Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning

Richard J. Chen¹, Chengkuan Chen¹, Yicong Li¹, Tiffany Y. Chen¹, Andrew D. Trister², Rahul G. Krishnan³,*, Faisal Mahmood¹,*

¹Harvard, BWH, Broad Institute ²Bill & Melinda Gates Foundation ³University of Toronto
richardjchen@g.harvard.edu, faisalmahmood@bwh.harvard.edu

Abstract

Vision Transformers (ViTs) and their multi-scale and hierarchical variations have been successful at capturing image representations but their use has been generally studied for low-resolution images (e.g. 256×256, 384×384). For gigapixel whole-slide imaging (WSI) in computational pathology, WSIs can be as large as 150000×150000 pixels at $20 \times$ magnification and exhibit a hierarchical structure of visual tokens across varying resolutions: from 16×16 images capturing individual cells, to 4096×4096 images characterizing interactions within the tissue microenvironment. We introduce a new ViT architecture called the Hierarchical Image Pyramid Transformer (HIPT), which leverages the natural hierarchical structure inherent in WSIs using two levels of self-supervised learning to learn high-resolution image representations. HIPT is pretrained across 33 cancer types using 10,678 gigapixel WSIs, 408,218 4096×4096 images, and 104M 256×256 images. We benchmark HIPT representations on 9 slide-level tasks, and demonstrate that: 1) HIPT with hierarchical pretraining outperforms current state-of-the-art methods for cancer subtyping and survival prediction, 2) self-supervised ViTs are able to model important inductive biases about the hierarchical structure of phenotypes in the tumor microenvironment.

1. Introduction

Tissue phenotyping is a fundamental problem in computational pathology (CPATH) that aims at characterizing objective, histopathologic features within gigapixel whole-slide images (WSIs) for cancer diagnosis, prognosis, and the estimation of response-to-treatment in patients [39, 41, 54]. Unlike natural images, whole-slide imaging is a challenging computer vision domain in which image resolutions can be as large as 150000×150000 pixels, with many methods using the following three-stage, weakly-supervised framework based on multiple instance learning (MIL): 1) tissue patching at a single magnification objective (“zoom”), 2) patch-level feature extraction to construct a sequence of embedding instances, and 3) global pooling of instances to construct a slide-level representation for weak-supervision using slide-level labels (e.g. - subtype, grade, stage, survival, origin) [12, 19, 37, 38, 52, 53, 68, 70, 85].

Though achieving “clinical-grade” performance on many cancer subtyping and grading tasks, this three-stage process has a few important design limitations. First, patching and feature extraction are generally fixed to $[256 \times 256]$ context regions. Though able to discern fine-grained mor-
phological features such as nuclear atypia or tumor presence, depending on the cancer type. [256 × 256] windows have limited context in capturing coarser-grained features such as tumor invasion, tumor size, lymphocytic infiltrates, and the broader spatial organization of these phenotypes in the tissue microenvironment, as depicted in Figure 1 [6,15,22]. Second, in contrast with other image-based sequence modeling approaches such as Vision Transformers (ViTs), MIL uses only global pooling operators due to the large sequence lengths of WSIs [38]. As a result, this limitation precludes the application of Transformer attention for learning long-range dependencies between phenotypes such as tumor-immune localization, an important prognostic feature in survival prediction [1,44,63]. Lastly, though recent MIL approaches have adopted self-supervised learning as a strategy for patch-level feature extraction (called tokenization in ViT literature), parameters in the aggregation layers still require training [8,16,18,20,43,45,62]. In viewing patch-based sequence modeling of WSIs in relation to ViTs, we note that the architectural design choice of using Transformer attention enables pretraining of both the tokenization and aggregation layers in ViT models, which is important in preventing MIL models from over- or underfitting in low-data regimes [5,13,23,33,46].

To address these issues, we explore the challenge of developing a Vision Transformer for slide-level representation learning in WSIs. In comparison to natural images which are actively explored by ViTs, we note a key difference in modeling WSIs is that visual tokens would always be at a fixed scale for a given magnification objective. For instance, scanning WSIs at a 20× objective results in a fixed scale of approximately 0.5μm per pixel, allowing for consistent comparison of visual elements that may elucidate important histomorphological features beyond their normal reference ranges. Moreover, WSIs also exhibit a hierarchical structure of visual tokens at varying image resolutions at 20× magnification: the 16 × 16 images encompass the bounding box of cells and other fine-grained features (stroma, tumor cells, lymphocytes) [22,36], 256 × 256 images capture local clusters of cell-to-cell interactions (tumor cellularity) [2,7,30,59], 1024 × 1024–4096 × 4096 images further characterize macro-scale interactions between clusters of cells and their organization in tissue (the extent of tumor-immune localization in describing tumor-infiltrating versus tumor-distal lymphocytes) [1,9], and finally the overall intra-tumoral heterogeneity of the tissue microenvironment depicted at the slide-level of the WSI [4,35,39,57,63]. The hypothesis that this work tests is that the judicious use of this hierarchy in self-supervised learning results in better slide-level representations.

We introduce a Transformer-based architecture for hierarchical aggregation of visual tokens and pretraining in gigapixel pathology images, called Hierarchical Image Pyramid Transformer (HIPT). We approach the task of slide-level representation learning in a manner similar to learning long document representations in language modeling, in which we develop a three-stage hierarchical architecture that performs bottom-up aggregation from [16 × 16] visual tokens in their respective 256 × 256 and 4096 × 4096 windows to eventually form the slide-level representation, as demonstrated in Figure 2 [76,82]. Our work pushes the boundaries of both Vision Transformers and self-supervised learning in two important ways. By modeling WSIs as a disjoint set of nested sequences, within HIPT: 1) we decompose the problem of learning a good representation of a WSI into hierarchically-related representations each of which can be learned via self-supervised learning, and 2) we use student-teacher knowledge distillation (DINO [13]) to pretrain each aggregation layers with self-supervised learning on regions as large as 4096 × 4096.

We apply HIPT to the task of learning representations of gigapixel histopathological images extracted at 20× resolution. We show that our method achieves superior performance to conventional MIL approaches. The difference is pronounced in context-aware tasks such as survival prediction in which larger context is appreciated in characterizing broader prognostic features in the tissue microenvironment [1,17,60,63]. Using K-Nearest Neighbors on the 4096 × 4096 representations of our model, we outperform several weakly-supervised architectures in slide-level classification – an important step forward in achieving self-supervised slide-level representations. Finally, akin to self-supervised ViTs on natural images that can perform semantic segmentation of the scene layout, we find that the multi-head self-attention in self-supervised ViTs learn visual concepts in histopathology tissue (from fine-grained visual concepts such as cell locations in the ViT256-16 to coarse-grained visual concepts such as broader tumor cellularity in the ViT4096-256), as demonstrated in Figure 3, 4. We make code available at https://github.com/mahmoodlab/HIPT.

2. Related Work

Multiple Instance Learning in WSIs. In general set-based deep learning, Edwards & Storkey and Zaheer et al. proposed the first network architectures operating on set-based data structures, with Brendel et al. demonstrating “bag-of-features” able to reach high accuracy on ImageNet [10,25,80]. Concurrently in pathology, Ilse et al. extended set-based network architectures as an approach for multiple instance learning in histology region-of-interests, with Campanella et al. later extending end-to-end weak-supervision on gigapixel WSIs [12,38]. Lu et al. demonstrated that by using a pretrained ResNet-50 encoder on ImageNet for instance-level feature extraction, only a global pooling operator needs to be trained for weakly-supervised slide-level tasks [53]. Following Lu et al., there have been
many variations of MIL that have adapted image pretraining techniques such as VAE-GANs, SimCLR, and MOCO as instance-level feature extraction [45,62,84]. Recent variations of MIL have also evolved to extend the aggregation layers and scoring functions [17,64,68,75,77,78,85]. Li et al. proposed a multi-scale MIL approach that performs patching and self-supervised instance learning at 20× and 5× resolution, followed by spatially-resolved alignment of patches [45]. The integration of magnification objectives within WSIs has been followed in other works as well [29,32,56,58], however, we note that combining visual tokens across objectives would not share the same scale. In this work, patching is done at a single magnification objective, with larger patch sizes used to capture macro-scale morphological features, which we hope will contribute towards a shift in rethinking context modeling of WSIs.

Vision Transformers and Image Pyramids. The seminal work of Vaswani et al. has led to remarkable developments in not only language but also image representation learning via Vision Transformers (ViTs), in which 256 × 256 images are formulated as an image patch sequence of [16 × 16] visual tokens [23,69,71]. Motivated by multiscale, pyramid-based image processing [11,42,61], recent progress in ViT architecture development has focused on efficiency and integration of multiscale information (e.g. - Swin, ViL, TNT, PVT, MViT) in addressing the varying scale / aspect ratios of visual tokens [27,31,51,72,81]. In contrast with pathology, we highlight that learning scale invariance may not be necessary if the image scale is fixed at a given magnification. Similar to our work is NesT and Hierarchical Perciever, which similarly partitions and then aggregates features from non-overlapping image regions via Transformer blocks [14,83]. A key difference is that we show ViT blocks at each stage can be separately pretrained for high-resolution encoding (up to 4096 × 4096).

3. Method

3.1. Problem Formulation

Patch Size and Visual Token Notation: We use the following notation to distinguish between the sizes of “images” and “tokens” that correspond to that image. For an image \(x \) with resolution \(L \times L \) (or \(x_L \)), we refer to sequence of extracted visual tokens from non-overlapping patches (of size \([l \times l]\)) within \(x_L \) as \(\{x_{i}^{(l)}\}_{i=1}^{M} \in \mathbb{R}^{M \times d_i} \), where \(M \) is the sequence length and \(d \) is the embedding dimension extracted for \(l \)-sized tokens. In working with multiple image resolutions (and their respective tokens) in a WSI, we additionally denote the shape of visual tokens (and the patching parameter) within \(x_L \) image as \([l \times l]\) (using brackets). For natural images with size \(x_{256} \), ViTs generally use \(l = L^{1/2} = 16 \) which results in a sequence length of \(M = 256 \). Additionally, we denote a ViT working on a \(L \)-sized image resolution with \([l \times l]\) tokens as ViT\(_{L-l}\). For \(x_{WSI} \) (referring to the slide-level resolution of the WSI), MIL approaches choose \(l = 256 \) which fits the input shape of CNN encoders that can be pretrained and using for tokenization, resulting in \(M > 10,000 \) (variable due to the total area of segmented tissue content).

Slide-Level Weak Supervision: For a WSI \(x_{WSI} \) with outcome \(y \), the goal is to solve the slide-level classification task \(P(y|x_{WSI}) \). Conventional approaches for solving this task use a three-stage MIL framework which performs: 1) \([256 \times 256]\)-patching, 2) tokenization, and 3) global attention pooling. \(x_{WSI} \) is formulated as the sequence \(\{x_{256}^{(i)}\}_{i=1}^{M} \in \mathbb{R}^{M \times 1024} \) which results from using a ResNet-50 encoder pretrained on ImageNet (truncated after the 3rd residual block). Due to the large sequence lengths with \(l = 256 \), neural network architectures in this task are limited to per-patch and global pooling operators in extracting a slide-level embedding for downstream tasks.

3.2. Hierarchical Image Pyramid Transformer (HIPT) Architecture

In adapting ViTs for slide-level representation learning, we reiterate two important challenges distinct from computer vision in natural images: 1) the fixed scale of visual tokens and their hierarchical relationships across image resolutions, and 2) the large sequence lengths of unrolled WSIs. As mentioned, visual tokens in histopathology are generally object-centric (and vary in granularity) across image resolutions, and also have important contextual dependencies such as tumor-immune (inferring favorable prognosis) or tumor-stroma interactions (inferring invasion). Patching with small visual tokens at high objectives \(x_{256} \) at \(20 \times \) results in large sequence lengths that make self-attention intractable, whereas patching with large visual tokens at low objectives results in loss-of-detail of fine-grained morphological structures \(x_{256} \) at \(5 \times \) that still requires \([256 \times 256]\) patching at \(20 \times \).

To capture this hierarchical structure and the important dependencies that may exist at each image resolution, we approach WSIs similar to long documents as a nested aggregation of visual tokens that recursively break down into smaller tokens until the cell-level (Figure 2), written as:

\[
\text{HIPT}(x_{WSI}) = \text{ViT}_{WSI-4096} \left(\{ \text{CLS}^{(k)}_{4096} \}_{k=1}^{M} \right) \\
\rightarrow \text{CLS}^{(k)}_{4096} = \text{ViT}_{4096-256} \left(\{ \text{CLS}^{(j)}_{256} \}_{j=1}^{M} \right) \\
\rightarrow \text{CLS}^{(j)}_{256} = \text{ViT}_{256-16} \left(\{ x^{(i)}_{16} \}_{i=1}^{256} \right)
\]

where 256 is the sequence length of \([16 \times 16]\)- and \([256 \times 256]\)-patching in \(x_{256} \) and \(x_{4096} \) images respectively, and \(M \) is the total number of \(x_{1096} \) images in \(x_{WSI} \). For ease of notation, we refer to \(x_{16} \) images as being at the cell-level, \(x_{256} \)
Motivated by the use of hierarchical representations in natural language processing, where embeddings can be aggregated at the character-, word-, sentence- and paragraph-level to form document representations, we aggregate visual tokens at the x_{16} cell-, x_{256} patch- and x_{4096} region-level to form slide representations. To also model important dependencies between visual concepts at each stage, we adapt Transformer self-attention as a permutation-equivariant aggregation layer. Note that since the complexity of patching x_{4096} regions with x_{256} tokens is the same as patching x_{256} images with x_{16} tokens, we can pretrain aggregation layers for high-resolution images using similar self-supervised ViT techniques for low-resolution images.

Images as being at the patch-level1, x_{4096} images as being at the region-level, with the overall WSI being the slide-level. In choosing these image sizes, the input sequence length of tokens is always $M = 256$ in the forward passes for the ViT$_{256}$-16 and ViT$_{4096}$-256 (cell- and patch-level aggregation), and usually $M < 256$ in the forward pass for the ViT$_{WSI}$-4096 (slide-level aggregation). The [CLS] tokens from ViT$_{256}$-16 (the output of the model) are used as the input sequence for ViT$_{4096}$-256, with the [CLS] tokens from ViT$_{4096}$-256 subsequently used as the input sequence for ViT$_{WSI}$-4096, with the number of total visual tokens at each stage decreasing geometrically by a factor of 256. In choosing small ViT backbones for each stage, HIPT has less than 10M parameters and is easy-to-implement and train on commercial workstations. We describe each stage below.

ViT$_{256}$-16 for Cell-Level Aggregation. The computation of x_{16} cell-level token aggregation within x_{256} windows follows implementing the vanilla ViT in natural images [23]. Given a x_{256} patch, the ViT unrolls this image as a sequence of non-overlapping $[16 \times 16]$ tokens followed by a linear embedding layer with added position embeddings to produce a set of 384-dim embeddings $\{x_{16}^{(i)}\}_{i=1}^{256} \in \mathbb{R}^{256 \times 384}$, with a learnable [CLS] token added to aggregate cell embeddings across the sequence. We choose $l = 16$ in this setting to not only follow conventional ViT architectures, but also model important inductive biases in histopathology as at this resolution, a $[16 \times 16]$ bounding box at $20 \times \approx 8\mu m^2$ area encodes visual concepts that are object-centric in featurizing single cells (e.g. cell identity, shape, roundness).

ViT$_{4096}$-256 for Patch-Level Aggregation. To represent x_{4096} regions, despite the image resolution being much larger than conventional natural images, the number of tokens remains the same since the patch size scales with the image resolution. From the previous stage, we use ViT$_{256}$-16 to tokenize non-overlapping x_{256} patches within each x_{4096} region, forming the sequence $\{[CLS]^{(j)}\}_{j=1}^{256}$ that can be plugged into a ViT block to model larger image contexts. We use a ViT$_{4096}$-256($n = 4, h = 3, d = 192$) with output $[CLS]_{4096}$.

ViT$_{WSI}$-4096 for Region-Level Aggregation. In computing the slide-level representation for x_{WSI}, we use a ViT$_{WSI}$-4096($n = 2, h = 3, d = 192$) in aggregating the $[CLS]_{4096}$ tokens. M ranges from $1 - 256$ in our observa-

1“Patch” is most often used to describe 256×256 images in pathology, though we note “patching” an image into smaller images can refer to any resolution.
is difficult to scale for machine learning applications. pretrained on
Figure 3. Multi-Head Self-Attention Visualization of Self-Supervised ViTs. For Invasive Ductal Carcinoma (IDC), we show self-supervised visualizations for ViT-256-16 and ViT-4096-256, pretrained on x256 and x4096 regions respectively. For x256 patches, ViT-256-16 is able to delineate stroma, cell, and “white space” presence in x16 tokens. For x4096 regions, ViT-4096-256 delineates coarse-grained morphological features such as tumor nests and their surrounding desmoplastic (loose) stroma.

3.3. Hierarchical Pretraining

In building a MIL framework using only Transformer blocks, we additionally explore and pose a new challenge referred to as slide-level self-supervised learning - which aims at extracting slide-level feature representations in gigapixel images for downstream diagnostic and prognostic tasks. This is an important problem as current slide-level training datasets in CPATH typically have between 100 to 10,000 data points, which may cause MIL methods to overfit due to over-parameterization and lack of labels. To address this problem, we hypothesize that the recursive nature of HIPT in using Transformer blocks for image representation learning can enable conventional ViT pretraining techniques (such as DINO [13]) to generalize across stages (of similar subproblems) for high-resolution images. To pretrain HIPT, first, we leverage DINO to pretrain ViT-256-16. Then, keeping fixed the weights of ViT-256-16, we re-use ViT-256-16 as the embedding layer for ViT-4096-256 in a second stage of DINO. We refer to this procedure as hierarchical pretraining, which is similarly performed in the context of learning deep belief networks [26] and hierarchical transformers for long documents [82]. Though hierarchical pretraining does not reach the slide-level, we show that: 1) pretrained x4096 representations in self-supervised evaluation are competitive with supervised methods for slide-level subtyping, and that 2) HIPT with two-stage hierarchical pretraining can reach state-of-the-art performance.

Stage 1: 256 × 256 Patch-Level Pretraining. To pretrain ViT256-16, we use the the DINO framework for pretraining of x256 patches, in which a student network \(\phi_{x256} \) is trained to match the probability distribution of a siamese teacher network \(\phi_{t256} \) using a cross-entropy loss \(-p_{t256}(\cdot) \log p_{x256}(\cdot)\) with momentum encoding, with \(p_{t256}: p_{x256} \) denoting the outputs of \(\phi_{t256}(\cdot) \), \(\phi_{x256}(\cdot) \) respectively for x256. As data augmentation for each x256 patch, DINO constructs a set of \(M_t = 8 \) local views (x96 crops, passed through \(\phi_{x256} \)) and \(M_s = 2 \) global views (x524 crops, passed through \(\phi_{t256} \)) to encourage local-to-global correspondences between the student and teacher, minimizing the function:

\[
\min_{\phi_{x256}} \sum_{M_s=2}^{M_s=2} \sum_{M_t=8}^{M_t=8} H(p_{t256}(x^{(i)}_{224}), p_{x256}(x^{(j)}_{96}))
\]

An intriguing property that makes this data augmentation suitable for histology data is again the natural part-whole hierarchy of cells in a tissue patch. In comparison to natural images in which [96 × 96] crops may capture only colors and textures without any semantic information, at 20×, local [96 × 96] crops would capture the context of multiple cells and their surrounding extracellular matrices, which has shared mutual information with the broader cellular communities. Similar to the original DINO implementation, we use horizontal flips and color jittering for all views, with solarizing performed on one of the global views.

Stage 2: 4096 × 4096 Region-Level Pretraining. With the sequence lengths and computational complexity in tokenizing x4096 regions similar to that of x256 patches, we can also borrow an almost identical DINO recipe in also pretraining ViT4096-256 and defining student-teacher networks \(\phi_{x4096}(\cdot) \), \(\phi_{t4096}(\cdot) \) at this stage. Following extracting [CLS]256 tokens from ViT256-16 as input for ViT4096-256 input, we rearrange \([CLS]_{256}^{(j)} M_{x=256}^{1 \times 16 \times 16 \times 384} \) as a 16 × 16 × 384 2D feature grid for data augmentations, performing \([6 \times 6],[14 \times 14]\) local-global crops in matching the scale of \([96 \times 96],[224 \times 224]\) crops for 256 × 256 inputs. As additional data augmentation, we apply standard dropout \((p = 0.10)\) to all views following work in Gao et al. [28].

4. Experiments

Pretraining. We pretrain ViT-256-16 and ViT-4096-256 in different stages, using 10,678 FFPE (formalin-fixed,
paraffin-embedded) H&E-stained diagnostic slides from 33 cancer types in the The Genome Cancer Atlas (TCGA), and extracted 408,218 x_{4096} regions at an 20 × objective (M ≈ 38 regions per slide) for pretraining ViT_{4096}-256, with a total of 104M x_{256} patches for pretraining ViT_{256}-16 [50]. For ViT_{256}-16, we trained for 400,000 iterations using the AdamW optimizer with a batch size of 256, base learning rate of 0.0005, with the first 10 epochs used to warm up to the base learning rate followed by decay using a cosine schedule. A similar implementation was used for ViT_{4096}-256, with the model trained for 200,000 iterations using the pre-extracted [CLS] tokens from ViT_{256}-16.

Fine-tuning: Following hierarchical pretraining, we use the pretrained weights to initialize (and freeze) the ViT_{256}-16 and ViT_{4096}-256 subnetworks, with only a lightweight ViT_{WSI-4096} finetuned. Our work can be viewed as a formulation of MIL that pretrains not only the [256 × 256] instance-level feature extraction step, but also the downstream aggregation layers which extract coarse-grained morphological features. We finetuned HIPT (and its comparisons) for 20 epochs using the Adam optimizer, batch size of 1 with 32 gradient accumulation steps, and a learning rate of 0.01. For survival prediction, we used the survival cross-entropy loss by Zadeh & Schmidt [79].

Tasks & Comparisons: We experiment on several slide-level classification and survival outcome prediction tasks across different organ types in the TCGA [50]. In comparisons with state-of-the-art weakly-supervised architectures, we tested Attention-Based MIL (ABMIL), and its variants that use clustering losses (CLAM-SB), clustering prototypes (DeepAttnMISL), modified scoring & pooling functions (DS-MIL), and graph message passing (GCN-MIL), which used the same hyperparameters as HIPT. Since these methods are agnostic of input features, all comparisons used the pretrained ViT_{256}-16 as instance-level feature extraction. In addition, we also compared variations of HIPT without pretraining and self-attention. Finally, we qualitatively study the attention maps that hierarchical self-supervised ViTs learn in computational histopathology.

4.1. Slide-Level Classification

Dataset Description. We follow the study design in [53]; we examined the following tasks evaluated using a 10-fold cross-validated AUC: 1) Invasive Ductal (IDC) versus Invasive Lobular Carcinoma (ILC) in Invasive Breast Carcinoma (BRCA) subtyping, 2) Lung Adenocarcinoma (LUAD) versus Lung Squamous Cell Carcinoma (LUSC) in Non-Small Cell Lung Carcinoma (NSCLC) subtyping, and 3) Clear Cell, Papillary, and Chromophobe Renal Cell Carcinoma (CCRCC vs. PRCC vs. CHRCC) subtyping, with all methods finetuned (for 20 epochs) with varying percentage folds of training data (100% / 25%) as data efficiency experiments. Despite RCC subtyping being a relative easy slide-level task due to having distinct subtypes, we ultimately include this task as a benchmark for self-supervised comparisons.

Weakly-Supervised Comparison. Classification results are summarized in Table 1. Overall, across all tasks and different percentage folds, HIPT consistently achieves the highest macro-averaged AUC performance across all tasks. In comparison with the best performing baseline, CLAM-SB, HIPT achieves a performance increase of 1.86%, 2.59%, 0.72% on BRCA, NSCLC and RCC subtyping respectively using 100% of training data, with the margin in performance increase widening to 3.14%, 8.33%, 1.78% respectively using 25% of training data. Similar performance increases are demonstrated on other tasks. HIPT demonstrates the most robust performance when limiting training data, with AUC decreasing slightly from 0.980 to 0.974.

K-Nearest Neighbor (KNN). We take the mean embedding
of the pre-extracted embeddings, followed by a KNN evaluation for the above tasks. As a baseline, we use a ResNet-50 pretrained on ImageNet to extract patch-level embeddings. We compare with pre-extracted ViT$_{256}$-16 patch embeddings from DINO pretraining, and pre-extracted ViT$_{4096}$-256 region-level embeddings from hierarchical pretraining, with results summarized also in Table 1. In using the average embedding of each WSI as the “slide-level representation”, we find that ViT$_{4096}$-256 region-level embeddings in HIPT outperform patch-level embeddings across all tasks, which can be attributed to the broader image contexts used in the WSI for pretraining, and can be intuitively viewed as a closer proxy to the slide-level view than small patches. ViT$_{4096}$-256 region-level embeddings surpass the AUC performance of weakly-supervised approaches in BRCA and RCC subtyping using 100% of training data.

4.2. Survival Prediction

Dataset Description. For survival outcome prediction, we validated on the IDC, CCRCC, PRCC, and LUAD cancer types which have relatively large sample sizes in the TCGA, in addition to Colon & Rectal (CRC) and Stomach Adenocarcinoma (STAD) which have been frequently evaluated in real-world clinical studies due to their substantial human intra-observer variability [24, 66, 73]. All tasks were evaluated using cross-validated concordance index (c-Index).

Weakly-Supervised Comparison. For the following survival prediction tasks in which learning context-aware relationships are important, we observe much larger increases in performance, summarized in Table 2. Overall, HIPT achieves the best c-Index performance in the IDC, COADREAD, CCRCC, and STAD cancer types, with the largest improvement demonstrated in IDC (0.634) and COADREAD (0.608) in comparison to other methods. Though other methods such as GCN-MIL use message passing for learning context-aware features, we note that the number of layers needed to achieve similar image receptive fields may cause the number of neighbors to grow exponentially [47].

In modeling important long-range dependencies between instances using self-attention across various stages of the hierarchy, the Transformer attention in HIPT is able to capture regional perturbations that have been well characterized as portending worse outcome across different cancer types, as further visualized in Figure 3.

4.3. Self-Supervised ViTs Find Unique Morphological Phenotypes

ViT$_{256}$-16 Attention Maps. For x_{256} patches, we visualize the different attention heads in MHSA and reveal that ViTs in pathology are able to isolate distinct morphological features. From visual assessment by a board-certified pathologist across several different cancer types, we observe that MHSA in ViT$_{256}$-16 ($n = 8, h = 6, d = 384$) captures three distinct fine-grained morphological phenotypes as illustrated in Figure 3, with general stroma tissue and red blood cells attended in $h = 1, 2$, cells (normal, atypical, lymphocyte) attended in $h = 3, 4$, and “white spaces” (luminal spaces, fat regions, air pockets) attended in $h = 5, 6$.

This observation is in line with current studies that have introspected self-supervised ViT models, in which the attention heads can be used as a method for object localization or discovery [13, 65]. In the application to histopathology tissue, our introspection reveals that the visual tokens at the $[16 \times 16]$ cell-level directly corroborate with semantic, object-centric structures at the 20×20 objective.

ViT$_{4096}$-256 Attention Maps. For x_{4096} regions, we further visualize the attention heads in MHSA from our pre-trained ViT$_{4096}$-256 ($n = 4, h = 6, d = 192$) model, capturing two distinct coarse-grained phenotypes: tumor-stroma interface attended in $h = 1, 2, 3$, and nested tumor cells and other high tumor cellularity regions in $h = 4, 5, 6$. In comparison with the ViT$_{256}$-16 attention maps which may capture only nuclear features (e.g. - nuclear atypia, shape and size of cells), ViT$_{4096}$-256 attention maps are able to model the patterns of nested tumor growth, tumor invasion into fat and stroma regions, and other tissue-to-tissue relationships (Figure 3). In factorizing the attention distribution of $[16 \times 16]$ cells from ViT$_{256}$-16 onto highly-attended $[256 \times 256]$ patches from ViT$_{4096}$-256, we can create a hierarchical attention map, which is able to distinguish tumor cells in stroma tissue from tumor cells in dense tumor cellularity regions (Figure 4). Overall, these captured coarse- and fine-grained morphological features corroborate with the observed performance increases in both finetuning HIPT in weakly-supervised learning and using averaged HIPT features in KNN evaluation. Additional vi-

<table>
<thead>
<tr>
<th>Architecture</th>
<th>IDC</th>
<th>CRC</th>
<th>CCRCC</th>
<th>PRCC</th>
<th>LUAD</th>
<th>STAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMIL [38]</td>
<td>0.487 ± 0.079</td>
<td>0.566 ± 0.075</td>
<td>0.561 ± 0.074</td>
<td>0.671 ± 0.076</td>
<td>0.584 ± 0.054</td>
<td>0.562 ± 0.049</td>
</tr>
<tr>
<td>DeepAttnMISL [78]</td>
<td>0.472 ± 0.023</td>
<td>0.561 ± 0.088</td>
<td>0.521 ± 0.084</td>
<td>0.472 ± 0.162</td>
<td>0.563 ± 0.037</td>
<td>0.563 ± 0.067</td>
</tr>
<tr>
<td>GCN-MIL [49, 84]</td>
<td>0.534 ± 0.060</td>
<td>0.538 ± 0.049</td>
<td>0.591 ± 0.093</td>
<td>0.636 ± 0.066</td>
<td>0.592 ± 0.070</td>
<td>0.513 ± 0.069</td>
</tr>
<tr>
<td>DS-MIL [45]</td>
<td>0.472 ± 0.020</td>
<td>0.470 ± 0.053</td>
<td>0.548 ± 0.057</td>
<td>0.654 ± 0.134</td>
<td>0.537 ± 0.061</td>
<td>0.546 ± 0.047</td>
</tr>
<tr>
<td>HIPT</td>
<td>0.634 ± 0.050</td>
<td>0.608 ± 0.088</td>
<td>0.642 ± 0.028</td>
<td>0.670 ± 0.065</td>
<td>0.538 ± 0.044</td>
<td>0.570 ± 0.081</td>
</tr>
</tbody>
</table>

Table 2. Survival Prediction. Ablation study assessing cross-validated c-Index of HIPT across other weakly-supervised architectures.
4.4. Further Ablation Experiments

Additional experiments are included in the Supplementary Materials, with main findings highlighted below:

The role of pretraining. Hierarchical pretraining of ViT-256 is an important component in our method, as HIPT variants without pretraining overfit in MIL tasks.

Comparing patch-level representations. We assessed quality of other embedding types, and found that ViT-256 achieves strong representation quality of image patches.

Organ-specific versus pan-cancer pretraining. We additionally assessed the performance of ViT-256 pretraining on different data distributions, with improved performance in cell localization with pan-cancer pretraining.

5. Conclusion

We believe our work is an important step towards self-supervised slide-level representation learning, demonstrating pretrained and finetuned HIPT features achieve superior performance on weakly-supervised and KNN evaluation respectively. Though DINO was used for hierarchical pretraining with conventional ViT blocks, we hope to explore other pretraining methods such as mask patch prediction [5,23] and efficient ViT architectures [46,51,72,81].

Limitations: A limitation of HIPT is the difficulty in pretraining the last aggregation layer due to the small number of WSI data points. In addition, end-to-end hierarchical pretraining of HIPT is computationally intractable on commercial workstations, with pretraining needed to be performed in stages. Lastly, the study design of this work has several constraints, such as: 1) excluded slides in each TCGA cohort due to limited tissue content and difficulty patching at 4096×4096, 2) ViT-256 pretraining performed on almost all of TCGA and evaluation lacking independent test cohorts, 3) analysis limited to TCGA, which overrepresents patients with European ancestry and not representative of the rich genetic diversity in the world [67].

Broader Impacts: Many problems in biology and medicine have hierarchical-like relationships [34,48,55]. For instances, DNA motifs within exon sequences which contribute towards protein structure, gene expression, and genetic traits [3,21,40]. Our idea of pretraining neural networks based on hierarchical relationships in large, heterogeneous data modalities to derive a patient- or population-level representation can be extended to other domains.

6. Acknowledgements

We thank Felix Yu, Ming Y. Lu, Chunyuan Li, and the BioML group at Microsoft Research New England for their feedback. This work was supported in part by the BWH president’s fund, BWH & MGH Pathology, Google Cloud Research Award, and NIGMS R35GM138216 (F.M.). R.J.C. was also supported by the NSF Graduate Fellowship. T.Y.C. was also supported by the NIH T32CA251062. R.G.K. gratefully acknowledges funding from CIFAR.
References

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021.

[66] Daniel E Spratt, Tiffany Chan, Levi Waldron, Corey Speers, Felix Y Feng, Olorunseun O Ogunwobi, and Joseph R Os-

