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Abstract

Recent studies in deepfake detection have yielded
promising results when the training and testing face forg-
eries are from the same dataset. However, the problem
remains challenging when one tries to generalize the de-
tector to forgeries created by unseen methods in the train-
ing dataset. This work addresses the generalizable deep-
fake detection from a simple principle: a generalizable
representation should be sensitive to diverse types of forg-
eries. Following this principle, we propose to enrich the
“diversity” of forgeries by synthesizing augmented forg-
eries with a pool of forgery configurations and strengthen
the “sensitivity” to the forgeries by enforcing the model
to predict the forgery configurations. To effectively ex-
plore the large forgery augmentation space, we further pro-
pose to use the adversarial training strategy to dynami-
cally synthesize the most challenging forgeries to the cur-
rent model. Through extensive experiments, we show that
the proposed strategies are surprisingly effective (see Fig-
ure 1), and they could achieve superior performance than
the current state-of-the-art methods. Code is available at
https://github.com/liangchen527/SLADD.

1. Introduction
The realistic image generation brought by the generative

adversarial network (GAN) raises a security issue that hu-
man portraits can be easily substituted to provide malicious
bioinformatics [11, 45, 15, 44, 51, 56, 40, 54, 48]. This
forgery becomes a threat to subject identifications which
have been extensively utilized in digital payment, video
surveillance, and social media. To reduce these risks, there
is an emerging investigation on deepfake detectors to iden-
tify face forgeries. Formulated as a binary classification
problem, current detectors [26, 3, 2, 32, 39] perform well
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Figure 1. Performance improvements of the proposed strategies for
the baseline model (i.e. Xception [41]). The models are trained on
the four types of data from Faceforensics++ dataset [41] and tested
on CelebDF [28], DFDC [12], and DF1.0 [20] datasets.

when training and testing forgeries are synthesized from the
same dataset and same forgery methods. However, in prac-
tice the testing forgeries are usually from unseen datasets
and synthesized by unseen methods. Discrepancies between
training and testing data lead to inferior performance of de-
tectors. There is a performance drop when detectors rec-
ognize forgeries outside the training dataset, which brings
challenges to deepfake detectors for practical usage.

Attempts have been made in recent arts to improve the
generalizations. For example, to overcome dataset bias,
some studies [24, 58] suggest data augmentation is an ef-
fective tool against poor generalization. These methods
augment training data by synthesizing new face forgeries
with their empirically designed augmentations. However,
their augmentations are with a limited choice of strat-
egy. The lacking of variety may jeopardize the generaliza-
tion. Meanwhile, intrinsic forgery attributes shared between
forgeries, such as detail discrepancies [30], and frequency
features [39, 29], are also mined broadly with hand-crafted
representations to distinct forgeries. But these attributes
mainly rely on imperceptible image patterns, which are sen-
sitive to post-processing steps, such as compression. They
vary significantly in different datasets, thus leading to large
detection bias and limiting their generalization [60].
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In this paper, we address the deepfake detection from a
simple heuristic principle: a generalizable representation
should be sensitive to the various types of forgeries. Train-
ing a model by following this principle could potentially
avoid the “blind spot” of the model or avoid relying on pat-
terns specific to a dataset, since otherwise the model may
not be capable of identifying a variety of forgeries. Push-
ing this idea to the limit, we propose to enrich the “diversity
of forgeries” by synthesizing forgery images from a large
pool of configurations 1. Specifically, given a pristine, we
randomly choose a reference image 2 from training data,
our synthesizer network (i.e. generator) produces forgery
configurations that specify the forgery region, the blending
type, and the blending ratio. Then based on these configu-
rations, a synthesized forgery is generated (some examples
are shown in Figure 2). To enhance the “sensitivity to the
forgeries”, our detector network (i.e. discriminator) is re-
quired to predict the configurations of an input in addition
to judging if it is a forgery or not. Further, to effectively
explore the large space of forgery augmentation, we adopt
an adversarial training strategy to dynamically construct the
augment that is most challenging to the current detector net-
work. Different from the empirically designed augmenta-
tions [24, 58, 6], our adversarial augmentation strategy en-
joys a large variety, and it can be dynamically constructed
by the performance of the discriminator.

Through our experimental studies, we demonstrate the
effectiveness of employing both adversarial augmentation
and self-supervised tasks. A significant improvement over
the baseline approach is observed, and our method also per-
forms favorably against other state-of-the-art detectors.

2. Related Works

Deepfake detection. Recent studies have made various at-
tempts for deepfake detection and achieve remarkable suc-
cess [26, 41, 3, 2, 32, 39, 14, 24, 30, 29, 19, 47, 23, 36, 5].
Several arts discuss low-level differences between pristines
and forgeries and suggest using them as classification clues.
Li et al. [24] assume blending artifacts exist in all pristines
and suggest finding the blending boundary beside the de-
tection task; Qian et al. [39] and Luo et al. [30] use high-
frequency details as additional inputs for their models; Liu
et al. [29] adopt phase spectrums to capture the up-sampling
artifacts of face forgery for the task. Despite their effec-
tiveness in many cases, the low-level artifacts are sensitive
to post-processing steps which vary in different datasets,
thus limiting their generalization [60]. Some works suggest
borrowing features from other tasks for deepfake detection.

1The term configuration means a specific way of synthesizing a
forgery image. In the context of our discussion, it can also refer to a set of
parameters that control a particular synthesizing process.

2We only use the forgery image in the training set as reference.

(a) Pristine (b) Reference (c) Forgery (adv)

Figure 2. Examples of the input pristine, reference images, and
their corresponding synthesized adversarial forgeries.

Such as the features from lips reading [19], facial image
decomposition [60], and landmark geometric features [43].
Although these features can bring promising improvements,
their generalization performance to the deepfake data are
questionable. While annotating the deepfake data for these
tasks is rather expensive, incorporating these tasks often
lead to limited improvements.

Adversarial learning. Adversarial training aims to use
adversarial examples for augmenting the training samples,
which often contains a generator and a discriminator, and
they are trained on the principle of defending against adver-
sarial attacks [17, 22, 31, 55]. Goodfellow et al. [17] first
use the fast gradient sign method to improve the adversarial
robustness. Madry et al. [22] further propose a multi-step
scheme termed as projected gradient descent to enable pow-
erful robustness compared to other works. Moreover, dif-
ferent from previous works that use adversarial training to
enlarge datasets through directly synthesizing new images
[46, 37, 4, 18, 16], Zhang et al. [55] suggest automatically
choosing augmentation policies in an adversarial manner,
which shows a great reduction in computing cost than the
previous method [10]. However, most of these adversarial
training strategies are designed for general tasks, such as
classification. In contrast, our adversarial example synthe-
sizing process is similar to the deepfake generation proce-
dure, thus is more suitable for the deepfake detection task.

3. Proposed Method
We propose to improve the generalizability of deepfake

detector with the help of adversarial data augmentation,
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Figure 3. Overview of our model. The synthesizer network (i.e. generator) outputs three forgery configurations that are further used to
synthesize a new forgery, and these forgery configurations are also used as labels to guide the detector network (i.e. discriminator). We
train the generator and discriminator in an adversarial manner. Please refer to the text for details.

which enriches the types of forgeries, and self-supervised
tasks that enforce sensitivity to forgery configurations. The
pipeline of our model is shown in Figure 3. During training,
we randomly select a reference image if the input is pristine.
These two images are sent to a synthesizer network to pro-
duce configurations that specify the facial forgery region,
the blending type, and the mixup blending ratio (if mixup
blending is selected). Then a new forgery is synthesized
based on these two images and the selected configurations.
The synthesized forgery is passed to our detector for the
real or fake and configurations predictions. Note the input
will skip the forgery synthesizing process if it is an origi-
nal forgery from the training data. We adopt an adversarial
training strategy to train the system, in which the synthe-
sizer is regarded as the generator, and the detector is re-
garded as the discriminator. The training process will train
the forgery synthesizer to produce new forgeries to chal-
lenge the detector. Once trained, only the detector is used
for deepfake detection.

3.1. Selecting Space and Synthesizing Forgery

Our synthesizer network G(·, θ) takes a pristine Ip ∈
RH×W×3 and a reference image If ∈ RH×W×3 as inputs
and output three configurations: the forgery region refer-
ence index Rg , the blending type index Tg (a discrete num-
ber), and the mix-up blending ratio Ag (a continuous value).
For Ag , we directly generate a scalar from the input Ip and
If . For Rg , Tg , we first generate two probability distribu-
tions p(Rg) and p(Tg), indicating the chance of selecting a
particular index of Rg and Tg , and then randomly sample a
index according to the probability. For the simplicity of dis-
cussion, we use pm to denote those two probabilities. These
configurations, Rg , Tg and Ag , control how a forgery image
is generated. Their definitions are as follows:
Rg: The index Rg ∈ {0, · · · , 9} determines a specific facial

region. We divide the facial image into 10 regions based on
its landmark, including the left eye, right eye, nose, mouth,
and their combinations. Examples of different regions are
shown in Figure 4 (c) - (l). We only consider the facial
features because most deepfake arts focus on them, and they
convey the most information in a facial image;
Tg: The reference number Tg ∈ {0, · · · , 3} determines the
blending type. We use three blending techniques, including
alpha, Poisson [38], and mixup blending. Without the loss
of generality, we include a do-nothing choice among the
blending type pool, so that we can use the original pristine
from the dataset for further classification.
Ag: The continuous value Ag ∈ [0, 1] is the blending ratio
which is only effective when mixup blending is selected.

We adopt a random shape deformation operation and ap-
ply Gaussian blur with random kernel size to the selected
forgery region before the synthesizing step. An example of
the final mask is shown in Figure 4 (m). Then, to synthesize
the adversarial forgery Ia, we crop the facial parts deter-
mined by Rg from If , and blend it into Ip using the config-
urations indicated by the synthesizer network. Specifically,
we use the official implementations from OpenCV for al-
pha and Poisson blendings to synthesize Ia, and for mixup
blending, Ia can be obtained by:

Ia = Ag × Md ∗ (If − Ip) + Ip, (1)

where Md is the deformed final mask, and ∗ is the
Hadamard product.

Like existing deepfake methods, the cropped facial parts
are applied with color transfer (aligning the mean of the
RGB channels, respectively) and face alignment before the
alpha and Poisson blending steps, which can avoid obvi-
ous artifacts in the newly synthesized forgery. Examples of
newly synthesized forgeries with different blending types
are shown in Figure 4 (n) - (p).
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(a) Pristine (c) No. 0.
left eye

(e) No. 2.
nose

(g) No. 4.
Comb. No. 0 & 1

(i) No. 6.
Comb. No. 1 & 2

(k) No. 8.
Comb. No. 0, 1 & 2

(m) deformed
final mask

(o) Forgery by
mixup blending

(b) Random reference (d) No. 1.
right eye

(f) No. 3.
mouth

(h) No. 5.
Comb. No. 0 & 2

(j) No. 7.
Comb. No. 2 & 3

(l) No. 9.
Comb. No. 0, 1, 2 & 3

(n) Forgery by
alpha blending

(p) Forgery by
Poisson blending

Figure 4. An example of the pristine and randomly chosen reference images (i.e. (a) and (b)), the corresponding selecting space of the
manipulate regions (i.e. (c) - (m)), and the adversarial forgeries synthesized by different blending types (i.e. (n) - (p)) under the instruction
of the deformed manipulate region map (i.e. (m)). The selected region number is 7. in this example, and the blending ratio for (o) is 0.5.

3.2. Joint Training with Self-Supervised Tasks

Self-supervised tasks have been shown effective for im-
proving generalization in previous works [7, 50]. However,
those attempts often consider self-supervised learning tasks
proven effective for image classification tasks. In contrast to
them, this paper employs an auxiliary self-supervised task
specifically designed for the deepfake detection problem.
By doing so, we expect that the auxiliary task aligns bet-
ter with the target task and thus could lead to better perfor-
mance. Our idea follows a multi-task scheme that allows the
model to simultaneously learn from two tasks, the main task
and a set of auxiliary self-supervised task. Specifically, for
the auxiliary tasks, we consider forgery region estimation,
blending type estimation and blending ratio estimation. We
elaborate on each task and the loss in the following.

Main task loss LMain. The main task is a binary classi-
fication task that predicts whether a given input image is
pristine or forgery. Similar to previous work [30], we adopt
the AM-Softmax Loss [49] to compute LMain since it al-
lows for smaller intra-class variations and larger inter-class
differences than the regular cross-entropy loss.

Forgery region estimation loss LR. We also create a
forgery region estimation task. Specifically, a forgery re-
gion prediction head is attached to the detector network and
generates forgery region mask with the size of [H/16 ×
W/16]. The ground-truth forgery mask Mgt is created de-
pending on categories of the input images, which is divided
into three categories. Specifically, if the input image is the
adversarial forgery, the corresponding Mgt is the resized de-
formed final mask (i.e. Mgt = Md); As most datasets pro-
vide the ground truth forgery region, we can directly use
them as Mgt if the input image is an original forgery from
the training dataset; If the input image is an original pristine
from the training dataset, the Mgt is an all-zero matrix (i.e.
Mgt = 0), indicating there is no forgery region in the input

image. An L1 loss is applied for the task:

LR =
∥Mgt − Me∥1
H/16×W/16

, (2)

where Me is the estimated region map from our detector
network, and ∥ · ∥1 denotes the L1 norm.

Blending type estimation loss LT . We then introduce
a blending type estimation task that aims to estimate the
blending type of input images. Similar to the forgery re-
gion estimation task, the ground-truth of the prediction tar-
get, i.e., ground-truth blending type Tgt, for this task varies
accordingly to the category of the input data. When the in-
put is a synthesized adversarial forgery, Tgt can be directly
borrowed from the output of the generator (i.e. Tgt = Tg ,
where Tg ∈ {0, 1, 2} according to the selected blending
type); If the input is the original pristine, we set Tgt = 3,
implying there is no blending operation in the image; As the
blending types are often unavailable in the existing datasets,
we thus set Tgt = 4 if the input image is the original forg-
eries from the training dataset, indicating a blending type
outside of our selecting space. Similarly, we adopt the AM-
Softmax Loss [49] to compute LT .

Blending ratio estimation loss LA. To take full advantage
of the blending information provided in the forgery syn-
thesizing process, we further construct a task to estimate
the blending ratio output by the synthesizer network. Be-
cause the blending ratio is only effective when the synthe-
sizer network selects the mixup blending, we can set the
prediction ground-truth Agt = Ag when the input image
is a synthesized adversarial forgery using mixup blending.
Correspondingly, this loss is not computed when the input
image is either the original images in the training dataset or
adversarial forgery synthesized with other blending types.
An L1 loss is adopted to compute LA:

LA = τ × ∥Agt −Ae∥1, (3)
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where Ae is the estimated blending ratio from the detector
network, and τ is a binary value, which s.t. τ = 1 if Tgt = 2
(i.e. the blending type is mixup blending) and τ = 0 other-
wise, thus ensuring LA is only effective when adopting the
mixup blending in the forgery synthesizing process.

3.3. Adversarial Training

To better leveraging the forgery augmentation space, we
adopt adversarial training to dynamically construct the most
challenging auxiliary task. Specifically, we use the synthe-
sizer network G(·, θ) as the generator, which maximizes the
training loss of the target discriminator (i.e. the detector net-
work D(·, w)) through adversarial learning. The optimiza-
tion process can be presented as,

min
w

max
θ

L, s.t. L(θ, w) = LMain + αLR + µLT + γLA,

(4)
where α, µ, and γ are weight hyper-parameters. Recall
that θ denotes all the parameters in the generation process.
Following the common practice of adversarial training, the
above optimization problem can be approximately solved
by iteratively updating the discriminator and the generator.

We first present the learning process of the discriminator.
Eq. (4) is a minimization problem regarding w. By fixing
the current generator parameter θ, with the learning rate of
η and batch size of N , we perform gradient descent update:

wt+1 = wt − η
1

N

N∑
n=1

∇wtLn(θ
t, wt), (5)

where Ln is the loss for the n-th sample in a mini-batch.
The generator is designed to increase the training loss of

the target discriminator by synthesizing more challenging
samples than the original benign examples, thus encourag-
ing the discriminator to learn more generalizable features. It
plays a zero-sum game in an adversarial framework with the
discriminator. Mathematically, we can formulate the object
as a maximizing problem according to Eq. (4),

θt+1 = argmax
θt

L(wt+1, θt). (6)

However, directly updating θ by solving Eq. (6) could
be problematic because there exist non-differentiable sam-
pling operations that will break gradient flow from D(·, w)
to G(·, θ). To handle that, we apply REINFORCE algo-
rithm [52] to approximate the gradient calculation for θ:

θt+1 = θt + ϵ∇θtLb

≈ θt + ϵ
1

M

M∑
m=1

Lb∇θt log pm,
(7)

where Lb = 1
N

∑N
n=1 Ln(w

t+1, θt), M denotes the num-
ber of selected configuration series in a batch. pm repre-
sents the probabilities of generating Rg and Tg , which is

estimated from the sythesizer network G(·, θ).

4. Experiments
4.1. Settings

Training datasets. Following recent deepfake detection
methods [39, 24, 30, 29, 47, 23], we train our model in
the Faceforencis++ (FF++) dataset [41]. It contains 1,000
original videos, where 720 videos are used for training, 140
videos are reserved for testing and the rest for validation.
All videos undergo four state-of-the-art deepfake methods,
which includes Deepfakes (DF) [11], Face2Face (F2F) [45],
FaceSwap (FS) [15], and NeuralTextures (NT) [44]. Final
outputs are generated with different compression levels in-
cluding RAW, High Quality (HQ) and Low Quality (LQ),
respectively. We use the HQ and LQ versions in our ex-
periments, and the HQ version is adopted by default unless
otherwise stated.

Testing datasets. To evaluate the generalizability of
our method, we use the following benchmark datasets:
CelebDF [28], which contains 408 real videos and 795 syn-
thesized videos that are generated by the improved deepfake
technology; Deepfake Detection Challenge (DFDC) [12],
which includes over 1,000 real and over 4,000 fake videos
manipulated by multiple Deepfake, GANbased, and non-
learned methods; DeeperForensics-1.0 (DF1.0) [20], which
consists of over 11,000 fake videos generated by their DF-
VAE [20] method.

We use DLIB [42] for face extraction and alignment, and
we resize the aligned faces to 256× 256 for all the samples
in training and test datasets.

Implemenation details. We modify Xception [8] as the
backbones for our synthesizer and detector networks, and
their parameters are initialized by Xception pre-trained on
ImageNet. The hyper-parameter used in (4) are α = 0.1,
µ = 0.05, and γ = 0.1. We use the Adam optimizer [21]
for both the two networks with β1 = 0.9 and β2 = 0.999
and the batch size is fixed as 32. The learning rates are set
to 2 × 10−4 and 5 × 10−5 for the detector and synthesizer
networks, respectively.

4.2. Generalizability Comparisons

To comprehensively evaluate the generalizability of our
method, we compare several state-of-the-art methods in-
cluding Xception [41], Face X-ray [24], F3Net [39], RFM
[47], and SRM [30]. To ensure fair comparisons, we use
the provided codes of Xception [41], RFM [47], and SRM
[30] from the authors, and we reimplement Face X-ray [24]
and F3Net [39] rigorously following the companion paper’s
instructions and train these models under the same settings.

Generalizations under different datasets. In these ex-
periments, we train the compared models on each of the
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Method DF F2F FS NT Avg.
DFDC CelebDF DF1.0 DFDC CelebDF DF1.0 DFDC CelebDF DF1.0 DFDC CelebDF DF1.0

Xception [41] 0.654 0.681 0.617 0.708 0.598 0.745 0.708 0.601 0.605 0.646 0.625 0.838 0.669
Face X-ray [24] 0.609 0.554 0.668 0.633 0.684 0.766 0.646 0.697 0.795 0.613 0.703 0.866 0.686

F3Net [39] 0.682 0.664 0.658 0.679 0.654 0.761 0.679 0.636 0.651 0.672 0.689 0.932 0.696
RFM [47] 0.758 0.723 0.717 0.736 0.663 0.732 0.714 0.591 0.714 0.726 0.600 0.846 0.710
SRM [30] 0.679 0.650 0.720 0.687 0.693 0.775 0.671 0.643 0.771 0.656 0.651 0.936 0.711

Ours 0.772 0.730 0.742 0.787 0.781 0.786 0.742 0.800 0.695 0.741 0.759 0.889 0.769

Table 1. Generalizability comparisons with state-of-the-art methods in the term of AUC. The best results are in bold. The first row denotes
the training data, and the second row shows the corresponding test dataset. Our method performs favorably among the models compared.

Training set Method
Test set

LQ HQ
DF FS DF FS

NT

Xception [41] 0.587 0.517 0.770 0.718
Face X-ray [24] 0.571 0.510 0.585 0.779

F3Net [39] 0.583 0.519 0.805 0.612
RFM [47] 0.558 0.516 0.798 0.639
SRM [30] 0.555 0.529 0.838 0.795

Ours 0.628 0.568 0.846 0.721

Table 2. Generalizability comparisons across different compres-
sion levels in the term of AUC. Our method achieves comparable
performance against existing methods.

four methods in FF++ [41], and evaluate it on the bench-
mark datasets including CelebDF [28], DFDC [12], and
DF1.0 [20]. This setting is rather challenging because both
pristines and forgeries in the test dataset are unseen in the
training dataset.

We compare different methods by using the Area Un-
der Curve (AUC) metric and present the results in Ta-
ble 1. As seen, our method outperforms other models in
most cases and achieves the overall best performance. This
clearly demonstrates the advantage of the proposed adver-
sarial augmentation and self-supervised tasks. SRM [30]
and F3Net [39] both rely on high-frequency components of
a image to distinguish forgeries from pristine. Our experi-
ment suggests that they attain worse generalization perfor-
mance than our approach. This may be because the high-
frequency cue identified effective on the FF++ dataset [41]
may not necessarily generalize to other datasets that adopt
different post-processing steps. RFM [47] encourages the
use of multiple facial regions for forgery detection and thus
leads to improved generalization performance. However,
their method still cannot avoid some data source biases,
such as all the whole facial parts in a training sample are
from the same source. This limitation may explain why
their performance is inferior to ours. Face X-ray [24] uses
the blended artifacts in the forgery for generalization. Com-
pared to our method, Their generalizability will degrade
when these artifacts share different patterns in the training
and test dataset. As a baseline, Xception [41] does not in-

Training set Method Test set
F2F FS

F2F

LAE [14] 0.909 0.632
ClassNSeg [34] 0.928 0.541

Forensic-Trans [9] 0.945 0.726
Ours 0.960 0.848

Table 3. Comparisons with models adopt multi-task learning in the
term of ACC. Our model performs favorably against these arts.

Method FF++ CelebDF

Two-stream [59] 0.701 0.538
Meso4 [1] 0.847 0.548

MesoInception4 [1] 0.830 0.536
FWA [27] 0.801 0.569

DSP-FWA [27] 0.930 0.646
Xception [41] 0.997 0.653
VA-MLP [33] 0.664 0.550
Headpose [53] 0.473 0.546
Capsule [35] 0.966 0.575
SMIL [25] 0.968 0.563

Two-branch [32] 0.932 0.734
SPSL [29] 0.969 0.724

MADD [57] 0.998 0.674
Ours 0.984 0.797

Table 4. Extensive evaluations with other state-of-the-art methods
in the term of AUC. The models are trained on FF++ dataset. Our
method performs favorbly when tested on FF++, and it outper-
forms others when tested on CelebDF.

corporate any augmentation or feature engineering. Its per-
formance drops drastically in unseen forgeries.

Generalizations under different compression levels.
Given that real world forgeries may be post-processed by
different methods, such as compression. It is crucial that
deployed deepfake detectors are not easily subverted by un-
seen post-processing processes. To evaluate the generaliz-
ability of the compared models regarding the varying post-
processing methods, we separately train them on NT data,
while testing them on DF and FS with different compres-
sion levels.
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Method DF F2F FS NT Avg.
DFDC CelebDF DF1.0 DFDC CelebDF DF1.0 DFDC CelebDF DF1.0 DFDC CelebDF DF1.0

Xception [41] 0.654 0.681 0.617 0.708 0.598 0.745 0.708 0.601 0.605 0.646 0.625 0.838 0.669
Xception w/ adv 0.717 0.703 0.674 0.739 0.778 0.735 0.737 0.644 0.602 0.662 0.722 0.794 0.709

Ours w/ ran 0.763 0.663 0.690 0.763 0.745 0.696 0.738 0.700 0.650 0.705 0.666 0.810 0.716
Ours 0.772 0.730 0.742 0.787 0.781 0.786 0.742 0.800 0.695 0.741 0.759 0.889 0.769

Table 5. Ablation studies regarding the effectiveness of the adversarial training. The metric is AUC. Please see Sec. 4.4 for detailed
experiment settings.

Method DF F2F FS NT Avg.
DFDC CelebDF DF1.0 DFDC CelebDF DF1.0 DFDC CelebDF DF1.0 DFDC CelebDF DF1.0

Ours w/ ran ops 0.735 0.666 0.782 0.694 0.647 0.827 0.737 0.601 0.646 0.691 0.685 0.812 0.710
Ours w/ ops [55] 0.721 0.726 0.777 0.686 0.647 0.840 0.737 0.534 0.720 0.678 0.642 0.829 0.711
Ours w/ aug [24] 0.722 0.692 0.712 0.722 0.710 0.739 0.719 0.726 0.640 0.714 0.669 0.841 0.717
Ours w/ aug [58] 0.754 0.679 0.687 0.746 0.604 0.753 0.726 0.697 0.674 0.770 0.713 0.863 0.722

Ours 0.772 0.730 0.742 0.787 0.781 0.786 0.742 0.800 0.695 0.741 0.759 0.889 0.769

Table 6. Ablation studies regarding the effectiveness of the data augmentation strategies. The metric is AUC. Please see Sec. 4.4 for
detailed experiment settings.

The evaluated AUC values are presented in Table 2. We
can observe that almost all models generalize competitively
when trained and tested on data with the same compression
levels. However, models that based on imperceptible image
patterns [41, 24, 39, 30] suffer from large performance drop
when test on unseen LQ data. The results are not surprising
since the low-level clues are largely destroyed when the im-
ages are highly compressed. The same results are reported
for RFM [47]. Because all facial parts in a face sample
usually share the same compression level, exploring more
facial regions cannot guarantee well generalizability across
different compression levels. On the other hand, the pro-
posed method is substantially less affected by the compres-
sion levels, outperforming all other methods, as it uses more
generalizable forgery configurations instead of just the low-
level artifacts. We believe the improvements over Xception
[41], which is with a similar network setting, are due to the
adopted adversarial self-supervised framework.

4.3. State-of-the-art Comparisons

Comparison to multi-task learning detectors. Using
multi-task learning strategies to boost deepfake detection
has been explored in previous works, including LAE [14],
ClassNSeg [34], and Forensic-Trans [9]. All these works
suggest simultaneously classifying and localizing forgery
regions. Unlike their localization task, the self-supervised
task involved in our self-supervised framework aims to rec-
ognize the forgery configurations selected by the synthe-
sizer network, which not only avoids the tedious annotation
work, but also considers more configurations that are preva-
lent in forgeries.

To ensure fair comparisons, we use the same evaluation
settings in our experiments with that from the compared
arts. We train our model on the F2F data and test it on F2F

and FS. The comparison results are presented in Table 3,
where our model outperforms other algorithms in test sam-
ples with both seen and unseen deepfake techniques. Note
the results are directly cited from the reported statistics in
their original papers.

Comparison to other state-of-the-art detectors. We fur-
ther evaluate our method against several state-of-the-art
models, including the Two-stream [59], MesoNet [1], Head-
pose [53], FWA [27], VA-MLP [33], Capsule [35], SMIL
[25], Two-branch [32], SPSL [29], MADD [57]. We
train our model on the FF++ dataset and test it on FF++
and CelebDF. Results of some methods are directly cited
from [29]. As shown in Table 4, our method performs
competitively with other models when tested on the FF++
dataset, and it achieves the best performance when tested
on CelebDF, which further validates the effectiveness and
superior generalizability of our method.

4.4. Ablation Study

This section analyzes the effectiveness of adversarial
learning, data augmentation, and self-supervised tasks. We
provide more analyses in our supplementary material.

Adversarial Learning. To validate whether the adversarial
training strategy can improve the generalizability, we con-
duct an ablation study by comparing our methods with the
following variant. (1) Xception [41]: the baseline approach
without using both adversarial learning and self-supervised
learning (2) Xception w/ adv: we add adversarial augmenta-
tion (but not self-supervised learning) to the Xception base-
line. (3) Ours w/ ran: we replace adversarial augmentation
with random augmentation. That is, instead of relying on
the forgery synthesizer to generate configurations, we ran-
domly select configurations to perform augmentation. This
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DF F2F FS NT Avg.LR LT LA DFDC CelebDF DF1.0 DFDC CelebDF DF1.0 DFDC CelebDF DF1.0 DFDC CelebDF DF1.0

✓ ✓ - 0.770 0.686 0.687 0.768 0.714 0.779 0.722 0.709 0.653 0.735 0.720 0.856 0.733
✓ - ✓ 0.763 0.716 0.709 0.760 0.734 0.800 0.776 0.636 0.707 0.724 0.683 0.835 0.737
- ✓ ✓ 0.722 0.685 0.656 0.765 0.733 0.771 0.713 0.698 0.659 0.735 0.709 0.838 0.724
- - - 0.717 0.703 0.674 0.739 0.778 0.735 0.737 0.644 0.602 0.662 0.722 0.794 0.709
✓ ✓ ✓ 0.772 0.730 0.742 0.787 0.781 0.786 0.742 0.800 0.695 0.741 0.759 0.889 0.769

Table 7. Effectiveness of the proposed self-supervised auxiliary tasks. The metric is AUC. We disable the self-supervised task by assigning
a zero weight to the corresponding loss.

variant is used to test if the improvement brought by the ad-
versarial augmentation is from the “adversarial training” or
the “augmentation” or both.

The experimental comparison is shown in Table 5. We
can see that using adversarial augmentation alone (Xcep-
tion w/ adv) can lead to significant (around 4%) improve-
ment over the baseline approach (Xception). This shows
the effectiveness of our adversarial augmentation. We also
observe that if replacing the adversarial augmentation with
random augmentation, the performance of our method leads
to a significant drop. This suggests that adversarial training
is essential for our system.

Data augmentations. We first replace our augmentation
step with general augmentation strategies in [10, 55], which
includes 16 image operations, such as rotation and cutout
[13], and 10 magnitudes. Two augmentation forms are com-
pared. The first one imposes random image operations on
the training dataset (i.e. Ours w/ ran ops); the second uses a
same synthesizer network to select different operations and
magnitudes for different samples, which is similar to the
setting in [55] (i.e. Ours w/ ops [55]). Note the goals of
the detector are to estimate the types of image operation
and their magnitudes in these two settings. We further com-
pare our augmentation strategy with that from [24] and [58]
(i.e. Ours w/ aug [24] and [58]). Both these two methods
suggest synthesizing new forgeries to augment the training
data, where the forgery regions are fixed in the inner faces,
and alpha blending is adopted for all samples in [24] while
Poisson blending is mainly used in [58].

Evaluation results are shown in Table 6. We observe
that strategies with commonly used image operations per-
form less effectively than our method, and the improve-
ments gained from the adversarial training are also subtle
compared to ours. The main reason is that the commonly
used image operations are used for general tasks. They may
be ineffective in our task. In contrast, our augmentation
method is specially designed for deepfake detection, which
is more related to the forgery synthesizing process. Thus, it
is not surprising that our augmentation strategy outperforms
general image operations. Meanwhile, different from the
empirically designed augmentations [24, 58], our augmen-
tation is with multiple forms. With the help of adversarial
training, more diverse samples can be created to improve

the generalization. These advantages explain why our aug-
mentation strategy performs better than [24, 58].

Self-supervised tasks. We seamlessly integrate three auxil-
iary self-supervised tasks to boost the generalizability of our
model. To evaluate the effectiveness of these tasks, we con-
duct ablation studies by assigning zero weight to the loss
corresponds to each of these tasks (i.e. LR, LT , and LA

correspond to the forgery region estimation mask, blend-
ing type estimation task, and the blending ratio estimation
task, respectively). All models are trained on the four meth-
ods of FF++ and evaluated on benchmark datasets using the
same settings. Results are shown in Table 7. We can ob-
serve that each auxiliary task plays a vital role in our frame-
work, where our method performs the best when all three
self-supervised tasks are incorporated. On the other hand,
excluding any of these tasks will decrease the overall per-
formance, and using only the main classification loss lead to
significantly worse performance than others. This validates
the effectiveness of the proposed self-supervised tasks.

5. Conclusions and Discussions
In this paper, we propose a deepfake detection method

that can generalize well in unseen scenarios. Our design is
based on the intuition that a generalizable deepfake detec-
tor should be sensitive to different types of forgeries. We
thus leverage a synthesizer and adversarial training frame-
work to dynamically generate forgeries. Training to iden-
tify those generated forgeries, the network can learn more
robust feature representation and lead to a more generaliz-
able deepfake detector. Through extensive experiments, we
demonstrate the effectiveness of the proposed method.

The major limitation of the current method is that the
augmentation type in the synthesizer is still limited. One
promising direction is to use GAN or other generative mod-
els to directly generate forgery images and create self-
supervised auxiliary tasks. For example, the generated forg-
eries can be controlled by some latent variable and the aux-
iliary task is to predict those latent variables.
Ethic Statement. All face images used in this paper are
adopted from existing works and are properly cited. There
is no violation of personal privacy while conducting exper-
iments in this work.
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