paradigm [9, 10,21,23,27,42].

Basically, adversarial learning-based UDA methods usu-
ally follow two lines of adversarial paradigms. One line
[10,19,21,27,39] leverages the disparity of two task-specific
classifiers C' and C’ (as shown in Fig. 1(a)), which can be
deemed as a discriminator, to implicitly achieve adversarial
learning and improve feature transferability. This paradigm
enables UDA methods to reduce the class-level domain dis-
crepancy. However, the methods following this paradigm are
prone to be affected by ambiguous predictions and thus hin-
der the adaption optimization. The other line [9, 11, 12,25]
directly constructs an additional domain discriminator D as
shown in Fig. 1(b), which improves the feature transferabil-
ity by sufficiently confusing the cross-domain feature repre-
sentations. However, the methods following this paradigm
usually focus on the domain-level feature confusion, which
may hurt the category-level information and thus cause mode
collapse problem [18,42].

To address these problems, we present a different perspec-
tive for UDA and introduce a simple but effective adversarial
paradigm illustrated in Fig. 1(c). In this paradigm, the orig-
inal task-specific classifier is coupled with a novel discrep-
ancy to serve as a discriminator/critic, which simultaneously
achieves domain alignment and category distinguishment
through a unified objective, enabling the model to lever-
age the predicted discriminative information to capture the
multi-modal structures [12,25] of the feature distributions.
Particularly, when classifier C' is used for classification, it
helps achieve category-level distinguishment; furthermore,
when C serves as a discriminator, it achieves feature-level
alignment. The novel discrepancy, called Nuclear-norm
Wasserstein discrepancy (NWD), leverages the advantages
of the Nuclear norm and 1-Wasserstein distance to encour-
age the prediction determinacy and diversity. Different from
the discrepancy metrics used in existing adversarial meth-
ods [11,42,50], the NWD not only has a promising theo-
retical generalization bound but also has definite guidance
meaning for performing discrimination, i.e., naturally giving
high scores to the source domain samples and low scores to
the target domain samples due to the supervised training on
the source domain. Such guidance encourages the intra-class
and inter-class correlations of the target domain to approach
those of the source domain. Moreover, in contrast to the
existing Wasserstein discrepancy used in recent work [40],
the NWD enables the adversarial UDA paradigm to satisfy
the K-Lipschitz constraint without the need to set up an
additional weight clipping [ 1] or gradient penalty [15].

Based on the introduced paradigm, we propose a
discriminator-free adversarial learning network (DALN),
which achieves adversarial UDA classification without ex-

plicit domain discriminator. Benefiting from the definite
guidance of the NWD, the proposed DALN converges
rapidly and achieves competitive prediction determinacy
and diversity. Note that, the DALN is considerably different
from recent approaches [42, 50] that integrate the discrimi-
nator into the classifier. DALN directly reuses the original
task-specific classifier without requiring any additional com-
ponents, making it quite simple and efficient. Extensive
experiments on a variety of datasets demonstrate that the
proposed DALN outperforms the existing state-of-the-art
(SOTA) methods. Moreover, we show that the proposed
NWD is general and plug-and-play, which can be used as
a regularizer to benefit the existing methods, which helps
them achieve more competitive performance. The main con-
tributions of this work are summarized as follows:

» We present a different perspective for UDA by introducing
a simple yet effective adversarial paradigm, in which the
original task-specific classifier is reused as a discriminator.
Based on this, we propose a new UDA method, namely
DALN, which can leverage the predicted discriminative
information for sufficient feature alignment.

* We introduce a new discrepancy, termed NWD, which has
a theoretical generalization bound and definite guidance
meaning. Such discrepancy enables the implicitly con-
structed discriminator to satisfy the K-Lipschitz constraint
without the requirements of additional weight clipping and
gradient penalty strategies.

» Without bells and whistles but only a few lines of code, the
proposed method achieves highly competitive performance
on various public datasets. By taking the proposed NWD
as a regularizer for existing methods, these methods can
achieve more competitive performance.

2. Related Works

The existing UDA methods can be mainly divided into
two categories, i.e., moment matching methods [24,26,43,

] and adversarial learning methods [10, 11,25,39,50].
Moment Matching Methods. Moment matching methods
learn domain-invariant feature representations by matching
a well-defined moment-based distribution discrepancy [51]
across domains. Typically, DDC [43] attempted to explicitly
align the learned feature distributions across domains by
minimizing the maximum mean discrepancy (MMD). Later,
methods in [24,26] improved DDC by performing alignment
with multi-kernel maximum mean discrepancy (MK-MMD)
and joint maximum mean discrepancy (JMMD), respectively.
In addition, MDD [49] proposed margin disparity discrep-
ancy (MDD) to reduce the distribution discrepancy.
Adversarial Learning Methods. Inspired by generative ad-
versarial network (GAN) [14], adversarial learning methods
learn domain-invariant features via a min-max two-player
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Figure 2. An overview of the adversarial paradigm in the form of DALN, which consists of a feature extractor G and a task-specific classifier
C. L5 is used to guarantee a low source risk for the source domain, and £,,.,4 is used to empirically estimate the NWD that can be coupled
with classifier C' to implicitly serve as a discriminator. The gradient reverse layer is used to help perform the adversarial learning.

game. As one of the earliest attempts, DANN [ I 1] intro-
duced an additional discriminator to distinguish the fea-
tures generated by the feature extractor, which successfully
achieves the domain-level adaptation. The success of the
DANN exhibits the ability to improve UDA with the GAN
model. Later, FGDA [12] leveraged a discriminator to distin-
guish the gradient distribution of features, which achieved
better performance for reducing domain discrepancy. In-
spired by the conditional GAN [29], methods in [25, 34]
combined the predicted discriminative information with
learned features to improve feature alignment. Additionally,
DADA [42] attempted to couple the task-specific classifier
with the domain discriminator to align the joint distributions
of two domains. Although these methods successfully learn
domain-invariant features, they cannot guarantee an appro-
priate divergence used for the discriminator when the support
sets of two distributions do not overlap with each other [1].

In addition to the methods adopting an additional dis-
criminator, some studies attempted to use two task-specific
classifiers (called bi-classifier), in which the disparity of
two task-specific classifiers can be deemed as a discrimi-
nator [10,19,27,39,50], to implicitly achieve the adversar-
ial learning. Representatively, MCD [39] simply used the
L1 distance to measure the intra-class divergence of two
classifiers. SWD [19] proposed using sliced Wasserstein
discrepancy instead of L1 distance to obtain a more geo-
metrically meaningful intra-class divergence. CGDM [10]
additionally introduced the cross-domain gradient discrep-
ancy to further alleviate the domain discrepancy. Although
these methods have achieved considerable improvements in
reducing domain discrepancy, most of them consider only
the intra-class divergence between predictions, which may
result in ambiguous predictions.

Different from the aforementioned methods adopting an
additional discriminator or classifier, we reuse the origi-
nal task-specific classifier by coupling it with the designed

NWD, implicitly constructing a discriminator/critic satisfy-
ing the K-Lipschitz constraint without the requirements of
additional weight clipping or gradient penalty strategy.

3. Method

3.1. Recap of Preliminary Knowledge

Given a labeled source domain set {(x?, yf)}f\; with N

samples drawn from source domain Dgs, where z} € X,
y; € Y, and label y°® covers k classes, and an unlabeled

domain target set {xi}gl with N; samples drawn from tar-
get domain Dy, where xi € X, the goal of this work is
to learn a deep UDA model for learning domain-invariant
representations and achieving reliable predictions on the
target domain. This model consists of a feature generator
G () that maps the input data to the features f € R4 ie.,
f$ = G(2°) and ft = G (x?), and a task-specific classi-
fier C' (-) that generates corresponding predictions p € R¥,
ie., p* = C(f%) and p' = C (f*). To this end, the exist-
ing adversarial UDA approaches usually take an additional
discriminator or classifier. Typically, many popular meth-
ods [11,25] use an additional discriminator D () to achieve
adversarial UDA by optimizing object classification loss
L.;s and domain adversarial 1oss L4, :

Ecls :E(rf,y:)stﬁce (C (G (x'f))ayf)a (1)
Ladv = Eq(as)~p, log [D (G (27))]
FEqyp e [1-D(G )] @

where D, and D; denote the induced feature distributions of
Ds and D, respectively, and L. (-, ) is the cross-entropy
loss function. However, we find that the original task-specific
classifier C' has an implicit discriminative ability for the
source domain and target domain, and can be directly used
as a discriminator (see Sec. 3.2). Inspired by this observa-
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tion, as shown in Fig. 2, we propose a simple yet effective
adversarial paradigm for adversarial UDA: reusing the task-
specific classifier as a discriminator.

3.2. Reusing the Classifier as a Discriminator

Motivation Re-clarification. As we claimed before, the
original task-specific classifier has an implicit discrimina-
tive ability for the source domain and the target domain.
Fig. 3 presents the self-correlation matrices of the predic-
tions on the source and target domains based on a model
trained with the source-only data. For the source domain,
benefiting from the supervised training, the values of the self-
correlation matrix are concentrated on the main diagonal.
In contrast, for the target domain, the prediction generates
larger values on the off-diagonal elements due to the lack of
supervision. Therefore, the intra-class and inter-class corre-
lations represented in the self-correlation matrix are capable
of constructing the adversarial critic.

True label
0

" Predicted label

dicted label

(a) Source domain (b) Target domain

Figure 3. The self-correlation matrices of the predictions on the
source and target domains based on a DNN model trained only with
the source domain data on task A—W of Office-31. (Zoom in for a
clear visualization.)

Rethinking the Intra-class and Inter-class Correlations.
Given a prediction matrix Z € R®** predicted by C that
contains the prediction probabilities of k categories multi-
plied by b samples, the self-correlation matrix R € R¥**
can be calculated by R = ZT Z, where the prediction matrix
Z = C(f) satisfies

k
> Zij=1 Viel...b
j=1

For a self-correlation matrix R, the main diagonal elements
represent the intra-class correlation and the off-diagonal
elements denote the inter-class correlation or confusion [17].
For convenient, in this work, we define the overall intra-class
correlation as I, and the overall inter-class correlation as /:

k k
I,=)Y Ry IL.=) Ry )

i.4=1 i

For the source domain, the prediction contributes to a large
1, and a small [.; while for the target domain, the prediction
generally produces a relatively small I, and large I. due
to the lack of supervised training. Thus, I, — I. can be
used to represent the domain discrepancy. According to
Equation 3, I, and I, satisfy I, + I. = b. Meanwhile, I,
is equal to the Frobenius norm of prediction matrix Z, i.e,
I, = || Z|| p. Thus, we have I, — I. = 2||Z||p —b. Z is
predicted via the classifier C, so we can use 2||C||, —basa
correlation critic function, which naturally gives high scores
for the source domain samples and low scores for the target
domain samples due to the supervised training on source
domain. Moreover, considering weight 2 and bias b are both
constants, the ||C|| - can be directly used as a correlation
critic function.

From Correlations Critic to 1-Wasserstein Distance. In-
spired by the WGAN [1], a straightforward idea is to intro-
duce an additional discriminator D to learn a K-Lipschitz
critic function h expected to give high scores to source rep-
resentations f € D, and low scores to the target represen-
tations f € f)t, and measure the 1-Wasserstein distance

Wi (153, ﬁt) between two feature distributions f)s, 15,5 by

Wi (Do, Di) = swp B p [0(£)]~Eyop, [0 ()],
Al <K

®)

where ||-||,; denotes the Lipschitz semi-norm [46], and K

denotes the Lipschitz constant. But, as we claimed above,
|C]| - has exactly definite critic meaning to serve as D.
Then, the domain discrepancy can be written as

Eps, [ICNIE] = Ep, IC (NN £,

(6)

Wgp = sup
lICle], <K

where W is short for Wg (155, 75,:), which denotes the

Frobenius norm-based 1-Wasserstein distance of two domain
distributions. In this way, we can achieve explicit domain
alignment and category distinguishment through a unified
objective, contributing to leveraging the predicted discrimi-
native information for capturing the multi-modal structures
of the feature distributions.

3.3. Adversarial Learning with the NWD

From Frobenius Norm to Nuclear Norm. The constructed
discriminator/critic D = ||C|| can perform adversarial
training with the generator G, which helps achieve trans-
ferable and discriminative representations while improving
the prediction determinacy. However, adversarial learning
based on the Frobenius-norm 1-Wasserstein distance may
reduce the prediction diversity because it tends to push the
category with a small number of samples to the neighbour-
ing category containing large amounts of samples far from
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the decision boundary [&]. Inspired by recent works on the
Nuclear norm [7,8,36,41], which has been demonstrated to
be bound with the Frobenius norm, we attempt to replace the
Frobenius norm ||-||  with the Nuclear norm |-||, because
maximizing || Z||, means maximizing the rank of Z when
the |||~ is nearby v/b [7, 8], which improves the predic-
tion diversity. Therefore, the domain discrepancy can be
rewritten as

Wy = sup

nen?  Eo IO L= B D).

(7

where Wy is short for Wy (f)s, 25,5>, which denotes the

Nuclear-norm 1-Wasserstein discrepancy (NWD) of two do-
main distributions. Then, our discriminator can be rewritten
as D = ||C||,. When classifier C is used for classification,
it helps achieve category-level distinguishment, but when C
serves as a discriminator, it achieves feature-level alignment.
Note that our classifier consists of a fully connected layer
and a softmax activation function. It can be demonstrated
that all the components of our implicit discriminator satisfy
the K-Lipschitz constraint (see supplementary material for
the proof), which enables the proposed model to be trained
without the requirements of additional weight clipping and
gradient penalty strategies. Therefore, we can approximately
estimate the empirical NWD Wi by maximizing the domain
critic loss L,4:

N, N
s 1 < s 1
Lnwd (JZ 7xt) = E;D (G ('Tz)) - E;D (G (J?f)),
(8)
Wy = max Loya (2%, 27) . )

Adversarial Learning for DALN. In this work, we build
a DALN consisting of a generator GG based on a pretrained
ResNet and a classifier C' constructed with a fully connected
layer and a softmax layer. To avoid tedious alternating up-
dates for the DALN, a gradient reverse layer (GRL) [ 1],
which does not include the above mentioned gradient penalty
or weight clipping, is used to help achieve updating within
one back propagation. In this way, DALN can be trained by
playing the min-max game as

mci;n mgx Lowd (J,‘S, xt) . (10)

Moreover, to ensure the fidelity of UDA classification, we
need to guarantee a low source risk for the source domain.
Therefore, generator GG and classifier C' should also be opti-
mized by minimizing the supervised classification loss £
for the source domain as

1
Las (2%, = 57 D_ Lee (C(G (=), ) . ()
i=1

s .

In short, the overall loss used to optimize the classification
model can be written as

: s .8 s .t

1(511(1;1 {ﬁczs (z®,y )—l—)\mélxﬁnwd (x T )}, (12)
where ) is used to balance L.;; and L,,.,q4. In this work, A
is set to 1. With the help of adversarial learning, the DALN
learns transferable and discriminative representations while
promising the prediction determinacy and diversity.

Generalization Bound. Here, we present the theoretical
guarantees for the proposed method. Following [2], we con-
sider a binary classification instance. Then, let F (f € F)
denote a fixed representation space and C' : F — [0, 1] be
a family of source classifiers, where C' belongs to hypoth-

esis space 7. We assume that the risk of C' on the source
domain is described as €5 (C) = E; 5 [C (f) # y], where

D, is the feature distribution induced by the data distribu-
tion of source domain Dgs and y is the label corresponding
to the induced feature f. Moreover, given two classifiers
C4, Cy € H, we define the risk of these two classifiers on the
source domain as &5 (C1,C2) = E; 5 [C1(f) # C2 (f)]-
In the same way, we define the risk on the target domain,
i.e, e (C) and g; (C1, C2). Then, the ideal joint hypothesis
is written as C* = arg mcin s (C) + & (C), which can be

used to minimize the combined risk on the source and tar-
get domains. Therefore, according to [2], the probabilistic
bound of €; (C') can be written as

€1 (C) <5 (C) + 65 (C,C7) =& (C,C%) | + 07, (13)

where n* = e, (C*) + & (C*) is a sufficiently small con-
stant representing the ideal combined risk. Thus, the goal of
UDA classification is to reduce the domain discrepancy term

les (C,C*) — 4 (C,C*)].

Lemma 1. Let vg, v, € P (F) denote the probability mea-
sures of the source and target domain features, p (f*, f*)
be the cost of transporting a unit of material from location
f¢ satisfying f* ~ v, to location f! satisfying ft ~ vy,
W1 (vs,vt) represent the NWD, and K denote a Lipschitz
constant. Given a family of classifiers C € H, and a ideal
classifier C* € H satisfying the K-Lipschitz constraint,
where H; is a subspace of H, the following holds for every
C,C* € H.

les (C,C") — e (C,C™)| < 2KW1 (vs, 1) (14)

Theorem 1. Based on Lemma 1, for every C' € H1, the
following holds

gt (C) < &5 (O) + 2KWy (vs,n) + 1%, (15)

where n* = €5 (C*) + ¢, (C*) is the risk of ideal joint hy-
pothesis, which is a sufficiently small constant.
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Table 1. Classification accuracy (%) on (a) Office-Home and (b) VisDA-2017 for unsupervised domain adaptation (using ResNet-50 and
ResNet-101 as the backbone, respectively). T denotes that the results are reproduced using the publicly released code. The best accuracy is
indicated in bold red and the second best accuracy is indicated in undelined blue. See supplementary material for more details.

(a) Office-Home.

(b) VisDA-2017.

Method A—C A—-P A—R C—A C—P C—»R P—A P—»C P—-R R—A R—C R—=P Avg Method Avg
ResNet-50 [16] 349 500 580 374 419 462 385 312 604 539 412 599 461 ResNet-101 [16] 52.4
WDGRL1(18) [40] 44.1 63.8 74.0 47.3 57.1 61.7 51.8  39.1 72.1 64.9 459 765 582 WDGRL(18) [40] 61.3
MCD(18) [39] 489 683 746 613 676 688 570 471 751 69.1 522 796 64.1 MCD(18) [39] 71.9
BSP(19) [6] 520 686 761 580 703 702 586 502 776 722 593 819 663 BSP(19) [6] 75.9
BNM(20) [7] 523 739 800 633 729 749 617 495 797 705 536 822 679 SWD(19) [19] 76.4
GVB-GD(20) [9] 570 747 798 646 741 746 652 551 810 746 597 843 704 BNM(20) [7] 704
FGDA(21) [12] 523 770 782 646 755 737 640 495 807 70.1 523 816 683 GVB-GD'(20) [9] 772
TSAQ1) [22] 536 751 783 644 737 725 623 494 715 722 588 821 683 DADA(20) 1] 798
CKB-MMD(21) [28] 542 741 775 646 722 710 645 534 787 726 584 828 687 TSAGD) [22] 786
SCDA(21) [23] 575 769 803 657 749 745 655 53.6 798 745 59.6 837 705 SCDAT2D) [23] 797
MetaAlign21) [48] 593 760 802 657 747 751 657 565 816 741 6l1 852 713 :
DALN(Ours) 578 799 820 663 762 712 667 555 813 735 604 853 718 DALN(Ours) 80.6
DANN(16) [11] 456 593 701 470 585 609 461 437 685 632 518 768 576 DANN(16) [11] 57.4
DANN+NWD 518 633 739 566 661 686 593 546 790 705 6L5 804 655 DANN+NWD 80.0(22.6T)
CDAN(I8) [25] 507 706 760 576 700 700 574 509 773 709 567 816 658 CDAN(18) [25] 73.9
CDAN+NWD 548 707 779 605 696 718 612 550 809 74.6 594 834 683 CDAN+NWD 81.4(7.51)
MDD(19) [40] 549 737 718 600 714 718 612 536 781 725 602 823 68.1 MDD (19) [49] 76.8
MDD+NWD 558 761 791 643 733 732 636 550 802 738 611 840 700 MDD+NWD 82.05.21)
MCC(20) [17] 551 752 795 633 732 758 661 521 769 738 584 836 694 MCCQ0) [17] 788
MCC+NWD 581 796 837 617 719 787 668 560 819 739 609 861 726 MCC+NWD 83.7(4.97)

Table 2. Classification accuracy (%) on (a) Office-31 and (b) ImageCLEF-2014 for unsupervised domain adaptation (using ResNet-50 as the
backbone). T denotes that the results are reproduced using the publicly released code. The best accuracy is indicated in bold red and the

second best is indicated in undelined blue.

(a) Office-31.

(b) ImageCLEF-2014.

Method A—-W D—-W WD A—D D—A W—oA Avg Method I-P P—I I-C C—I C—P P—-C Avg
ResNet-50 [10] 684 967 993 689 625 607 761 ResNet-50 [10] 748 839 915 780 655 912 807
WDGRL{(18) [40] 72.6 97.1 99.2 795 637 59.5  78.6 WDGRLT(18) [40] 76.8 87.0 91.7 872 752 903 84.7
MCD(18) [39] 88.6 98.5  100.0 922 695 69.7  86.5 MCD(18) [39] 773 892 927 832 71.0 923 851
SWD(19) [19] 904 987 1000 947 703 705 874 SWD(19) [19] 78.1 89.6 952 893 734 928 864
BNM(20) [7] 91.5 98.5 100.0 90.3 70.9 71.6  87.1 BNM(20) [7] 772 912 962 917 757 967 88.1
DADA(20) [42] 92.3 99.2 100.0 93.9 74.4 74.2 89.0 GVB-GD'(20) [9] 782 927 965 915 782 95.0 887
GVB-GD(20) [9] 948 987 1000 950 734 737 893 DADA'(20) [17] 787 923 972 916 785 953 889
;{GDAQI)[ 1 933 99.1 1000 932 732 727 886 CKB-MMDQ1)[2§] 807 922 965 922 799 967 897
etaAlign(21) [48] 930 986  100.0 945 750  73.6 892 SCDATQ21) [23] 787 9L8 9.7 928 785 952 890
TSAQ1) [22] 948  99.1  100.0 926 749 744 893 s

SCDAQD) [23] 012 987 998 952 757 769 900 TSAT(21) [22] 786 928 970 928 790 952 89.2
DALN(Ours) 952 990 1000 954 764 765 904 DALN(Ours) 805 938 975 928 783 950 87
DANN(6) [11] S0 569 981 97 6o 64 83 DANN(16) [11] 750 860 962 870 743 915 850
DANN+NWD 92.1 982 1000 847 745 730 87.1 DANN+NWD 780 8.2 973 933 785 920 88l
CDANS) [25] 991 986 1000 929 70 693 877 CDAN(18) [25] 777 907 977 913 742 943 817
CDAN+NWD 937 985 1000 910 744 730 884 CDAN+NWD 786 925 972 917 793 946 89.0
MDD(19) [49] 945 984 1000 935 746 722 889 MDD (19) [49] 773 902 968 895 776 942 87.6
MDD+NWD 955 987 1000 949 76,6 740 90.0 MDD+NWD 789 917 975 917 789 954 890
MCC(20) [17] 955 986 1000 944 729 749 894 MCC'(20) [17] 783 945 973 923 773 963 893
MCC+NWD 955 987 1000 954 750 751  90.0 MCC+NWD 798 945 980 942 80.0 975 90.7

Therefore, the risk of the target domain can be bounded
by the risk of the source domain and the introduced NWD,
providing theoretical guarantees for the proposed approach.
Limited by space, all the proofs and more details about
the empirical measure of the target risk are provided in
the supplementary materials.

3.4. Regularizer to Existing UDA Methods

The proposed NWD can be easily integrated into existing
methods to improve the prediction determinacy and diver-
sity. Specifically, a gradient reverse layer is first added to
the original task-specific classifier. Subsequently, the task-
specific classifier with the introduced NWD can serve as
a discriminator, which performs adversarial learning with

the feature extractor. Formally, assuming the original loss
L,r; of the model written as L,y; = Lejs+Lspe , Where L
is the standard supervised classification loss as that of the
proposed method and Ly, is the special loss used in these
methods, the reconstructed loss L,... can be described as

£7’ec = Ecls+£5pe + ’V‘anch (16)

where ~ is the balance weight. For convenience, in our
experiments, the values of +y for all other methods are set to
0.01. The results of taking the proposed discrepancy as a
regularizer to benefit other UDA algorithms are presented in
the experiments.
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4. Experiments

In this section, we evaluate the proposed DALN and com-
pare it with the SOTA methods for UDA classification. Ad-
ditionally, we evaluate the effectiveness of NWD as a reg-
ularizer to benefit existing methods including DANN [11],
CDAN [25], MDD [49], and MCC [17].

4.1. Setup

Dataset Description. We use four datasets including Office-
Home [45], Office-31 [38], ImageCLEF [3], and VisDA-
2017 [35] to perform the comparison experiments. Office-
Home is a large-scale dataset that includes 15500 images
and 65 categories. This dataset has four extremely different
domains, i.e., Art (A), Clip Art (C), Product (P), and Real-
World (R). VisDA-2017 is a large-scale synthetic-to-real
dataset that has two domains (synthetic (S) and real (R)).
The dataset contains over 280K images across 12 classes.
Office-31 has a total number of 4110 images, which includes
three domains, i.e., Amazon (A), Webcam (W), and DSLR
(D); and each domain contains 31 categories. ImageCLEF
consists of three domains derived from three public datasets:
Caltech (C), ImageNet (I), and Pascal (P). Each domain
contains 12 categories and each category has 50 images.
Implementation Details. The proposed method is imple-
mented based on the PyTorch [33] framework running on
a GPU (Tesla-V100). The SGD optimizer is used to train
the model with a moment of 0.9, a weight decay of le-3, a
batch size of 36, and a cropped image size of 224 x 224. The
initial learning rate of classifier C'is set to Se-3, which is 10
times larger than that of feature extractor G. Other details
can be found in the supplementary material.

4.2. Comparison Results

Results on Office-Home are shown in Table 1(a). Compared
with SOTA methods, the proposed method achieves dramatic
improvements in terms of classification accuracy. Particu-
larly, in the case of domains suffering from large shifts and
extremely unbalanced classes, e.g., A—R and C—R, the
proposed method achieves 2.9% and 2.2% improvements
compared to the existing SOTA methods. Moreover, by in-
tegrating the proposed NWD into the DANN, the average
accuracy is improved by 7.9%. Combining the proposed
NWD with MCC, it achieves SOAT performance of 72.6%,
attaining 3.2% improvements. Dramatic improvements are
obviously exhibited in P—R, C—A, and C—P tasks. These
obtained gains come from the paradigm leveraging the pre-
dicted discriminative information and the introduced NWD
encouraging the prediction determinacy and diversity.

Results on VisDA-2017 are displayed in Table 1(b). Despite
the tremendous domain shift existing in synthetic and real
data, the DALN achieves an average accuracy of 80.6%,
outperforming the existing SOTA methods. Combining the

proposed NWD with other methods, the performances of
these methods are substantially improved by 22.6%, 7.5%,
5.2%, and 4.9% for the DANN, CDAN, MDD, and MCC, re-
spectively. In particular, with the help of the proposed NWD,
MCC achieves SOTA accuracy of 83.7%, demonstrating the
effectiveness of the proposed method.

Results on Office-31 are presented in Table 2(a). The pro-
posed DALN achieves SOTA performances in five adaptation
sub-tasks, and attains the best performance on the average
accuracy. Particularly, compared with WDGRL [40], which
uses 1-Wasserstein distance with an additional discriminator,
the proposed DALN dramatically improves the average accu-
racy by 11.8%. Additionally, taking the NWD as a regular-
izer, the typical methods can be improved by at least 0.6%,
and the average accuracy of DANN is even improved by
4.9%. We note that the improvements are evidently achieved
in the task of adapting a domain with a small number of
samples (e.g., D and W) to a domain (e.g., A) containing
large amounts of samples. These results occur because the
proposed method encourages the prediction determinacy and
diversity, which are highly important in such cases.
Results on ImageCLEF-2014 are provided in Table 2(b).
Without bells and whistles, the proposed method achieves
an average accuracy of 89.7%, which is same as the most
competitive method CKB-MMD [28]. Moreover, the pro-
posed method can be used as a regularizer, which is capable
of improving the performance of the existing methods and
thus contributes to SOTA performances. Specifically, the
proposed method enables MCC to compare favorably against
the SOTA methods. These results demonstrate that the pro-
posed method is still highly effective in the case of all the
domains containing the same samples and categories.

4.3. Insight Analysis

Here, we provide insight analyses for the proposed DALN
and NWD. Limited by space, more detailed analyses regard-
ing toy experiment, Proxy .4 distance, self-correlation ma-
trix, convergence, and trade-off parameters (A and ) are
provided in supplementary material.

Confusion Matrix. The comparison of the confusion ma-
trices is shown in Fig. 4. The figure shows that the model
trained on the source-only data suffers from severe class
confusion. The DANN focuses on domain-level feature
adaptation, but ignores feature discriminability, which re-
sults in misclassification for some categories (e.g., computers
are misclassified as monitors and projectors). In contrast,
benefiting from the introduced paradigm, DALN generates
large values for the main diagonal elements of the confusion
matrix. Moreover, by integrating the NWD into DANN and
MDD, the off-diagonal elements of their confusion matrix
are considerably decreased, demonstrating the effectiveness
of NWD.

Determinacy. To evaluate the determinacy, we calculate
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(b) DANN (c) MDD

(a) Source only

Com

(e) DANN+NWD

(d) DALN (f) MDD+NWD

Figure 4. The confusion matrices of different methods of the target domain on task A — W of Office-31. (Zoom in for a clear visualization.)

the ratio of the correctly classified samples that have high
prediction certainty. Here, we consider task Ar—Rw of
Office-Home. The prediction probability in the range of 0.9
to 1 is regarded as a high certainty prediction. As shown in
Fig. 5(a), the model trained on the source-only data nearly
cannot generate high certainty prediction. DANN and MDD
considerably improve the ratio of high certainty prediction,
but the improvements achieved by these methods cannot
compete with those achieved by the proposed DALN. By
taking the NWD as a regularizer, the ratios of high certainty
prediction for DANN and MDD are improved, demonstrat-
ing the effectiveness of NWD in improving the determinacy.
Diversity. As shown in Fig. 5(b), we compute the number
of correctly classified samples for some typical categories
that have a large or small number of samples. Compared
with other methods, the proposed DALN correctly classifies
more samples in the categories that have a small number of
samples. Moreover, by adopting the NWD as a regularizer
for the DANN and MDD, these methods achieve consider-
able improvements for categories that have a small number
of samples. These results demonstrate the effectiveness of
the NWD in improving prediction diversity.

Number
PEESEE
. £g8Z3t
H : 2
g

(a) Determinacy (b) Diversity

Figure 5. Visualizations of (a) determinacy and (b) diversity on
task A—R of Office-Home. The ratio in (a) is the proportion
of the number of correctly classified samples, whose prediction
probability is in the range of 0.9 to 1, to the total number of correctly
classified samples in the target domain. The number of correctly
classified samples in (b) is calculated for 8 typical categories that
have a large or small number of samples.

t-SNE Visualization. The feature representations of the
ResNet-50, DANN, MDD, DALN, DANN+NWD, and
MDD+NWD are visualized in Fig. 6 using t-SNE [44].
Compared with the DANN and MDD, the proposed DALN
not only confuses the feature representations, but also con-
tributes to a more compact intra-class distribution and a
more dispersed inter-class distribution, indicating that the

features learned by the DALN are more discriminative. Com-
bining the DANN and MDD with the proposed NWD, the
intra-class features are pulled together while the inter-class
features are pushed apart, demonstrating that the NWD can
help them improve the discriminability.

¥
f“"‘ ¥
= & -
(a) Source only (c) MDD
» w ®
- P o - -
s L EL
- : ;:\ : £ =
=
(d) DALN (e) DANN+NWD (f) MDD+NWD

Figure 6. t-SNE visualizations of feature distributions learned by
different methods on task A—W of Office-31. Blue and red points
represent source and target features, respectively.

5. Conclusions

In this work, we present a simple yet effective adversarial
paradigm, i.e., reusing the task-specific classifier as a dis-
criminator. To achieve this paradigm, we designed a new
discrepancy NWD that has definite guidance meaning and
correspondingly built a discriminator-free adversarial UDA
model, i.e., DALN, which learns transferable and discrimina-
tive representations while promising prediction determinacy
and diversity. Moreover, we demonstrated that the proposed
NWD can be used as a plug-and-play regularizer to the ex-
isting methods, which helps these methods achieve more
competitive performance. Extensive experiments on a vari-
ety of datasets demonstrate the effectiveness and superiority
of the proposed method.
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