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Abstract

Mixup-based augmentation has been found to be effec-
tive for generalizing models during training, especially for
Vision Transformers (ViTs) since they can easily overfit.
However, previous mixup-based methods have an underly-
ing prior knowledge that the linearly interpolated ratio of
targets should be kept the same as the ratio proposed in in-
put interpolation. This may lead to a strange phenomenon
that sometimes there is no valid object in the mixed image
due to the random process in augmentation but there is still
response in the label space. To bridge such gap between the
input and label spaces, we propose TransMix, which mixes
labels based on the attention maps of Vision Transformers.
The confidence of the label will be larger if the correspond-
ing input image is weighted higher by the attention map.
TransMix is embarrassingly simple and can be implemented
in just a few lines of code without introducing any extra pa-
rameters and FLOPs to ViT-based models. Experimental
results show that our method can consistently improve var-
ious ViT-based models at scales on ImageNet classification.
After pre-trained with TransMix on ImageNet, the ViT-based
models also demonstrate better transferability to semantic
segmentation, object detection and instance segmentation.
TransMix also exhibits to be more robust when evaluating
on 4 different benchmarks. Code is publicly available at
https://github.com/Beckschen/TransMix.

1. Introduction
Transformers [42] have been dominant in nearly all tasks

in natural language processing. Recently, transformer-
based architectures like Vision Transformer (ViT) [12] have
been introduced into the field of computer vision and show
great promise on tasks like image classification [12, 13,
30, 40], object detection [48, 30, 15] and image segmenta-
tion [48, 30, 37]. However, recent works have found that
ViT-based networks are hard to optimize and can easily
overfit if the training data is not sufficient. A quick solu-
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Figure 1. Mixup [54] and CutMix [53] samples λ (proportion of
label yA) randomly from a Beta distribution, while our TransMix
calculates λ with the sum of the values within the attention map
that intersects with A (denoted as AttnA, rendered in blue).

tion to this problem is to apply data augmentation and reg-
ularization techniques during training. Among them, the
mixup-based methods like Mixup [54] and CutMix [53] are
proven to be particularly helpful for generalizing the ViT-
based network [39].

Mixup takes a pair of inputs xA,xB and their corre-
sponding labels yA,yB , then creates an artificial training
example λxA + (1 − λ)xB with λyA + (1 − λ)yB as its
ground truth. Here λ ∈ [0, 1] is the random mixing pro-
portion sampled from a Beta distribution. This pre-assumes
that linear interpolations of feature vectors should lead to
linear interpolations of the associated targets.

However, we argue that the above pre-assumption does
not always stay true since not all pixels are created equal.
As shown in Figure 1, pixels in the background will not con-
tribute to the label space as equally as those in the salient
area. Some existing works [45, 41, 28] also find this prob-
lem and solve it by means of only mixing the most descrip-
tive parts on the input level. Nevertheless, manipulating
on inputs with the above methods may narrow the space
of augmentation since they tend to less consider to put the
background image into the mixture. Meanwhile, the above
methods cost more number of parameters and/or training
throughput to extract the salient region of input. For exam-
ple, Puzzle-Mix [28] requires model to forward and back-
ward twice in an iteration and Attentive-Cutmix [45] intro-
duce a 24M external CNN to extract salient features.

Instead of investigating how to better mix images on the
input level, in this paper, we focus more on how to mild the
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Figure 2. TransMix can steadily improve a wide range of state-
of-the-art ViT-based models on ImageNet with no parameter and
minimal computation overhead. See results for more model vari-
ants in Table 1.

gap between the input and the label space through the learn-
ing of label assignment. We find that the attention maps that
are naturally generated in Vision Transformers can be well
suited for this job. As shown in Figure 1, we simply set λ
(weight of yA) as the sum of weights of attention map lying
in A. In this way, the labels are re-weighted by the signifi-
cance of each pixel instead of linearly interpolated with the
same ratio as the mixed inputs. Since the attention map is
naturally generated in ViT-based models, our method can
be merged into the their training pipeline with no extra pa-
rameters and minimal computation overhead.

We show that such frustratingly simple idea can lead to
consistent and remarkable improvement for a wide range
of tasks and models. As exhibited in Fiugre 2, TransMix
can steadily boost all the listed ViT-based models. Notably,
TransMix can further lift the top-1 accuracy on ImageNet
by 0.9% for both DeiT-S and a large variant XCiT-L. Inter-
estingly, the largest model XCiT-L gains the most among
all XCiT model scales.

Moreover, we demonstrate that if the model is first pre-
trained with TransMix on ImageNet, the superiority can
be further transferred onto downstream tasks including ob-
ject detection, instance segmentation, semantic segmenta-
tion and weakly-supervised object segmentation/localiza-
tion. We also observe that TransMix can help the model
to be more rubust after evaluating it on 4 different bench-
marks.

2. Related Work

Vision Transformers (ViTs). Recently, Vision Trans-
former (ViT) [12] was proposed to adapt the Transformer
for image recognition by tokenizing and flattening images
into a sequence of tokens. ViT is based on a sequence of
Transformer blocks consisting of multi-head self attention
layers and feed-forward networks. DeiT [39] strengthens
ViT by introducing a powerful training recipe and adopting
knowledge distillation. Built upon the success of ViT, many
efforts have been devoted to improving ViT and adapt-
ing it into various vision tasks including image classifica-
tion [39, 40, 13, 50, 24, 30, 18], object localization/detec-
tion [16, 48, 30, 15] and image segmentation [48, 30, 37, 5].

Mixup and its variants. Data augmentation has been
widely studied to prevent DeepNets from over-fitting to the
training data. To train and improve vision Transformer sta-
bly, Mixup and CutMix are two of the most helpful augmen-
tation methods [39]. Mixup [54] is a successful image mix-
ture technique that obtains an augmented image by pixel-
wisely weighted combination of two global images. The
following Mixup variants [44, 36, 17, 22, 53, 45, 41, 28] can
be categorized into global image mixture (e.g. Manifold-
Mixup [44], Un-Mix [36]) and regional image mixture (e.g.
CutMix [53], Puzzle-Mix [28], Attentive-CutMix [45] and
SaliencyMix [41]). Among all Mixup variants, the saliency-
based methods including the attentive-CutMix, puzzle-Mix
and saliency-CutMix are the most similar ones to our ap-
proach. However, TransMix has two fundamental differ-
ences with them: (1) Previous saliency-based methods e.g.
[28, 45, 41] enforce the image patch cropped in a salient re-
gion of the input image. Instead of manipulating in the in-
put space, our TransMix focuses on how to more accurately
assigning labels in the label space. (2) Previous saliency-
based methods like [45] may use extra parameters to extract
the saliency region. TransMix naturally exploits the Trans-
former’s attention mechanism without any extra parameters.
Experimental results also show that TransMix can lead to
better results on ImageNet compared with these methods.

Data-adaptive loss weight assignment. TransMix re-
assigns the ground truth labels with attentional guidance,
which is related to data-adaptive loss weight assignment.
Some existing works have found that the attention-like in-
formation can help to alleviate the long-tail problems for
tasks like point cloud analyzing [31], instance segmentation
[47], image demosaicing [38] etc.

3. TransMix

3.1. Setup and Background

CutMix data augmentation CutMix is a simple data
augmentation technique combining two input-label pairs
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(xA,yA) and (xB ,yB) to augment a new training sample
(x̃, ỹ). Formulaically,

x̃ = M⊙ xA + (1−M)⊙ xB , (1)
ỹ = λyA + (1− λ)yB , (2)

where M ∈ {0, 1}HW denotes a binary mask indicating
where to drop out and fill in from two images, 1 is a binary
mask filled with ones, and ⊙ is element-wise multiplication.
λ is the proportion of yA in the mixed label.

During augmentation, a randomly sampled region in xB

is removed and filled in with the patch cropped from A of
xA, where the patch’s bounding box coordinates are uni-
formly sampled as (rx, ry, rw, rh). The mixed-target as-
signment factor λ is equal to the cropped area ratio rwrh

WH .

Self-attention Self-attention, as introduced by [43], oper-
ates on an input matrix x ∈ RN×d, where N is the number
of tokens, each of dimensionality d. The input x is lin-
early projected to queries, keys and values, using the weight
matrices wq ∈ Rd×dq , wk ∈ Rd×dk and wv ∈ Rd×dv ,
such that q=xwq , k=xwk and v=xwv , where dq = dk.
Queries and keys are used to compute an attention map
A(q,k) = Softmax(qk⊤/

√
dk) ∈ RN×N , and the out-

put of the self-attention operation is defined as the weighted
sum of N token features in v with the weights correspond-
ing to the attention map: Attention(q,k,v) = A(q,k)v.
Single-head self-attention can be extended to multi-head
self-attention by linearly projecting the queries, keys and
values g times with different, learned linear projections to
dk, dk and dv dimensions, respectively.

3.2. TransMix

We propose TransMix to assign mixup labels with the
guidance of attention map, where the attention map is de-
fined specifically as the multi-head class attention A,
which is calculated as a part of self-attention. In the classifi-
cation task, a class token is a query q whose corresponding
keys k are the all input tokens, and class attention A is the
attention map from the class token to the input tokens, sum-
marizing which input tokens are the most useful to the final
classifier. We then propose to use the class attention A to
mix labels.

Multi-head Class Attention Vision Transformers
(ViTs)[12] divide and embed an image x ∈ R3×H×W to
p patch tokens xpatches ∈ Rp×d, and aggregate the global
information by a class token xcls ∈ R1×d, where d is
the dimension of embedding. ViTs operate on the patch
embedding z = [xcls,xpatches] ∈ R(1+p)×d.

Given a Transformer with g attention heads and input
patch embedding z, we parametrize the multi-head class-
attention with projection matrices wq , wk ∈ Rd×d. The

class attention for each head can be formulated as:

q = xcls ·wq, (3)
k = z ·wk, (4)

A′ = Softmax(q · k⊤/
√

d/g), (5)
A = {A′

0,i, | i ∈ [1, p]}, (6)

where q · k⊤ ∈ R1×(1+p) indicates the class token is
a query whose corresponding keys are the all input tokens,
and A ∈ [0, 1]p is the attention map from the class token to
the image patch tokens, summarizing which patches are the
most useful to the final classifier. When there are multiple
heads in the attention, we simply average across all atten-
tion heads to obtain A ∈ [0, 1]p. In implementation, A in
Eqn. (6) is available as an intermediate output from the last
Transformer block without architecture modification.

Mixing labels with the attention map A We follow the
process of input mixture proposed in CutMix, which is de-
fined in Eqn. (1), then we re-calculate λ (the proportion of
yA in Eqn. (2)) with the guidance of the attention map A:

λ = A· ↓ (M). (7)

Here ↓ (·) denotes the nearest-neighbor interpolation down-
sampling that can transform the original M from HW into
p pixels . Note that we omit the dimension unsqueezing in
Eqn. (7) for simplicity. In this way, the network can learn
to re-assign the weight of labels for each data point dynam-
ically based on their responses in the attention map. The
input that is better focused by the attention map will be as-
signed with a higher value in the mixed label.

3.3. Pseudo-code

Algorithm 1 provides the pseudo-code of TransMix in a
pytorch-like style. The clean pseudo-code shows that sim-
ply few lines of code can boost the performance in the plug-
and-play manner.

4. Experiments
In this section, we mainly demonstrate the effectiveness,

transferability, robustness, and generalizability of Trans-
Mix. We verify the effectiveness of TransMix on ImageNet-
1k classification in Section 4.1 and the transferability onto
downstream tasks including semantic segmentation, object
detection, and instance segmentation in Section 4.2. The
robustness of TransMix is examined on 4 benchmarks in
Section 4.3. Interestingly, we discover the mutual effects
of TransMix and attention in Section 4.4. We validate the
generalizability to Swin Transformer which is lacking class-
token in Section 4.5. Lastly, TransMix is compared with the
state-of-the-art Mixup augmentation variants in Section 4.6.
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Algorithm 1 Pseudocode of TransMix in a PyTorch-like style.

# H, W: the height and width of the input image
# p: number of patches
# M: 0-initialized mask with shape (H,W)
# downsample: downsample from length (H*W) to (p)
# (bx1, bx2, by1, by2): bounding box coordinate

for (x, y) in loader: # load a minibatch with N pairs
# CutMix image in a minibatch
M[bx1:bx2, by1:by2] = 1
x[:,:,M==1] = x.flip(0)[:,:,M==1]
M = downsample(M.view(-1))

# attention matrix A: (N, p)
logits, A = model(x)

# Mix labels with the attention map
lam = matmul(A, M)
y = (1-lam) * y + lam * y.flip(0)

CrossEntropyLoss(logits, y).backward()

4.1. ImageNet Classification

Implementation Details We use ImageNet-1k [11] to
train and evaluate our methods for image classification.
ImageNet-1k consists of 1.28M training images and 50k
validation images, labeled across 1000 semantic categories.
The implementation is based on the Timm [49] library. Un-
less specified otherwise, we make minimal changes to hy-
perparameters compared to the DeiT [39] training recipe.
We examined various baseline vision Transformer models
including DeiT [39], PVT [48], CaiT [40], and XCiT [13],
and the training schemes will be slightly adjusted to the of-
ficial papers’ implementations.

All Transformers are trained for 300 epochs expect that
(author?) [13] and (author?) [40] report 400 epochs for
XCiT and CaiT respectively. As deploying DeiT [39] train-
ing scheme, all baselines have already contained the care-
fully tuned regularization methods including RandAug [10],
Stochastic Depth [26], Mixup [54] and CutMix [53]. To
ease implementation, TransMix shares the same cropped
region with CutMix for the input, whereas the label assign-
ment is the mean of both methods. We throw away repeated
augment [25] due to its negative effects examined in [24].
We set warmup epoch to 20 expect DeiT-B keeping 5. The
accuracy of our baseline implementation fluctuates only by
±0.1% compared with results reported in DeiT [39]. The
attention map A in Eqn. 6 can be obtained as an interme-
diate output from the multi-head self-attention layer of the
last Transformer block.

Results As shown in Table 1, TransMix can steadily boost
the top-1 accuracy on ImageNet for all the listed models.
No matter how complex the model is, TransMix can always
help to boost the baseline performance. Note that these
models are with a wide range of model complexities, and
the baselines are all carefully tuned with various data aug-
mentation techniques e.g. RandAug [10], Mixup [54] and
CutMix [53]. To be specific, TransMix can promote the

Models Params FLOPs
Top-1 Acc

(%)

+TransMix

Top-1 Acc (%)

DeiT-T [39] 5.7M 1.6G 72.2 72.6
PVT-T [48] 13.2M 1.9G 75.1 75.5
XCiT-T [13] 12M 2.3G 79.4 80.1

CaiT-XXS[40] 17.3M 3.8G 79.1 79.8
DeiT-S [39] 22.1M 4.7G 79.8 80.7
PVT-S [48] 24.5M 3.8G 79.8 80.5
XCiT-S [13] 26M 4.8G 82.0 82.3

PVT-M [48] 44.2M 6.7G 81.2 82.1
PVT-L [48] 61.4M 9.8G 81.7 82.4

XCiT-M [13] 84M 16.2G 82.7 83.4
DeiT-B [39] 86.6M 17.6G 81.8 82.4

XCiT-L 189M 36.1G 82.9 83.8

Table 1. TransMix can steadily boost the a wide range of model
variants e.g. DeiT, PVT, CaiT, and XCiT on ImageNet-1k classi-
fication. Note that all the baselines have been already carefully
tuned with extensive augmentation and regularization techniques
e.g. Mixup [54], CutMix[53], RandAug[10], DropPath[27] etc.

top-1 accuracy of the small variant DeiT-S by 0.9%. Bene-
fit from the higher attention quality, TransMix can also lift
the top-1 accuracy of the large model XCiT-L by a remark-
able 0.9%. We emphasize that these systematic improve-
ment with just a tiny tweak on data augmentation is sig-
nificant when compared with the structural modification on
models. For example, CrossViT-B [4] only lifts the DeiT-
B baseline result by 0.4% with 20.9% parameters overhead
while TransMix leads to more improvement in a parameter-
free style. Particularly, TransMix consistently boosts the
base/large variants in the range of 0.6% to 0.9%, which is
more striking than engineering new architectures such as
PiT-B [24], T2T-24 [51], CrossViT-B [4] with the gains of
0.2%, 0.5%, 0.4% respectively.

4.2. Transfer to Downstream Tasks

ImageNet pre-training is the de-facto standard practice
for many visual recognition tasks [19]. Before training for
downstream tasks, the weights pre-trained on ImageNet is
used to initialize the Transformer backbone. We demon-
strate the transferability of our TransMix-based pre-trained
models on the downstream task including semantic seg-
mentation, object detection and instance segmentation, on
which we observe the improvements over the vanilla pre-
trained baselines.

Semantic Segmentation In our experiments, the sequence
of patch encoding zpatches ∈ Rp×d is decoded to a seg-
mentation map s ∈ RH×W×K where K is the number
of semantic classes. We adopt two convolution-free de-
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Backbone Decoder
TransMix-

pretrained
mAcc mIoU

mIoU
(MS)

ResNet101 [21] Deeplabv3+ [8] 57.4 47.3 48.5

DeiT-S [39]

Linear
59.4 49.1 49.6

✓ 60.2 49.7 50.3

Segmenter [37]
60.4 49.7 50.5

✓ 61.4 50.6 51.2

Table 2. Overhead-free impact of TransMix on transferring to
downstream semantic segmentation task on the Pascal Con-
text [33] dataset. (MS) denotes multi-scale testing.

coders: (1) Linear decoder (2) Segmenter decoder. The
reason for adopting the Linear decoder is to preserve the
pre-trained information to the greatest extent. For linear
decoder, a point-wise linear layer on DeiT patch encod-
ing zpatches ∈ Rp×d is used to produce patch-level logits
zlin ∈ Rp×K , which are reshaped and bilinearly upsam-
pled to segmentation map s. The Segmenter [37] decoder
is a Transformer-based decoder namely Mask Transformer
introduced in [37, 46].

We train and evaluate the models on the Pascal Context
[33] dataset and report Intersection over Union (mIoU) av-
eraged over all classes as the main metric. The training
set contains 4998 images with 59 semantic classes plus a
background class. The validation set contains 5105 images.
The training scheme follows [33] which is built on MM-
Segmentation [9]. As a reference, the result of ResNet101-
Deeplabv3+ [7, 8] is reported in MMSegmentation [9].

According to Table 2, TransMix pre-trained DeiT-S-
Linear and DeiT-S-Segmenter improve over the vanilla pre-
trained baselines by 0.6% and 0.9% mIoU respectively.
There are consistent improvements on multi-scale testing.

Object Detection and Instance Segmentation Object de-
tection and instance segmentation experiments are con-
ducted on COCO 2017. All models are trained on 118K
images and evaluated 5K validation images. We study on
PVT [48] as the detection backbone since its pyramid fea-
tures make it favorable to object detection. The weights
pre-trained on ImageNet is used to initialize the PVT back-
bone. We train and evaluate Mask R-CNN detector with
the PVT backbone initialized with either vanilla (CutMix)
or TransMix pre-trained weights for both object detection
and instance segmentation. Following PVT [48], we adopt
1× training schedule (i.e., 12 epochs) to train the detec-
tor on mmDetection [6] framework. Results for Mask
R-CNN with ResNet backbone are reported in mmDetec-
tion [6] as references. As showed in Table 3, we find
that without introducing extra parameter, the detector ini-
tialized with TransMix-pretrained backbone improves over
CutMix-pretrained backbone by 0.5% box AP and 0.6%

Backbone Params
Object detection Instance segmentation

APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

ResNet50 [20] 44.2M 38.0 58.6 41.4 34.4 57.1 36.7

ResNet101 [20] 63.2M 40.4 61.1 44.2 36.4 57.7 38.8

PVT-S [48] 44.1M 40.4 62.9 43.8 37.8 60.1 40.3

TransMix-PVT-S 44.1M 40.9 63.8 44.0 38.4 60.7 41.3

Table 3. Overhead-free impact of TransMix on transferring to
downstream object detection and instance segmentation using
Mask R-CNN [20] with PVT [48] backbone on COCO val2017.
APbb denotes bounding box AP for object detection and APmk de-
notes mask AP for instance segmentation.

mask AP. Note that regularization-based pre-training for
backbone has limited capability on improving downstream
object detection. For instance, the recent Mixup vari-
ant SaliencyMix [41] only improved 0.16% box AP over
CutMix-pretrained model on a smaller detection dataset.

4.3. Robustness Analysis

Recently the discussions regarding the robustness of vi-
sion Transformer are emerging [34, 32, 1]. To verify if
TranMix can improve ViT-based models’ robustness and
out-of-distribution performance, we evaluated our Trans-
Mix pre-trained models on four robustness scenarios includ-
ing occlusion, spatial structure shuffling, natural adversarial
example, and out-of-distribution detection.

Robustness to Occlusion (author?) [34] studies whether
ViTs perform robustly in occluded scenarios, where some or
most of the image content is missing. To be specific, vision
Transformers divide an image into M=196 patches belong-
ing to a 14x14 spatial grid; i.e. an image of size 224×224×3
is split into 196 patches, each of size 16×16×3. Patch Drop-
ping means replacing original image patches with blank 0-
value patches. As an example, dropping 100 such patches
from the input is equivalent to losing 51% of the image con-
tent. Following [34], we showcase the classification accu-
racy on ImageNet-1k validation set with three dropping set-
tings. (1) Random Patch Dropping: A subset of M patches
is randomly selected and dropped. (2) Salient (foreground)
Patch Dropping: This studies the robustness of ViTs against
occlusions of highly salient regions. (author?) [34] thresh-
olds DINO’s attention map to obtain salient patches, which
are dropped by ratios. (3) Non-salient (background) Patch
Dropping: The least salient regions of an image are selected
and dropped following the same approach as above.

As shown in Figure. 3, DeiT-S with TransMix outper-
form vanilla DeiT-S on all occlusion levels especially for
extreme occlusion (information loss ratio >0.7).

Sensitivity to Spatial Structure Shuffling We study the
model’s sensitivity to the spatial structure by shuffling on
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Nat. Adversarial Example Out-of-Dist

Models Top1-Acc Calib-Error↓ AURRA AUPR

DeiT-S 19.1 32.0 23.8 20.9

TransMix-DeiT-S 21.1 31.2 28.8 21.9

Table 4. Model’s robustness against natural adversarial examples
on ImageNet-A and out-of-distribution examples on ImageNet-O.

input image patches. Specifically, we randomly shuffle the
image patches with different grid sizes following [34]. Note
that a shuffle grid size of 1 means no shuffle, and a shuf-
fle grid size of 196 means all patch tokens are shuffled.
Figure 4 shows the consistent improvements over base-
line, and the accuracy averaged on all shuffled grid sizes
for TransMix-DeiT-S and DeiT-S are 62.8% and 58.4% re-
spectively. The superior 4.2% gain indicates that TransMix
enables Transformers rely less on positional embedding to
preserve the most informative context for classification.

Natural Adversarial Example The ImageNet-A
dataset [23] adversarially collects 7500 unmodified,
natural but “hard” real-world images, which are drawn
from some challenging scenarios (e.g., fog scene and oc-
clusion). The metric for assessing classifiers’ robustness to
adversarially filtered examples includes the top-1 accuracy,
Calibration Error (CalibError) [29, 23], and Area Under
the Response Rate Accuracy Curve (AURRA). CalibError
judges how classifiers can reliably forecast their accuracy.
AURRA is an uncertainty estimation metric introduced in
[23]. As shown in Table 4, TransMix-trained DeiT-S is
superior to vanilla DeiT-S on all metrics.

Out-of-distribution Detection The ImageNet-O [23] is an
adversarial out-of-distribution detection dataset, which ad-
versarially collects 2000 images from outside ImageNet-
1K. The anomalies of unforeseen classes should result in
low-confidence predictions. The metric is the area under the
precision-recall curve (AUPR) [23]. Table 4 indicates that
TransMix-trained DeiT-S outperform DeiT-S by 1% AUPR.

4.4. Mutual Effect of TransMix and Attention

Will TransMix Benefit Attention? To evaluate the qual-
ity of attention matrix, we directly threshold the class-
token attention A from DeiT-S to obtain a binary attention
mask (the same with [3, 34]] with threshold 0.9) and then
conduct two tasks including (1) Weakly Supervised Auto-
matic Segmentation on Pascal VOC 2012 benchmark [14].
(2) Weakly Supervised Object Localization (WOSL) on
ImageNet-1k validation set [35] where the bounding box
annotations are only available for evaluation. For task (1),
we compute the Jaccard similarity between ground truth
and binary attention masks over the PASCAL-VOC12 val-
idation set. For task (2), different from CAM-based meth-

Segmentation JI (%) Localization mIoU (%)

DeiT-S 29.2 34.9

TransMix-DeiT-S 29.9 44.4

Table 5. Quantitative evaluation of the attention map. Segmenta-
tion JI denotes the Jaccard index for weakly supervised segmenta-
tion on Pascal VOC and Localization mIoU denotes the bounding
box mIoU for weakly supervised object localization on ImageNet-
1k.

ods for CNNs, we directly generate one tight bounding box
from the binary attention masks, which is compared with
ground-truth bounding box on ImageNet-1k. Both tasks
are weakly-supervised since only the class-level ImageNet
labels are used for training models (i.e. neither bounding
box supervision for object localization nor per-pixel su-
pervision for segmentation). The attention masks gener-
ated from TransMix-DeiT-S or vanilla DeiT-S are compared
with ground-truth on these two benchmarks. The evaluated
scores can quantitatively help us to understand if TransMix
has a positive effect on the quality of attention map.

Can Better Attention Nurture TransMix? The exper-
iments above prove that TransMix can benefit attention
map, and it’s natural to ask that can better attention map
nurture TransMix in return? We hypothesize that the
better attention map is used, the more accurate Trans-
Mix adjusts the mixed-target assignment. For example,
Dino [3] confirm that the attention maps obtained from
the model via self-supervised training [3, 2] retain greater
quality. To validate if a better attention map helps Trans-
Mix, we design an experiment that replaces the attention
map with that generated from a parameter-frozen external
model. The external parameter-frozen model can be (1)
Dino self-supervised pre-trained DeiT-S (2) Deit-S that is
fully-supervised trained on ImageNet-1k. (3) Deit-S that is
fully-supervised trained with a knowledge distillation set-
ting on ImageNet-1k. However, the results shown in Table 6
contradict the hypothesis.

Intriguing Dynamic Property With pre-trained Dino as
the attention provider, the performance is slightly worse
than that of self-serving. Training with attention guidance
from a external fully-supervised parameter-frozen DeiT-
S, TransMix suffers from a significant drop from 80.7%
to 80.4% top-1 accuracy, though it is still better than
vanilla model’s 79.8%. This phenomenon can ascribe to
the dynamic property of TransMix, meaning that the per-
iteration parameter update will dynamically diversify the
self-attention for the same input image. In contrast, the
parameter-frozen external models statically produce the
same self-attention for an image, and thus undermine the
regularization capability.
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Figure 3. Robustness against occlusion. Model’s robustness against occlusion with different information loss ratios is studied. 3 patch
dropping settings: Random Patch Dropping (left), Salient Patch Dropping (middle), and Non-Salient Patch Dropping (right) are considered.

Figure 4. Robustness against shuffle. Model’s robustness against
shuffle with different grid shuffle sizes is studied. (Placeholder)

Attn Provider Self Dino DeiT-pretrained DeiT-distilled

top-1 Acc 80.7 80.6 80.4 80.4

Table 6. Using external (parameter-frozen) models to generate
ttention map as the alternative to original attention map A used
for TransMix.

4.5. Generalizability Study

One might be wondering if TransMix can be general-
ized to those models without the class token such as Swin-
Transformer (Swin) [30]. Such models directly apply aver-
age pooling onto patch tokens to obtain logits, and therefore
how much each patch token contributes to the final predic-
tion is a black-box procedure without class attention A.

To tackle the aforementioned issue, we develop a Swin
variant named as CA-Swin that replaces the last Swin block

Models Params FLOPs top-1 Acc (%)

Swin-T [30] 28.3M 4.5G 81.3

CA-Swin-T [30, 40] 28.3M 4.2G 81.6

TransMix-CA-Swin-T 28.3M 4.2G 81.8
Swin-S [30] 49.6M 8.8G 83.0

CA-Swin-S [30, 40] 49.6M 8.5G 82.8

TransMix-CA-Swin-S 49.6M 8.5G 83.2

Table 7. Generalization to Swin Transformer [30] which lacks the
class-token. CA denote the class attention block [40]. CA-Swin
replaces Swin’s last block with a CA block with fewer FLOPs.

with a classification attention (CA) block without parame-
ter overhead, which makes it possible to generalize Trans-
Mix onto Swin. Inspired by CaiT [40], the classification
attention block aims at inserting the class token in a plug-
and-play manner to those Transformers originally with only
patch tokens, and make the classification attention A acces-
sible. We then compare the Swin-T, CA-Swin-T, TransMix-
CA-Swin-T on ImageNet-1k with the same experimental
setup in Sec. 4.1. All three models are at the same 28.3M
parameters. TransMix-CA-Swin-T and CA-Swin-T have
7% fewer FLOPs than the baseline Swin-T. The top1 valida-
tion accuracy are 81.3%, 81.6% and 81.8% for Swin-T, CA-
Swin-T and TransMix-CA-Swin-T, respectively. TransMix
on Swin-S improves performance with fewer FLOPs as
well. This preliminary study empirically proves the gen-
eralizability of TransMix.

4.6. Comparison with State-of-the-art Mixup Vari-
ants

In this section, we provide the comprehensive com-
parison with many state-of-the-art mixup vairiants on
ImageNet-1k. This is the first time that compare these vari-
ants on vision Transformer in a fair setting. The implemen-
tation details for Mixup variants on top of DeiT-S are pro-
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Method Backbone Params
Speed

(im/sec)
top-1 Acc (%)

Baseline

DeiT-S

22M 322 78.6

CutMix [53] 22M 322 79.8 (+1.2)

Attentive-CutMix [45] 46M 239 77.5 (-1.1)

SaliencyMix [41] 22M 314 79.2 (+0.6)

Puzzle-Mix [28] 22M 139 79.8 (+1.2)

TransMix 22M 322 80.7 (+2.1)

Table 8. Top1-accuracy, training speed (im/sec) and number
of parameters comparison with state-of-the-art Mixup variants on
ImageNet-1k. All listed models are built upon DeiT training recipe
for fair comparison. Training speed (im/sec) takes account of data
mixup, model forward and backward in train-time.

vided in the supplementary material. All mentioned mod-
els are built upon DeiT training recipe towards a fair com-
parison. Baseline in Table 8 is chosen to be the default
DeiT-S framework excluding CutMix in training. Measured
on image per second (im/sec), training speed (i.e. training
throughput) is performed in average of five runs for images
at resolution 224×224 under 128 batch size with a Tesla-
V100 graphic card, and takes account of data mixup, model
forward and backward in train-time.

Table 8 shows TransMix significantly outperforms all
other Mixup variants. The saliency-based methods (e.g.
SaliencyMix and Puzzle-Mix) reveal no advantages to vi-
sion Transformer, compared to the vanilla CutMix. We an-
alyze that these methods are cumbersomely tuned and face
difficulty in transferring to new architecture. For example,
Attentive-CutMix bring not only extra time but also param-
eter overhead as it introduces an external model to extract
saliency map. Puzzle-Mix performs the lowest speed as it
forward and backward twice during one training iteration.
By contrast, TransMix yields a striking 2.1% performance
advancement with the highest training throughput and no
parameter-overhead.

Ablation Study Unlike suprisingly 8 hyper-parameters in
PuzzleMix, our proposed TransMix exists very clean and
introduces almost no hyper-parameter. Still, we conduct ab-
lation study for TransMix regarding the attention map gen-
eration in the supplementary material, which shows that the
default is the best.

Visualization We provide the visualization of TransMix as
shown in Figure 5. For instance, the first row illustrate that
the old area-based label assignment is counter-intuitive as
image A’s foreground is occluded by image B’s patch, and
TransMix corrects the label assignment via Transformer at-
tention. TransMix is able to lift the label weight if the dis-
criminative fine-grained attribute appears (e.g. Pomeranian
dog’s cheek and eyes in the second row).

Figure 5. The visualization including image A, image B, mixed
image, attention map obtained from XCiT-L when input mixed im-
age, and corresponding label assignments. The label assignments
include both the old area-ratio assignment and new TransMix as-
signment.

5. Conclusion
In this paper, we present TransMix, a simple yet effective

data augmentation technique that assigns Mixup labels with
attentional guidance for Vision Transformers. TransMix
naturally exploits Transformer’s attention map to assign the
confidence for the mixed-target, and lifts the top-1 accuracy
on ImageNet by 0.9% for both DeiT-S and a large variant
XCiT-L. Extensive experiments are conducted to verify the
effectiveness, transferability, robustness and generalizabil-
ity of TransMix on totally 10 benchmarks.

Limitations Since we are the first work that pushes an ex-
tra mile for the Mixup-based methods towards augmenting
vision Transformers, we indeed have limitations as follows:
(1) TransMix can not handle well with those backbones
without class token, as it strongly relies on the class at-
tention. This limitation can be mitigated in Section 4.5 at
the cost of architecture modification. (2) TransMix requires
the attention map to be spatially aligned with the input, re-
sulting in poor compatibility with deformable-based Trans-
former (e.g. PS-ViT [52], DeformDETR [55]). This can be
potentially solved by calibrating attention map to the input
spatial location by leveraging deformed offset grid.
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