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Abstract

Visual Dialog aims to answer multi-round, interactive
questions based on the dialog history and image content.
Existing methods either consider answer ranking and gen-
erating individually or only weakly capture the relation
across the two tasks implicitly by two separate models. The
research on a universal framework that jointly learns to
rank and generate answers in a single model is seldom ex-
plored. In this paper, we propose a contrastive learning-
based framework UTC to unify and facilitate both discrim-
inative and generative tasks in visual dialog with a single
model. Specifically, considering the inherent limitation of
the previous learning paradigm, we devise two inter-task
contrastive losses i.e., context contrastive loss and answer
contrastive loss to make the discriminative and genera-
tive tasks mutually reinforce each other. These two com-
plementary contrastive losses exploit dialog context and
target answer as anchor points to provide representation
learning signals from different perspectives. We evaluate
our proposed UTC on the VisDial v1.0 dataset, where our
method outperforms the state-of-the-art on both discrimina-
tive and generative tasks and surpasses previous state-of-
the-art generative methods by more than 2 absolute points
on Recall@1.

1. Introduction
Recently, an increasing amount of attention has been

paid to vision and language understanding. Many related
tasks in this intersecting field have been designed and intro-
duced for different scenarios, such as Moment Localization
with Natural Language [21, 25], Image Captioning [6], Vi-
sual Question Answering [4], and Visual Dialog [14, 17].
Among them, Visual Dialog is designed to interact with

*This work was done under the guidance of Yudong Zhu, and the cor-
responding author is Xiaodong Gu (xdgu@fudan.edu.cn)

humans about an unseen image through continuous com-
munication. In general, there are two types of settings in
visual dialog: a discriminative decoder that ranks the pre-
defined answer candidates in the discriminative setting, and
a generative decoder that synthesizes the target answer in
the generative setting.

Compared with visual question answering, visual dialog
not only demands that the agent is able to engage in a ques-
tion about an image but also requires the agent to fully ex-
ploit the clues in previous questions and answers. Thus, the
interactions among an answer candidate, a question, a dia-
log history and an image are the key to produce a correct
answer.

As shown in Figure 1(a), most of the current visual di-
alog models [19, 22] focus on designing various attention
mechanisms to capture such interaction in the discrimina-
tive setting while training answer ranking and generating
tasks individually. Recently, several related works [8, 16]
weakly capture the relation across the generative and dis-
criminative tasks by training the entire network using the
two decoders simultaneously. Though these models have
impressive results, the designing of a unified model to fa-
cilitate the training of both answer ranking and generating
tasks remains two challenges.

On the one hand, the limitation originates from the in-
herently different peculiarities of the two tasks. As shown
in Figure 1(a and b), the discriminative setting can capital-
ize on the unrestricted message passing across answer can-
didates and multi-modal context. While in the generation
task, the models need to autoregressively decode the answer
word by word, which makes the message passing from an-
swers to multi-modal context restricted. This raises the first
challenge for our unified model: how to fully transfer the
rich semantic clues of answer candidates in the discrimina-
tive task to answer generation.

On the other hand, the discriminative setting focuses on
the alignment of dialog context and answer, and most of
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Figure 1. Illustration of interaction flow among question (Q), im-
age (V), dialog history (H), answer candidates (A) and generated
answer(Ag).

the existing approaches adopt a two-step pipeline. For a
given dialog context, answer candidates are first randomly
selected from the corresponding answer set. Each answer
candidate is then matched with the dialog context to deter-
mine whether it is the target answer. This pipeline only con-
siders the relations between one given dialog context and
its corresponding answer candidates. It treats each round of
dialog separately and neglects to distinguish the dialog con-
text representations. This raises the second challenge: how
to capture the dialog contexts relations across other rounds
in a dialog and all rounds in other dialogs. Moreover, as
aforementioned, the dialog context is enhanced with answer
information in the discriminative setting while independent
to answer information in the generative setting. It is difficult
for previous methods to utilize the enhanced dialog con-
text representations during the training of generative setting
since they process each task individually.

In this work, we formulate the interactions of all entities
in a unified framework. As shown in Figure 1(c), the agent
ranks and generates the answers with the powerful repre-
sentation yielded by the interaction of each entity in both
settings. Inspired by recent visual and language pretrain-
ing, the cross-modal pretrained transformer is employed as
the encoder backbone. Instead of employing two types of
decoders in prior works, the multi-modal features yielded
by the backbone encoder are directly used to rank the an-
swers, and a transformer-based decoder upon the encoder is
built to generative the answers. To tackle the first challenge,
we employ the target answer as anchor points to utilize the
clues in answer features from the discriminative setting to
ease the training of the generative task. Concretely, a con-
trastive loss is devised to preserve the similarity of the target
answer features and generated answer features, while dis-
tinguishing other answer option features. It also leads to an
elegant view of how to bridge the discrepancy between the
discriminative and generative settings and how to exploit
the clues in answer candidates efficiently.

For the second challenge, since the unified model is re-
quired to jointly rank and synthesize the target answer based
on the dialog context pairs of the discriminative and gener-
ative settings respectively, we explicitly promote the model

to distinguish the paired dialog context representations from
other negative similar dialogs by contrastive learning. Fur-
thermore, the contrastive learning scheme also enables the
generative task to utilize enhanced dialog context represen-
tation information from the discriminative task. Our contri-
butions are as follows:

• We introduce a unified model for Visual Dialog, which
processes all interactions between different entities for
both discriminative and generative tasks in a single
model.

• The target answers and dialog context are employed
as anchor points to help facilitate the training of dis-
criminative and generative tasks. Compared with pre-
vious methods, two inter-task contrastive losses enable
the bidirectional information flow between all answer
and dialog context pairs of the two tasks, which signif-
icantly eases the training of both tasks.

• We conduct extensive experiments on VisDial bench-
marks to analyze how our model performs on both
tasks with various training aspects. The qualitative re-
sults indicate that our model obtains reliable improve-
ment on both tasks with inter-task contrastive learning.

2. Related work
Vision-Language Task. There are various vision-

language tasks, such as Visual Question Answering [2], Im-
age Captioning [23] and Visual Dialog [14, 17]. Specifi-
cally, for VQA, it is proposed to adopt the attention mech-
anism to fuse image and text features. Then, based on the
fused features, the agent answers the question.

Recently, pretraining a transformer and its extension has
become a popular strategy for multi-modal understanding.
To be specific, ViLBERT [13] and LXMERT [20] apply
two-stream transformers for images and texts respectively.
UNITER [5] and Oscar [12] directly feed the visual fea-
tures and text embeddings into a unified architecture. These
visual-language models are firstly pretrained on external
cross-modal datasets then fine-tuned on target tasks, such
as visual dialog and image captioning.

Visual Dialog. Most of the popular approaches employ
an encoder-decoder architecture for visual dialog. The en-
coder aims at encoding the image and text to fused features,
and two separate decoders are employed for ranking and
generating respectively. Among them, a variety of attention
mechanism-based approaches [8, 10] are proposed to learn
the interactions between the image, the answers, and the
dialog history in the discriminative setting. DAN [10] in-
troduces a dual attention mechanism to reason the key texts
in the dialog history. Similarly, FGA [19] introduces graph
attention to model interactions between entities. Besides,
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Figure 2. The model architecture and contrastive learning paradigm for both discriminative and generative settings of our proposed UTC.
For unified contrastive learning, the discriminative context hidden states denote Ch = {Ld, h

C
d1, ..., h

C
dt}, the discriminative answer hidden

states denote Ah, the generative context hidden states denote Cg = {Lg, h
C
g1, ..., h

C
gt} and the generative answer hidden states denote Ag

h.

granting the dialog model a great ability in grammatical
competence also attracts lots of attentions. CorefNMN [11]
proposes to tackle the visual coreference problem by rea-
soning over past dialog interactions with previous refer-
ences. CoAtt [24] utilizes adversarial examples to generate
more human-like responses.

With the remarkable performance of pretraining trans-
former, tansformer-based pretrained models with various
structures [16, 22] are introduced visual dialog. For exam-
ple, VD-BERT [22] leverages the pre-trained BERT lan-
guage models for Visual Dialog tasks. LTMI [16] adopts
a lightweight transformer to deal with all the interactions
between many utilities.

As mentioned above, these methods focus on design-
ing attention mechanisms for answer ranking, which sel-
dom link the two tasks in a unified framework. Different
from previous works, the UTC adopts a unified framework
to learn vision-language interactions by jointly considering
both discriminating and generating tasks, which deeply cap-
tures the relations between the two tasks to mutually rein-
force each task.

3. Approach
As illustrated in Figure 2, our model consists of three

main components: a cross-modal encoder backbone, an au-
toregressive text decoder and a unified contrastive learning
head. The details of these components will be given in the
following sections.

3.1. Problem Formulation

We first formally describe the visual dialog problem.
Given a question Qt grounded on an image I at t−th

turn, as well as the previous dialog history formulated as
Ht = {Cap; (Q1;A1), ..., (Qt−1;At−1)} (where Cap de-
notes the caption sentence of the image), our task aims
to generate the required answer in generative setting and
predict the target answer At by ranking a list of 100 an-
swer candidates {A1

t , A
2
t , ..., A

100
t } in discriminative set-

ting. For simplicity, we define the dialog context C as
the dialog history and current question formulated as C =
{Cap; (Q1;A1), ..., (Qt−1;At−1), Qt}, then the task is to
identify whether the answer candidate is correct in discrim-
inative setting and synthesize the required answer in gener-
ative setting conditioned on C and I .

3.2. UTC Architecture

3.2.1 Discriminative Setting

Following previous work [15], ViLBERT [13] is adopted as
the cross-modal extractor backbone network. As shown in
Figure 2, with the pretrained ViLBERT [13], the contextu-
alized representation for the dialog context, the answer can-
didate and image can attend to each other bidirectionally,
which is convenient for answer prediction in the discrimi-
native setting.

For a given dialog D, the dialog context C and answer
candidate At will be concatenated as a text sequence:

D = {[CLS]Cap[SEP ]Q1[SEP ]A1, ..., Qt[SEP ]At}. (1)

we first extract the image region sequences from Faster R-
CNN, and then initialize the [IMG] by mean-pooling of the
sequences.

Following previous works [8, 16], we first extract
the image object bounding box feature sequences I =
{O1, ..., On} from Faster R-CNN [18], and then initialize
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the special learnable token [IMG] by mean-pooling of the
sequences. Each object feature Oi is a 2048-d Region-of-
Interest (RoI) feature and n is the number of the detected
objects (fixed to 36 in our setting).

Afterwards, we feed two sequences into ViLBERT and
obtain text hidden state Dh and visual hidden state Ih as:

Dh, Ih = ViLBERT(D, I), (2)

the hidden state Dh = {Ld, h
C
d1, ..., h

C
dt, Ah} (here Ld,

{hC
d1, ..., h

C
dt} and Ah are the hidden states of the [CLS] to-

ken, the dialog context and the current answer respectively.)
and Ih = {Id, hI

d1, ..., h
I
dn} (here Id and {hI

d1, ..., h
I
dn} are

the hidden states of the [IMG] token and the image ob-
ject sequence respectively.) are deep interacted cross modal
features and will be used to train two tasks.

As aforementioned, the discriminative task in Visual Di-
alog is to identify whether the appended answer candidate
is correct or not, which is naturally consistent with the pre-
training task Next Sentence Prediction (NSP) of ViLBERT.
Specifically, the next sentence prediction task in our sce-
nario is trained to predict whether the text input describes
the image in ViLBERT. In our visual dialog task, each time
we randomly sample an answer candidate and append it to
the dialog context, and train the model to distinguish the
target answer from other answer candidates by NSP loss.
The NSP loss is trained to predict the NSP scores to 1 when
the target answer At is appended, and 0 when a negative an-
swer An is appended. During inference, we rank the answer
candidates through the NSP scores.

3.2.2 Generative Setting

As the model is also required to autoregressively generate
the answer, we also prepare another text input with the an-
swer mask to make the answer invisible. It is worth men-
tioning that the mask operation is only performed during
training, and the answer is totally removed during inference.
Thus the answer information is invisible to the model during
inference. The text input is formulated as:

Dg = {[CLS]Cap[SEP ]Q1[SEP ]A1, ..., Qt[SEP ][MASK]},
(3)

where the answer tokens At are fully masked. This mask-
ing strategy makes answer information blind to the encoder
and only the dialog context is used to autoregressively syn-
thesize the target answer.

To support answer generation, we also feed the text
sequence Dg and image I to the ViLBERT backbone.
The yielded text hidden state is denoted as Dg

h =
{Lg, h

C
g1, ..., h

C
gt}.

Given the hidden states Dg
h and Igh , we additionally de-

vise a cross-modal decoder that learns to reconstruct the
masked answer word-by-word. Specifically, we first project
Dg

h and Igh to a common space as Dg
c and Igc , and then per-

form cross-attention over tokens in Dg
c and Igc for next word

prediction. The process can be formulated as:

Ag
h = Decoder(Dg

c , I
g
c ), (4)

where Ag
h is the generated answer, and the cross-modal

decoder is implemented by stacking K transformer-based
decoder layers.

During inference, a [MASK] token is recursively ap-
pended to the end of the sequence to trigger a one-word
prediction and then replace it with the generated token for
the next token prediction. The decoding process is termi-
nated when the [SEP ] token is emitted, and the resulting
log-likelihood scores will be used for ranking the answer
candidates.

By sharing the cross-modal extractor backbone, our
model UTC supports jointly learn two tasks end-to-end.

3.3. Unified Contrastive Learning

To model the cross-impact and interaction between the
discriminative and generative tasks, we enable the task-
specific representations to interact with each other via con-
trastive learning.

As aforementioned, our model can simultaneously
produce the dialog hidden states Dh and Dg

h, which
originate from discriminative setting and generative set-
ting respectively. We first separate the dialog hid-
den state Dh in discriminative setting as Ch and
Ah, here Ch = {Ld, h

C
d1, ..., h

C
dt} is dialog context

hidden state corresponding to dialog context C =
{[CLS]C[SEP ]Q1[SEP ]A1, ..., Qt} and Ah is answer
candidate hidden state corresponding to the appended an-
swer A = {At}. Note that, as the positional embeddings are
added to the sequence, Ch and Ah can be directly divided
from text hidden state Dh. As the answer tokens are masked
in the generative setting, the dialog hidden state Dg

h only
contains dialog context information. Thus, we only extract
the dialog context hidden state Cg = {Lg, h

C
g1, ..., h

C
gt}

from Dg
h, and the answer hidden state Ag

h is obtained from
the output of decoder. Given the hidden states of dialog con-
text and answer in two tasks, we will next introduce how to
utilize these features for unified learning.

3.3.1 Answer Contrastive Learning

To encourage the decoder to explicitly interact with all rich
answer information and optimize the two tasks simultane-
ously, we leverage the target answer as an anchor and de-
fine contrastive losses to transfer useful mutual information
between two tasks.

Specifically, when both the answer candidate hidden
states Ah and the generated answer hidden states Ag

h are
produced, we first divide the answer representations within
a batch in the discriminative setting into two parts. More
specially, for a given round of dialog context, the target an-
swer representations A+

h are regarded as the query feature.
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In our early experiment, the negative samples are only se-
lected from different rounds of a dialog, which shows sub-
optimal results. To balance the negative answer samples, we
select the negative samples A−

H = {A−
h1, ..., A

−
hb} (here b is

the batch size) from two parts: 1) the corresponding answer
candidate set except target answer; 2) all answer options
in other dialogs, including all other rounds talking about
current image and other irrelevant dialogs associated with
different images.

As the decoder aims to generate target answers, the gen-
erated answer hidden states Ag

h need to be semantically
close to A+

h . Thus, we utilize the generated answer Ag
h

as positive key feature. Note that, the hidden states Ag
h,

A+
h and A−

h are token-level features with different sequence
lengths, we first mean-pool the corresponding token fea-
tures, and obtain the sentence-level features denoted as As

g ,
As+

h , and As−
H = {As−

h1 , ..., A
s−
hb }. Then the answer con-

trastive loss is thus defined as:

Lac = −log
exp(As+

h ·As
g/τ)∑b−1

i=0 exp(As+
h ·As−

hi /τ)
, (5)

where the dot product denotes the cosine similarity score
and τ is a temperature parameter.

3.3.2 Context Contrastive Learning

UTC can produce dialog context state Ch and Cg of dis-
criminative and generative tasks respectively in an end-to-
end manner. It is required to jointly identify the target an-
swer from answer set and synthesize the answer based on
Ch = {Ld, h

C
d1, ..., h

C
dt} and Cg = {Lg, h

C
g1, ..., h

C
gt} re-

spectively. Thus, the hidden state Ch and Cg of a given
round of dialog should be semantically close to each other.

During training, we encourage the dialog context repre-
sentations Ch and Cg from one round of dialog to be more
semantically close. Besides, Ch should be distinct from
the context representations of other rounds and all other di-
alogs.

For a given round of dialog, the dialog context represen-
tations in the discriminative setting are regarded as query
feature C+

h . The positive key features are denoted as Cg

which originates from the generative task. In the common
space, we aim to simultaneously minimize the distance be-
tween C+

h and Cg while maximize the distances between
C+

h and negative key feature set C−
h = {C−

h1, ..., C
−
hb}.

C−
h comes from all other rounds and other dialogs within

a batch. Similar to answer features, we mean-pool the
context token features C+

h , Cg and C−
h to obtain the cor-

responding sentence-level features Cs+
h , Cs

g and Cs−
h =

{Cs−
h1 , ..., C

s−
hb }.

We thus formulate the context contrastive loss as:

Lcc = −log
exp(Cs+

h · Cs
g/τ)∑b−1

i=0 exp(Cs+
h · Cs−

hi /τ)
, (6)

in which τ is a temperature parameter and the dot product
denotes the cosine similarity score.

3.4. Training Objectives

During the training of UTC, We use two visually
grounded training objectives masked language modeling
(MLM) and next sentence prediction (NSP) to supervise the
cross-modal extractor backbone ViLBERT.

Similar to MLM in BERT, 10% tokens in text input and
15% tokens in visual input are randomly masked out and
replaced with a special token [MASK]. The model is
required to recover them based on the surrounding tokens
D\m and the cross-modal clues I\m:

Lmlm = −E(D,I)∼T logP (Wm|D\m, I\m), (7)

where Wm is the masked tokens and T refers to the training
set. The NSP loss aims to identify whether the appended
answer candidate is correct or not, which is implemented
based on jointly understanding the text and image as:

Lnsp = −E(D,I)∼T logP (y|N(D, I)), (8)

where y ∈ {0, 1} serves as the supervision label, and N()̇ is
the binary answer prediction head to predict the probability
based on the dot product of [CLS] token representation and
[IMG] token representation.

For the generative setting, the decoder is required to re-
construct the sequential answer tokens depending on all the
dialog context and input image. The loss is defined as a
maximum log-likelihood loss:

Lg = −E(D,I)∼T logP (A|D\A, I), (9)

We formulate the final loss for our unified contrastive train-
ing method as:

Lutc = Lmlm + Lnsp + αLg + Lac + Lcc, (10)

where α = 0.05 is the weighting parameter.

4. Experiment
4.1. Dataset

We evaluate the proposed UTC approach on the VisDial
v1.0 dataset. It has 123,287, 2,064, and 8,000 images for
training, validation and testing, respectively. Each image is
associated with a caption sentence and 10 question-answer
pairs. For each round of question-answer pairs, 100 answer
candidates are given. The validation split and part of the
train split (2,000 images) are provided with dense annota-
tions (i.e., relevance scores) for all candidate answers.

4.2. Evaluation Metric

Following previous works [8,16,19], the ranking metrics
like Recall@K (K=1, 5, 10), Mean Reciprocal Rank (MRR)
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Table 1. Performance comparisons of discriminative setting on the
val split of VisDial v1.0 dataset. The top 2 results are highlighted
by bold and underline respectively. The remaining tables follow
the same notations.

Methods R@1↑ R@5↑ R@10↑ NDCG↑ MRR↑ Mean↓
MN 46.09 78.14 88.05 55.13 60.42 4.63
CoAtt 48.86 80.41 89.83 57.72 62.91 4.21
VisDial-BERT 53.42 84.41 92.62 60.96 67.17 3.41
HCIAE 48.94 80.50 89.66 57.75 62.96 4.24
ReDAN 50.60 81.39 90.26 59.32 64.21 4.05
LTMI 48.94 78.65 87.88 62.72 62.32 4.86
VDBERT 54.02 83.96 92.33 63.22 67.44 3.53

UTC 55.48 85.38 93.20 63.22 68.58 3.28

Table 2. Performance comparisons of generative setting on the val
split of VisDial v1.0 dataset. The top 1 results are highlighted by
bold.

Methods R@1↑ R@5↑ R@10↑ NDCG↑ MRR↑ Mean↓
MN 38.01 57.49 64.08 56.99 47.83 18.76
CoAtt 40.09 59.37 65.92 59.24 49.64 17.86
HCIAE 39.72 58.23 64.73 59.70 49.07 18.43
LTMI 40.44 61.61 69.71 63.58 50.74 14.93
ReDAN 40.27 59.93 66.78 60.47 50.02 17.40
UTC 42.56 62.40 69.51 63.86 52.22 15.67

and Mean Rank are adopted. Since the 2018 VisDial chal-
lenge releases the dense annotations of each answer option’s
relevance degree, Normalized Discounted Cumulative Gain
(NDCG) that penalizes the low ranked answer options with
high relevance is also used.

4.3. Implementation Details

We use ViLBERT BASE as the backbone, which has 12
layers of transformer blocks with each block having a hid-
den state size of 768 and 12 attention heads. The decoder
consists of 12 layers of transformer blocks, each block has
a hidden size of 1024 and 16 attention heads. For a fair
comparison, the backbone ViLBERT is initialized with the
weights that are pretrained on the Visual Question Answer-
ing dataset [3] like previous works. And the decoder is
trained from scratch. The max text sequence length is 256.
We train the UTC on 8 V100 GPUs with a batch size of
120 for 20 epochs. The Adam optimizer with initial learn-
ing rates of 2e-4 is adopted. A linear decay learning rate
schedule with warmup is employed to train the model.

4.4. Comparison to State-of-the-Art Methods

We compare our method with recently published meth-
ods on the VisDial v0.9 and VisDial v1.0 datasets, includ-
ing LF [7], MN [7], MCA [1], MN-Att (with attention)
[7], CoAtt [24], FGA [19], RvA [17], DAN [10], ReDAN

Table 3. Performance comparisons on the test split of VisDial v1.0
dataset. The results are reported by the test server. * denotes fine-
tuning on dense annotations.

Methods R@1↑ R@5↑ R@10↑ NDCG↑ MRR↑ Mean↓
LF 40.95 72.45 82.23 45.31 55.42 5.95
MN 40.98 72.30 83.30 47.50 55.49 5.92
MN-Att 42.42 74.00 84.35 49.58 56.90 5.59
FGA 52.75 82.92 91.07 56.90 66.20 3.80
DAN 49.63 79.75 89.35 57.59 63.20 4.30
Synergistic 47.90 80.43 89.95 57.32 62.20 4.17
LTMI 50.20 80.68 90.35 59.03 64.08 4.05
VisDial-BERT 53.85 84.68 93.25 63.87 67.50 3.32
VDBERT 51.63 82.23 90.68 59.96 65.44 3.90
RvA 49.03 80.40 89.83 55.59 63.03 4.18
GNN 47.33 77.98 87.83 52.82 61.37 4.57
VDBERT* 33.15 61.58 77.15 74 .54 50.74 7.18
MCA* 20.67 56.67 72.12 72.47 37.68 8.89
UTC 52.25 83.55 92.23 62.65 66.27 3.48
UTCvqa+cc 55.73 84.93 93.08 64.60 68.70 3.32
UTC* 37.12 63.98 79.88 74.32 50.24 6.48

[8], GNN [26], HCIAE [14], LTMI [16], VDBERT [22],
VisDial-BERT [15], and Synergistic [9].

4.4.1 Results on the VisDial v1.0 val

We first compare our model with state-of-the-art approaches
on the val v1.0 split. The results of discriminative setting
and generative setting are shown in Table 1 and Table 2
respectively. Since VisDial-BERT only supports the dis-
criminative setting and VDBERT doesn’t report the perfor-
mance of the generative setting on the VisDial v1.0 val, we
compare the performances of the discriminative setting with
them. The results show that UTC outperforms other com-
petitors in various scenarios on both tasks across different
criteria. In all cases, UTC ranks the first or the second. In
more detail, compared with other related methods, we ob-
tain several observations.

First, we compare our model with pretraining methods
(i.e. VDBERT and VisDial-BERT), which achieve state-
of-the-art on the discriminative setting. VisDial-BERT is
pretrained not only on the VQA dataset but also on external
large-scale vision-language datasets like Conceptual Cap-
tions. Since they didn’t provide their pre-training weights
on two pretraining dataset and only released their best
model fine-tuned on VisDial v1.0 dataset. We first compare
its results pretrained on the VQA dataset for fair a compari-
son in Table 1. Due to the powerful cross-modal representa-
tion ability of pretraining, the pretrained transformer-based
approaches perform better than the traditional approaches
on the discriminative setting, however, inferior to our pro-
posed UTC method. Moreover, we implement our unified
framework on VisDial-BERT since it only support discrim-
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Table 4. Ablation studies on the val v1.0 split of VisDial dataset.

Methods Discriminative Generative

R@1 R@5 R@10 NDCG↑ MRR↑ Mean↓ R@1 R@5 R@10 NDCG↑ MRR↑ Mean↓
UTCindividual 53.94 84.10 92.17 61.20 67.29 3.48 41.39 59.85 66.33 61.04 50.61 17.70
UTCelementary 54.39 84.36 92.35 61.47 67.69 3.44 41.75 60.34 66.76 61.72 50.92 17.35
UTCw/o−Lcc

54.55 84.95 92.95 62.02 67.97 3.35 42.52 62.01 69.14 63.15 52.02 15.71
UTCw/o−Lac

55.24 85.05 93.16 62.91 68.48 3.29 42.09 61.66 68.28 62.65 51.67 15.88
UTC 55.48 85.38 93.20 63.22 68.58 3.28 42.56 62.40 69.51 63.86 52.22 15.67

inative task. Then we further train their best fine-tuned
model with our contrastive losses and compare with it on
test spilt. The results in Table 3 (UTCvqa+cc) show our con-
trastive learning paradigm can further gain improvements
over it, which demonstrate the effectiveness of our learning
paradigm.

Furthermore, we compare UTC with attention-based
method LTMI, which achieves the state-of-the-art on the
generative setting. It utilizes a transformer-based struc-
ture to deal with all the interactions in visual dialog while
weakly captures the relations between two tasks. From Ta-
ble 2, we can see that our UTC outperforms LTMI by more
than 2 points in terms of Recall@1 on the generative setting,
while slightly inferior to it at Recall@10 and mean rank. It
further validates that UTC can simultaneously predict and
generate answers accurately.

4.4.2 Results on the VisDial v1.0 test

We next report the comparison results on the test-standard
v1.0 split. The results are shown in Table 3. As the ground-
truth answers and the dense annotations of the test v1.0 split
are not publicly available, we upload our predicted results to
the task organizers’ server for evaluation. The results show
that our single-model UTC significantly outperforms other
single-model methods across various metrics. Compared
with VD-BERT, the current state-of-the-art method on the
VisDial v1.0 dataset, our model pretrained only on VQA
improves NDCG from 59.96 to 62.65.

Moreover, we follow previous works [16, 22] to further
fine-tune UTC on the available dense annotations, where a
cross-entropy loss with soft labels (i.e. relevance scores)
is minimized. For each round of dialog, the answers and
dialog contexts pairs with relevance scores higher than zero
are removed from the negative key set when calculating two
contrastive losses. In this case, our model achieves superior
results than other single-model methods. Similar to previ-
ous works [16,22], the accuracy values measured by NDCG
and other metrics show a trade-off relation. It can be ob-
served that finetuning on dense annotations significantly in-
creases NDCG while hurts other metrics.

Figure 3. Illustration of the metric improvements, where the blue
and green histograms represent discriminative and generative tasks
respectively.

4.5. Ablation Studies

Baselines. In this section, we perform ablation studies to
evaluate the effects of different training settings. The results
are shown in Table 4. UTCindividual in the first row stands
for training two tasks individually. UTCelementary in the
second row stands for training two tasks by simply mini-
mizing the sum of two task losses without contrastive learn-
ing. Comparing UTCindividual and UTCelementary, it can
be observed that the training of the generative task brings
improvements to the ranking task. The main characteristic
of UTC is the unified contrastive loss, which combines all
dialog context and answers features from two tasks to learn
more valuable clues.

Does combining two losses help? To study the im-
pact of the contrastive loss alone, we first remove con-
text contrastive loss and train our UTC with only answer
contrastive loss. The results are reported in the third row
UTCw/o−Lcc

. Comparing to the base model with con-
trastive loss (UTCelementary), UTCw/o−Lcc

gets better per-
formance across various metrics in both discriminative and
generative tasks. For simplicity, we illustrate the abso-
lute improvement values of NDCG and R@1 relative to the
UTCindividual in Figure 3. It can be observed in both Fig-
ure 3 and Table 4 that the performance increases in the gen-
erative setting are more significant than that in the discrimi-
native setting with only answer contrastive loss. The under-
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Figure 4. The effects of contrastive learning on two tasks in UTC, the first column is the correct attention weights yielded from the
discriminative setting and the other three columns are the attention weights corresponding to the base model, discriminative setting and
generative setting respectively.

lying reason is that the discriminative task densely samples
answer candidates to calculate the NSP loss, which has a
similar impact of answer contrastive learning. However, the
generative task can not see the answer information with-
out contrastive learning. Thus, the performance of UTC
increases significantly in the generative task with answer
contrastive learning.

We further compare the effectiveness of context con-
trastive learning, and the results are shown in the fourth row
UTCw/o−Lac

. We observe that context contrastive learning
also brings improvements to both tasks. This phenomenon
further proves our hypothesis that unified learning of two
tasks enables networks to exploit useful information across
different tasks. In contrast to answer contrastive learning,
context contrastive learning brings more improvements to
the discriminative task. It is because that treating each di-
alog context individually in previous methods is not suffi-
cient to learn discriminative dialog context representation.
On the other hand, the answer generation results depend
on not only the dialog context representation but also the
decoding process. Hence, UTC gains large improvements
with context contrastive learning on the discriminative task
compared to the generative task.

The results of our full model with two contrastive losses
are shown in the fifth row of Table 4 and last column of
Figure 3. Interestingly, the two losses show complemen-
tary properties. With two complementary inter-task losses
providing representation learning signals from different per-
spectives, our full model achieves the best performance on
different criteria of both tasks.

4.6. Qualitative Result

To interpret the unified contrastive learning our UTC, we
visualize the attention weights of the self attention layers in
Figure 4. In these examples, consistent with the Visual Di-
alog task definition, we show the top-1 prediction. The last
layers of the encoder and decoder corresponding to discrim-
inative and generative settings are used here. We compare
UTC against the elementary unified model trained without
two contrastive losses. It can be observed that the discrimi-

native and generative settings of UTC tends to focus on the
similar regions in the image. In the first example, the hat
are highlighted at both setting, where it is the key to answer
the question.

In most cases, training with two contrastive losses can
produce more accurate results. For example, in the sec-
ond row, the questions mention multiple objects. It is very
difficult for the model to predict the target answer without
proper reference to the visual information. As our model
exploits contrastive learning to learn rich information from
all answer candidates, it correctly grounds the entities like
shirt and short in the image, thus performs better than the
baseline on both discriminative and generative tasks. How-
ever, as we push the dialog context and answer features of
both settings to be close, we also find that our model may be
simultaneously confused on both tasks when it is uncertain
to predict the target answer. We aim to study it in the future.

5. Conclusion

In this paper, we propose a unified Transformer model
UTC that exploits the dialog context and target answer as
anchor points for jointly training discriminative and gener-
ative tasks. UTC is capable of modeling all the interactions
to rank and generate answers seamlessly in an end-to-end
manner. Moreover, two complementary contrastive losses
are defined to facilitate the training of two tasks. Experi-
ments on Visual Dialog benchmarks show the effectiveness
of the proposed model, and more extensive ablation studies
further confirm the correlation between two tasks and re-
veal that modeling the relations explicitly by inter-task con-
trastive learning can improve their performances.

Our UTC can be formalized as a unified framework of
discriminative and generative tasks. It is easy to transfer the
contrastive learning scheme to other tasks. In the future,
we will explore the application of our framework to more
scenarios.
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