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Abstract

Generative Adversarial Network (GAN)-based model-
s have greatly facilitated image synthesis. However, the
model performance may be degraded when applied to fine-
grained data, due to limited training samples and subtle
distinction among categories. Different from generic GAN-
s, we address the issue from a new perspective of discov-
ering and utilizing the underlying structure of real data
to explicitly regularize the spatial organization of latent s-
pace. To reduce the dependence of generative models on la-
beled data, we propose a semi-supervised hyper-spherical
GAN for class-conditional fine-grained image generation,
and our model is referred to as SphericGAN. By project-
ing random vectors drawn from a prior distribution onto
a hyper-sphere, we can model more complex distributions,
while at the same time the similarity between the resulting
latent vectors depends only on the angle, but not on their
magnitudes. On the other hand, we also incorporate a map-
ping network to map real images onto the hyper-sphere, and
match latent vectors with the underlying structure of real
data via real-fake cluster alignment. As a result, we ob-
tain a spatially organized latent space, which is useful for
capturing class-independent variation factors. The experi-
mental results suggest that our SphericGAN achieves state-
of-the-art performance in synthesizing high-fidelity images
with precise class semantics.

1. Introduction

Generative learning aims to model complex real-world
data distributions, such that high-fidelity data can be synthe-
sized from random vectors drawn from a prior distribution.

∗Corresponding author.
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Figure 1. Illustration of our proposed hyper-spherical latent space.
By match with the prior clusters of real data, the distribution of
latent vectors can be complex, which is useful for capturing the
class-independent variation factors.

The existing generative methods can be roughly divided in-
to three groups: autoregressive models [31, 36], Variation-
al Auto-Encoders (VAE) [21] and Generative Adversarial
Networks (GANs) [14,41]. In particular, GAN-based meth-
ods have achieved impressive performance in synthesizing
high-quality images [9, 10, 17–19, 33]. A variety of condi-
tional GAN architectures have been developed to regularize
the data generation process, such as controlling class se-
mantics of synthesized images [5, 6]. To reduce the depen-
dence of class-conditional GANs on labeled training data,
semi-supervised generative learning focuses on how to in-
corporate unlabeled data in the adversarial training process
[4, 26, 27, 39]. However, most of the current GAN-based
methods are unable to accommodate the fine-grained data
scenarios, since generic real-fake data distribution match-
ing is inadequate to capture the subtle distinctions among
fine-grained classes.

Enlarging the latent space is an effective way to improve
a GAN in capturing the factors of variation in fine-grained
data. FineGAN [34] and MixNMatch [25] adopt hierarchi-
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Figure 2. An overview of SphericGAN. The generator G is divided into two parts {G1, G2}. G1 maps a random vector z onto a hyper-
sphere, andG2 synthesizes a class-specific image xz from the resulting latent vector z◦ = G1(z) and class label yz . A mapping network F
also maps real image x ∈ {xl, xu} in the hyper-spherical latent space, and a latent discriminator is incorporated to facilitate the distribution
matching between z◦ and z◦x = F (x) via adversarial training. Further, a set of latent prototypes P are learnt, and the corresponding latent
clusters are aligned with the prior clusters of real data. The unlabeled data can be well utilized in this unsupervised learning process. On
the other hand, the classifier C is used to assign pseudo labels to unlabeled data. By competing with a prototypical discriminator Dprt and
a class conditional discriminator Dclass, the generator is induced to capture class-independent and class-related variation factors.

cal generator architectures to individually synthesize back-
ground, mask (defines object shape) and object appearance,
which are associated with different latent codes. Due to
the limited expressiveness of the latent codes that are sam-
pled from a prior distribution, StyleGAN [18, 19] adopts a
nonlinear mapping network to map a random vector to a
higher dimensional latent space W , and the resulting vec-
tor is injected into different blocks of a generator to con-
trol the data generation process. In [1], an extended laten-
t space W+ is used to further enhance the generalization
capability of StyleGAN. Different from the above uncondi-
tional GANs, we adopt an unsupervised strategy to learn a
hyper-spherical latent space, which facilitates the learning
of class-independent variation factors as shown in Figure 1.

More specifically, we propose a semi-supervised GAN
with a hyper-spherical latent space for class-conditional
generative learning on fine-grained data, and our mod-
el is referred to as SphericGAN. Compared to the typi-
cal generator-classifier-discriminator model of Triple-GAN
[24], there are two additional components in SphericGAN: a
mapping network and a prototypical discriminator as shown
in Figure 2. In contrast to the existing semi-supervised
GANs that sample latent codes from a pre-defined distri-
bution, such as Gaussian, we learn a hyper-sphere from the
pre-defined space. In our hyper-spherical latent space, the
statistics of resulting latent vectors can be complex, which
is useful for capturing the class-independent variation fac-
tors in real data. Toward this end, we divide the real in-
stances into a set of groups via clustering. After adopting
the mapping network to map real images on the sphere, a set
of prototypes are learnt to associated with the prior cluster-

s. By pushing latent vectors toward the nearest prototypes,
the underlying structure of real data can be captured. On
the other hand, to align the clusters of real and fake data
in semantics, the prototypical discriminator is incorporat-
ed to maximize the mutual information between the syn-
thesized images and the ground-truth cluster code. Exten-
sive experiments are conducted to verify the effectiveness
of our hyper-spherical latent space in improving the class-
conditional synthesis quality of fine-grained data.

We summarize the contributions of this work as fol-
lows: (1) We explore semi-supervised class-conditional
fine-grained image generation from a new perspective:
learning a hyper-spherical latent space to enhance the ca-
pability of a generator in capturing class-independent vari-
ation factors. (2) By incorporating a mapping network to
map real data in the hyper-spherical latent space, the under-
lying data structure is learnt by aligning the latent vectors
with the prior clusters of real instances. (3) A prototypi-
cal discriminator is designed and incorporated in the adver-
sarial training process to further match the clusters of real
and synthesized instances in semantics. (4) We judiciously
design the optimization formulation of all the constituen-
t networks to achieve superior performance over previous
state-of-the-arts on multiple standard benchmarks.

2. Related Work

2.1. Semi-Supervised GANs

Different from generic class-conditional GANs that fo-
cus on supervised generative learning on sufficient labeled
training data, semi-supervised GANs [11,22] are developed
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for the case where training data are only partially labeled.
The amount of unlabeled data is typically much larger than
that of labeled data. To leverage unlabeled data, a number of
methods extended a discriminator for class label prediction.
Springenberg proposed a Categorical GAN (CatGAN) [35],
in which a discriminator played two roles: distinguishing
real samples from fake ones, while at the same time pre-
dicting the class labels of real samples. Based on Cat-
GAN, Salimans et al. [32] explored a variety of GAN train-
ing techniques to stabilize the optimization process, which
leads to better synthesis quality. To improve the distribu-
tion matching between real data and synthesized data, Wei
et al [38] adopted the Wasserstein distance [2], and imposed
a consistency regularization on the discriminator to ensure
the property of local Lipschitz continuity. Due to the fac-
t that the two roles of the discriminator may conflict with
each other to a certain extent, another strategy is to incorpo-
rate an additional classifier in the adversarial training pro-
cess. Li et al. [24] proposed a Triple GAN (TripleGAN)
to jointly optimize a generator, a classifier and a discrim-
inator. The classifier aims to deceive the discriminator by
inferring the class labels of unlabeled data to as accurate-
ly an extent as possible. Further, Gan et al. [13] proposed
a triangle GAN (∆-GAN) to incorporate an additional dis-
criminator to identify unlabeled data and synthesized data.
Wu et al. [39] enhanced TripleGAN by performing feature-
semantics matching. Liu et al. [26,27] utilized the operation
of random regional replacement to construct difficult real-
fake instances to enhance the capability of both discrimina-
tor and classifier. To improve the downstream classification
task, Dong et al. [12] modified TripleGAN by encouraging
the generator to synthesize difficult samples, such that deci-
sion boundaries were regularized in low-density regions.

2.2. Fine-Grained Generative Models

Compared to generic image generation, synthesizing
fine-grained images is more challenging due to subtle inter-
class distinctions, and has not been extensively explored so
far [4]. The scale of fine-grained datasets is typically smal-
l, due to the reason that the cost of data collection is high
and extensive expertise is required to annotate the data. For
training a generator in this case, Bao et al. [3] combined
VAE and GAN to stabilize model training. To capture the
factors of variation, Yang et al. [40] proposed a Layered
Recursive GAN (LR-GAN) to generate the parts of back-
ground and foreground independently. To control the se-
mantics of synthesized images, Chen et al. [8] developed an
Information maximizing GAN (InfoGAN) to associate la-
tent codes with semantic attributes in an unsupervised man-
ner. Based on InfoGAN, Singh et al. [34] designed a hier-
archical generator architecture to disentangle background,
object shape and appearance, and the resulting model was
referred to as FineGAN. Li et al. [25] further extended Fine-

GAN for encoding the attributes of reference images and
transferring them to synthesized images. To simplify the
model design and training procedure, Chen et al. [7] pro-
posed a Single-Stage Controllable GAN (SSC-GAN) to as-
sociate the variation factors with different latent codes.

We focus on class-conditional fine-grained image syn-
thesis in semi-supervised scenarios. There are fundamen-
tal differences between our proposed SphericGAN and the
above works. To improve the expressiveness of latent codes,
StyleGAN adopts a nonlinear mapping to obtain a high-
dimensional latent space, which is a black box during train-
ing, while we learn a hyper-spherical latent space, and ex-
plicitly organize latent vectors by matching with the real da-
ta structure. By aligning with the prior clusters of real data,
the latent clusters are associated with well-defined seman-
tics. This is the first attempt to discover class-independent
variation factors in class-conditional data synthesis.

3. Methodology

In semi-supervised scenarios, the training data is composed
of a small amount of labeled data XL = {(xl, yl)} and a
large amount of unlabeled data XU = {xu}, i.e. |XL| �
|XU|. The proposed SphericGAN consists of a classifier
C, a generatorG, three discriminators {Dlat, Dprt, Dclass}
and a mapping network F . C learns to assign pseudo label
ỹu = one-hot(C(xu)) to xu as accurately as possible.
G is divided into two parts {G1, G2}: G1 maps a random
vector z to a hyper-spherical latent space, and G2 synthe-
sizes images xz from the latent code z◦ = G1(z) together
with a random class label yz , i.e. xz = G2(z◦, yz). F map-
s real images in the hyper-spherical latent space, and Dlat

distinguishes the resulting latent vectors z◦x = F (x) from
z◦, where x ∈ XL ⋃XU. In addition, Dprt and Dclass

are trained to identify real and synthesized images uncon-
ditionally and conditioned on class label, respectively. We
provide the design of the components and the optimization
formulation in the following subsections.

3.1. Hyper-spherical Latent Space

3.1.1 Latent Clusters

Latent space typically encodes rich semantic information.
To model a complex distribution in our hyper-spherical
latent space, we aim to learn K latent prototypes P =
{P1,P2, . . . ,PK} in an unsupervised manner. For each
latent vector, the nearest prototype is determined only by
their angle, and the cosine function is thus used as the sim-
ilarity measure. We compute the probability distribution
ϕ(z◦) = [ϕ(z◦)(1), ϕ(z◦)(2), . . . , ϕ(z◦)(K)] of z◦ belong-
ing to latent clusters as follows:

ϕ(z◦)(i) =
exp(cos(z◦,Pi))∑
k exp(cos(z◦,Pk))

. (1)
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To perform clustering over latent vectors, we formulate the
corresponding training loss as follows:

Lclust
lat = Ez[−ϕ(z◦) logϕ(z◦)]− λϕI logϕz, (2)

where λ is a weighting factor, ϕI denotes a uniform dis-
tribution, and ϕz represents the mean prediction of latent
vectors. Minimizing Lclust

lat encourages the prototypes to
move to the high-density regions, while at the same time
maintaining the balance of the clusters.

To ensure that the images synthesized from the laten-
t vectors belonging to the same cluster hold similar se-
mantics, we incorporate a prototypical discriminator Dprt,
which consists of a representation learning backbone and
two heads: One head infers cluster labels, and the other i-
dentifies real and synthesized instances. We define an eval-
uation loss over the cluster predictions as follows:

Leval
lat = Ez[−one-hot(ϕ(z◦)) logDPprt(xz)], (3)

where DPprt(·) denotes the predicted cluster probability dis-
tribution. The mutual information between cluster label and
synthesized data is maximized by minimizing Leval

lat .

3.1.2 Aligning Real-fake Clusters

To discover the class-independent variation factors, we em-
ploy a deep clustering algorithm [16] to identify groups of
similar real instances and obtain prior clusters. Let ρx de-
note the prior cluster label of real instance x. To induce
the generator to capture the real data structure, we adopt
the mapping network F to map real instances in the hyper-
spherical latent space, and z◦x denotes the resulting latent
vectors. A latent discriminator Dlat is incorporated to i-
dentify the latent vectors produced by F and G1. On the
other hand, F and G1 cooperate to deceive Dlat, and the
adversarial training loss function is defined as follows:

Ladv
lat = Ex[log(1−Dlat(z

◦
x))] + Ez[logDlat(z

◦)], (4)

where Dlat(·) denotes the predicted probability of a latent
vector being generated by G1. The competition with Dlat

enforces F and G1 to match the distributions of the two
types of latent vectors.

It is non-trivial to induce F to focus on the class-
independent attributes. To address this issue, we impose a
cycle consistency regularization on F , and the correspond-
ing loss function is formulated as follows:

Lcons
lat = Ex[‖z◦x − F (G2(z◦x, y))‖1], (5)

where y denotes the class label of x. We encourage F to
encode the class-independent information.

To match the underlying structure of real data, we align
the latent clusters with the prior clusters of real data, and

thus require the prototypical discriminatorDprt to correctly
predict ρx, conditioned on the instance synthesized from
z◦x. We evaluate the prediction results on both original real
instances and synthesized instances as follows:

Lalign
lat = Ex[−ρx logDPprt(x)− ρx logDPprt(G2(z◦x, y))]. (6)

As a result, we not only explicitly model the real data struc-
ture in the hyper-spherical latent space, but also associate
the latent clusters with the semantics that are held by the
prior clusters of real data.

3.2. Model Optimization

To induce G to synthesize high-fidelity images, we in-
corporate the prototypical discriminator Dprt and the class-
conditional discriminator Dclass. Both of them are trained
to distinguish real instances from fake ones, and the adver-
sarial training loss function is formulated as follows:

Ladv
data = Ex[logDidt

prt(x) + logDclass(x, y)]

+ Ez[log(1−Didt
prt(xz)) + log(1−Dclass(xz, yz))],

(7)

where Didt
prt(·) (Dclass(·, ·)) represents the predicted proba-

bility of an input being from real data (conditioned on class
label). In the competition with G, Dclass plays an impor-
tant role in matching class-conditional distributions of real
and synthesized data. However, there are limited labeled
data per class in our case. To utilize unlabeled data, Dprt is
incorporated for marginal distribution matching.

On the other hand, Dprt and Dclass aim at real-fake in-
stance identification, and thus overlook the class separabil-
ity of synthesized data. Considering that the classifier C
is able to extract the most discriminative features to infer
class label, our motivation is to employ C to verify the syn-
thesized images in terms of class semantics. In addition to
the synthesized data, C is also trained on real data, and the
training loss function is defined as follows:

Leval
data = Exl [−yl logC(xl)] + Exu [−C(xu) logC(xu)]

+ µEz[−yz logC(xz)],
(8)

where C(·) denotes the predicted class probability distribu-
tion, and µ represents a weighting factor. For the unlabeled
data, C is encouraged to provide high-confident predictions
via posterior entropy minimization.

By integrating the training loss functions in the above
three aspects: latent space regularization, data generation
and semantic verification, the optimization formulation of
our SphericGAN is expressed as follows:

min
P,G,F

max
Dlat,Dprt

Lclust
lat + Leval

lat + Ladv
lat + Lalign

lat + νLcons
lat ,

min
G,C

max
Dprt,Dclass

Ladv
data + Leval

data,

(9)
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where ν denotes a weighting factor. We consider that in-
corporating P is helpful for modeling a complex distribu-
tion, aligning real and fake clusters aims to capture class-
independent variation factors, competing with Dprt and
Dclass leads to better synthesized image fidelity, and the
guidance of C is useful for capturing the subtle distinctions
among fine-grained classes. All the components of Spheric-
GAN are jointly optimized, and we summarize the training
process in Algorithm 1.

Algorithm 1 Pseudo-code of training our SphericGAN.

1: Input: Labeled data XL and unlabeled data XU.
2: Initialize: Generator G, mapping network F , discriminators
{Dlat, Dprt, Dclass}, classifierC, latent prototypesP , learn-
ing rates {γ, ε}, and number of training epochs T .

3: for t = 1 to T do
4: for each mini-batch do
5: Sample vectors z ∼ p0, and synthesize latent codes z◦

and instances (xz, yz).
6: Sample labeled instances (xl, yl) from XL, unlabeled

instances xu from XU.
7: Optimize P by using Adam [20]:

P ← Adam(∇(Lclust
lat + Leval

lat ),P, γ).
8: Optimize F by using Adam:

θF ← Adam(∇(Ladv
lat + Lalign

lat + νLcons
lat ), θF , γ).

9: Optimize {Dlat, Dprt, Dclass} by using Adam:
θlatD ← Adam(∇Ladv

lat , θ
lat
D , γ),

θprtD ← Adam(∇(Leval
lat + Lalign

lat + Ladv
data), θprtD , γ),

θclassD ← Adam(∇Ladv
data, θ

class
D , γ),

10: Optimize G by using Adam:
θG ← Adam(∇(Ladv

lat +Lalign
lat +Ladv

data +Leval
data), θG, γ).

11: Optimize C by using stochastic gradient descent (SGD):
θC ← SGD(∇Leval

data, θC , ε),
12: end for
13: end for
14: Return θG, θF , {θlatD , θprtD , θclassD }, θC and P .

4. Experiments
We assess the generation performance of our proposed

SphericGAN on multiple standard benchmarks. In addition
to the comparison with state-of-the-art generic GANs and
semi-supervised GANs, we also conduct extensive experi-
ments for model analysis and explanatory visualization.

4.1. Datasets and Settings

Benchmarks. The experiments are conducted on di-
verse fine-grained benchmarks: CUB-200 [37] contains
about 6K training images and 6K testing images from 200
fine-grained bird categories. FaceScrub-100 [39] is a hu-
man facial image dataset, and contains 13K training images
and 2K test images from the largest 100 classes of Face-
Scrub [30]. In Stanford-Cars [23], there are 8K/8K train-
ing/testing images from 196 categories.

Semi-superviesed Settings. To comply with the
semi-supervised setting of competing methods, there are
2.8K/2K/4K randomly selected labeled data for CUB-
200/FaceScrub-100/Stanford-Cars. The amount of labeled
data is limited by the smallest classes when maintaining
the balance among the classes. For CUB-200/FaceScrub-
100/Stanford-Cars, 14/20/20 images per class are labeled,
and the value of the labeled image is close to 0.5/0.2/0.5.

Implementation Details. All constituent networks are
trained from scratch, and the number of training epochs is
set to 500. We adopt the Adam optimizer [20] with the
learning rate γ = 0.0002 and the momentum parameters
of (β1 = 0.5, β2 = 0.999) (SGD with ε = 0.001 for the
classifier). The weighting factors λ in Eq.(2), µ in Eq.(8)
and ν in Eq.(9) are set to 4.0, 5.0 and 0.01, respectively.

Baseline Model. To illustrate the effectiveness of our
improvement strategies, we build a baseline model by dis-
abling the prototype-related components. Note that the
baseline model is still comparable with SphericGAN in
terms of model capacity.

Evaluation Metrics. The synthesized images are evalu-
ated by the following four metrics: Fréchet Inception Dis-
tance (FID) [15], class-wise FID (cFID), Inception Score
(IS) [32] and Recognition Accuracy (RA). Both FID and
IS have been widely used to evaluate the performance of
GAN-based methods. cFID is used to indicate how closely
the real and synthesized data match with each other in each
class. RA is assessed by an independent classifier, which is
pre-trained with full supervision on each test dataset.

4.2. Quantitative Results

We conduct a number of quantitative experiments to as-
sess the proposed SphericGAN, followed by comparison
with a number of state-of-the-art GAN-based models in
view of the availability of open-source codes. For a fair
comparison, we implement our SphericGAN without any
advanced GAN training strategies.

Comparison with Baseline. To highlight the effective-
ness of our hyper-spherical latent space together with the
corresponding regularizers in improving the quality of im-
age synthesis, we first compare SphericGAN with the base-
line model at different semi-supervised scenarios. Let τ de-
note the ratio of labeled data to all the training data. We con-
duct a series of experiments on CUB-200 and FaceScrub-
100 by setting τ to 0.2, 0.3, 0.4, 0.5 and 1.0. The results
shown in Figure 3 suggest that our strategies can lead to
consistent improvement in all the cases.

Relative Contributions. We investigate the relative con-
tributions of our adopted improvement strategies to the syn-
thesis quality. The experiment is conducted on the repre-
sentative dataset of CUB-200. We progressively enhance
the baseline model by incorporating the following strate-
gies one by one: latent clustering, semantic verification of
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Figure 3. Comparison with the baseline model at different levels
of supervision on CUB-200 (left) and FaceScrub-100 (right).

Table 1. Improvement over the baseline model on CUB-200. ‘LC’
indicates latent clustering, ‘SV’ indicates semantic verification of
synthesized data, and ‘CA’ indicates real-fake cluster alignment.

Method LC SV CA FID↓ cFID↓ IS↑ RA↑

Baseline

79.12 186.48 4.34±.05 9.40
X 50.20 165.23 4.39±.03 9.88
X X 30.15 115.35 4.60±.03 92.04
X X X 18.87 103.35 5.03±.05 98.46

Improvement - - - -60.25 -83.13 +0.69 +89.06

synthesized data, and real-fake cluster alignment. We as-
sess the synthesis quality of the resulting models in terms of
FID/cFID/IS/RA in Table 1. The results confirm the effec-
tiveness of latent clustering and real-fake cluster alignment
in improving the synthesized image fidelity. On the oth-
er hand, semantic verification of synthesized data plays an
important role in inducing the generator to capture precise
class semantics, since the improvement reaches about 50/82
(percentage) points in cFID/RA. Figure 4 shows representa-
tive synthesized images of the baseline model and variants.
We can observe that the synthesis quality is improved pro-
gressively as the improvement strategies applied.

Comparison with Unconditional GANs. We compare
our SphericGAN with representative unconditional GANs:
SN-GAN [29], StyleGAN2 [19], FineGAN [34] and MixN-
Match [25]. StyleGAN2 serves as a state-of-the-art generic
image synthesis model. FineGAN and MixNMatch are de-
veloped for modeling fine-grained data. Note that the train-
ing images of the unconditional GANs are the same as the
proposed approach, but the class labels of labeled samples
are not included. The results are summarized in Table 2. We
can make the following observations: SN-GAN significant-
ly underperforms other competing methods. We consider
that the GAN architecture is one of the important factors.
The performance of FineGAN is comparable with that of
MixNMatch, and StyleGAN2 performs better than both of
them on CUB-200. Our proposed SphericGAN is able to
outperform StyleGAN2 by about 7, 3 and 7 points in FID
on the three datasets, respectively.

Comparison with Class-conditional GANs. Fur-
thermore, we compare our SphericGAN with the exist-
ing semi-supervised generative models, including Triple-

Figure 4. Representative images synthesized by the baseline mod-
el and variants on CUB-200.

GAN [24], EnhancedTGAN [39], ∆-GAN [13], R3-CGAN
[26] and SSC-GAN [7]. All the competing models are
trained in the same semi-supervised setting. Table 2
shows that SSC-GAN achieves the previous state-of-the-
art results, and our SphericGAN improves the result-
s from 20.03/20.65/39.02 to 18.87/18.84/35.69 on CUB-
200/FaceScrub-100/Stanford-Cars in FID. We believe that
our hyper-spherical latent space and the cluster-based regu-
larization contribute to the superior performance, since both
SphericalGAN and SSC-GAN are based on the network ar-
chitectures of FineGAN. In addition, we report the results
of the fully supervised BigGAN [5], which serves as a state-
of-the-art generic class-conditional GAN. We find that the
generation performance of our SphericGAN is comparable
with that of BigGAN on CUB-200 and FaceScrub-100.

4.3. Qualitative Results

Real-fake Clusters. In the training process of Spheric-
GAN, we encourage latent vectors to move toward the near-
est prototypes, and further match the resulting latent cluster-
s with the clusters of real images. It is interesting to investi-
gate whether a latent cluster is consistent with the matched
cluster in semantics. In Figure 5, we show a number of real
and synthesized images in three representative clusters on
each test dataset. On both CUB-200 and Stanford-Cars, the
clusters capture the factors of object shape. Since the fa-
cial images in FaceScrub-100 are cropped and aligned well,
the clusters are associated with the factor of face pose. We
apply SphericGAN to generate images with the same class
label and different latent code z◦ (belong to the three la-
tent clusters, respectively). The synthesized images hold
class-independent semantics similar to the real ones. In ad-
dition, we visualize the distributions of the synthesized im-
ages from z◦ and real images associated with 5 latent clus-
ters via the t-SNE embedding [28] of the prototypical dis-
criminator features, and Figure 6 shows that the statistics of
the two types of data are matched.
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Table 2. Comparison between SphericGAN and state-of-the-art unconditional/class-conditional GANs in fine-grained image synthesis. ∗
indicates that an unconditional GAN is trained on the same data as semi-supervised GANs, without using the class labels of labeled data.

CUB-200 FaceScrub-100 Stanford-Cars

Method FID↓ IS↑ RA↑ FID↓ IS↑ RA↑ FID↓ IS↑ RA↑

Unconditional GANs
SN-GAN∗ [29] 160.09 4.21±0.05 - 41.26 1.66±0.05 - 53.20 2.80±0.05 -
FineGAN∗ [34] 46.68 4.62±0.03 - 24.63 1.76±0.02 - 45.72 2.85±0.04 -
MixNMatch∗ [25] 45.59 4.78±0.08 - 25.63 1.71±0.05 - 45.94 2.60±0.05 -
StyleGAN2∗ [19] 25.58 4.12±0.07 - 22.14 1.84±0.04 - 42.35 2.98±0.06 -

Semi-supervised GANs
Triple-GAN [24] 140.94 3.94±0.06 9.35 91.05 1.45±0.03 36.21 114.12 2.45±0.06 4.43
EnhancedTGAN [39] 133.57 4.17±0.03 9.16 57.58 1.57±0.02 62.69 105.20 2.43±0.05 3.48
∆-GAN [13] 96.42 4.36±0.05 9.01 35.49 1.71±0.04 94.99 61.44 2.77±0.10 4.74
R3-CGAN [26] 88.62 4.43±0.06 8.60 25.28 1.73±0.02 74.30 44.57 3.05±0.04 5.48
SSC-GAN [7] 20.03 4.68±0.04 97.85 20.65 1.82±0.03 96.86 39.02 3.10±0.03 87.45

Baseline 79.12 4.34±0.05 9.40 31.60 1.71±0.03 86.23 53.34 2.89±0.05 7.32
SphericGAN 18.87 5.03±0.05 98.46 18.84 1.93±0.04 96.99 35.69 3.22±0.03 88.80

Full supervised GAN
BigGAN [5] 22.57 5.36±0.07 - 15.51 1.84±0.01 - 32.45 3.26±0.02 -

Real images Fake images

Clust. 1

Clust. 2

Clust. 3

Clust. 1

Clust. 2

Clust. 3

Clust. 1

Clust. 2

Clust. 3

Real images Fake images

Clust. 1

Clust. 2

Clust. 3

Clust. 1

Clust. 2

Clust. 3

Clust. 1

Clust. 2

Clust. 3

Figure 5. Visualization of three representative clusters on real and
fake images. Fake images are synthesized by varying class label y
in each column.

Spherical Interpolation. To explore the continuity and
smoothness of the hyper-spherical latent space, we apply
spherical interpolation between paired latent vectors and
synthesize new images with the interpolated vectors. In the
experiment, we sample a latent prototype and two different

(a) Real instances (b) Fake instances

Figure 6. The t-SNE plot of synthesized and real instances associ-
ated with 5 latent clusters, which are marked in different colors.

latent vectors, and determine a spherical interpolation path,
from the first latent vector through the latent prototype and
finally to the other latent vector. By fixing class label, the
synthesized images along the path hold the same class se-
mantics. Each example shown in Figure 7 reveals a smooth
transformation, which suggests that the hyper-spherical la-
tent space encodes rich information on class-independent
semantics.

Visual Comparison. In addition to the quantitative eval-
uation in the previous subsection, we also visually compare
our SphericGAN with two popular GANs: BigGAN and
StyleGAN2. In Figure 8, we show the images synthesized
by SphericGAN and BigGAN on a number of classes. By
comparing with the given real images, we find that Spher-
icGAN is able to capture precise class semantics as well as
BigGAN. Since StyleGAN2 is an unconditional generative
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Figure 7. Visualization of interpolation paths in the hyper-spherical latent space. The red boxes indicate the images synthesized from a
starting latent vector, a latent prototype and an end latent vector.

(a) Fully supervised BigGAN (b) Semi-supervised SphericGAN (c) Real

Figure 8. Representative images synthesized by BigGAN and SphericGAN on CUB-200, FaceScrub-100 and Stanford-Car.

Figure 9. Visual comparison between StyleGAN2 and our pro-
posed SphericGAN.

model, the class labels of the synthesized images cannot be
specified, and we thus select the most similar results for
comparison. The representative synthesized images shown
in Figure 9 demonstrate that the image fidelity of Spheric-
GAN is higher than that of StyleGAN2.

5. Conclusion

Compared to generic image synthesis, it is more chal-
lenging to synthesize class-specific fine-grained data, due
to limited training data and subtle inter-class distinctions.
In this paper, we present SphericGAN, a semi-supervised
hyper-spherical GAN for this task. To better capture class-
independent variation factors, we learn a hyper-spherical la-
tent space, in which we group latent vectors to match the
underlying structure of real data. The latent clusters are fur-
ther associated with semantics by aligning with the prior
clusters of real instances. Since the label information is not
required in this process, the unlabeled data can be well u-
tilized, which eventually benefits the synthesis quality. In
the experiments, we demonstrate the superior performance
of SphericGAN in fine-grained image synthesis.
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