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Abstract

Existing Voice Cloning (VC) tasks aim to convert a para-
graph text to a speech with desired voice specified by a ref-
erence audio. This has significantly boosted the develop-
ment of artificial speech applications. However, there also
exist many scenarios that cannot be well reflected by these
VC tasks, such as movie dubbing, which requires the speech
to be with emotions consistent with the movie plots. To fill
this gap, in this work we propose a new task named Vi-
sual Voice Cloning (V2C), which seeks to convert a para-
graph of text to a speech with both desired voice speci-
fied by a reference audio and desired emotion specified by
a reference video. To facilitate research in this field, we
construct a dataset, V2C-Animation, and propose a strong
baseline based on existing state-of-the-art (SoTA) VC tech-
niques. Our dataset contains 10,217 animated movie clips
covering a large variety of genres (e.g., Comedy, Fantasy)
and emotions (e.g., happy, sad). We further design a set of
evaluation metrics, named MCD-DTW-SL, which help eval-
uate the similarity between ground-truth speeches and the
synthesised ones. Extensive experimental results show that
even SoTA VC methods cannot generate satisfying speeches
for our V2C task. We hope the proposed new task together
with the constructed dataset and evaluation metric will fa-
cilitate the research in the field of voice cloning and broader
vision-and-language community. Source code and dataset
will be released in https://github.com/chenqi008/V2C.

1. Introduction
Voice Cloning (VC) [2, 9, 20, 30] aims to convert a para-

graph of text to speech with the desired voice from a refer-

ence audio. However, there exist many applications in the

real world that require the generated speeches not only us-

ing a template voice but also being with rich emotions (e.g.,

angry, happy, and sad), such as movie dubbing. This is be-

*Partial of the work was performed when Qi Chen was an intern at

Pazhou Lab.
†Corresponding authors.
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Figure 1. (a) Voice Cloning (VC) vs. (b) Visual Voice Cloning

(V2C). Given an input triplet (i.e., subtitle/text, reference audio,

and target video), our V2C task seeks to convert the text into a

speech, which should be with the voice of reference audio and the

emotion derived from reference video. Note that the reference au-

dio only provides an expected voice while its content is irrelevant.

yond the scope of conventional VC tasks (Figure 1(a)), as

no extra guiding information can be used to generate de-

sired tones and rhythms. Considering that we humans ac-

complish the movie dubbing task with the most reference

from visual observations (e.g., watching the movie to grasp

the emotion of characters), we propose an extension task of

VC, namely Visual Voice Cloning (V2C).

An example of the proposed V2C task is shown in Fig-

ure 1(b). Unlike the conventional VC task, which con-

verts text to speech only aided by a reference audio, our

V2C task takes a triplet (text/subtitle, reference audio, ref-

erence video) as input and expects a resulting speech with

the same voice but varying emotions derived from the ref-

erence video. The text/subtitle is the content that the gen-

erated speech needs to cover. The reference audio includes

a pre-recorded voice of the target speaker from a different
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clip. And we aim to generate a speech with the voice in the

reference audio and the character’s visual emotion from the

reference video, speaking the content in the given text.

The new task poses several novel challenges. First, the

conventional Voice Cloning (VC) methods [2, 6, 9, 20, 30]

cannot well solve the V2C task as they focus only on how

to convert the input text to speech with the voice/tone ex-

hibited in the reference audio, without considering the emo-

tion and context of the new speech. However, in our V2C

task (e.g., movie dubbing) the voice emotion is crucial for

generating human-like speech. Second, in our V2C task,

the voice emotion should be derived from the reference

video rather than the reference audio from an irrelevant clip.

Taking movie dubbing as an example, it requires humans

to grasp the emotions of characters by watching the cor-

responding movie clips and observing their performances

(e.g., facial expressions or actions). Although several im-

proved VC methods [37,47] also try to inject the voice emo-

tion into their generated speech, they capture both emotion

and voice from the reference audio, which cannot satisfy the

requirements of V2C task. In our V2C task, an ideal method

should be able to disentangle voice and emotion from the

reference audios and the reference videos, respectively.

As there is no off-the-shelf dataset suitable for the V2C

task, we collect the first V2C-Animation dataset to facilitate

the research in this field. It comprises 10,217 video clips

with audios and subtitles, covering 26 animated movies

with 153 characters (i.e., speakers) in total. Our V2C

dataset covers three modalities (i.e., text, audio and video)

unlike the existing text-to-speech datasets [19,31,49,51] or

movie description datasets [36,41], which only focus on text

and audio, or text and video. Besides, we also provide emo-

tion annotation (e.g., happy or sad) for each audio and video

clip like [14]. To alleviate the impact from background mu-

sic, we only extract the sound channel of the centre speaker,

which mainly focuses on the sound of the speaking char-

acter. In this way, we ensure that all the audio clips only

contain the sound from speaking characters.

To address the above challenges of V2C task, based

on the widely used Text-to-Speech (TTS) framework (i.e.,

FastSpeech2 [34]), we propose a new method called Visual

Voice Cloning Network (V2C-Net), considering the emo-

tion information derived from the reference video frames.

Moreover, based on MCD [24], we design an evaluation

metric, called MCD-DTW weighted by Speech Length

(MCD-DTW-SL), seeking to evaluate the generated speech

effectively and automatically.

In summary, our contribution include:

• We propose a new task, namely Visual Voice Cloning

(V2C). Given a triplet (i.e., text/subtitle, reference au-

dio and reference video), the task seeks to convert the

text into a speech with voice and emotion derived from

reference audio and reference video, respectively.

• We collect the first V2C-Animation dataset, consisting

of 26 animated movies, 153 characters, 10,217 video

clips with aligned audios and subtitles, covering three

modalities (text, audio, video) and speakers’ emotion.

• We design a new method, called Visual Voice Cloning

Network (V2C-Net). Besides, to evaluate the gener-

ated speech automatically, we provide an advanced au-

tomatic evaluation metric, named MCD-DTW-SL.

2. Related Work
As the V2C is a new task, here we briefly review several

closely related works in the fields of Text to Speech, Voice

Cloning, and Prosody Transfer.

Text to Speech. Many text-to-speech (TTS) synthesis

methods [3, 8, 21, 26, 46, 50] have been proposed to gen-

erate natural speech from text. Then, based on WaveNet,

Deep Voice [3] divides a TTS model into several modules,

which are optimised independently. Wang et al. [46] pro-

pose a new framework Tacotron, which integrates all the

necessary stages in text-to-speech synthesis and enables that

the speech synthesis model can be optimised in an end-to-

end manner. Recently, TransformerTTS [26] introduces the

structure of transformer [44] into TTS task while Ren et
al. [35] propose a more efficient transformer (i.e., Fast-

Speech) by using non auto-regressive generation method.

Based on FastSpeech, they further design an improved Fast-

Speech2 [34], which seeks to control the generated speech

via the adjustment of pitch and energy. However, the TTS

task mainly focuses on how to convert natural language text

to speech in a correct pronounce. Instead, our V2C task

requires the generated speech to be additionally with a suit-

able voice emotion and tone.

Voice Cloning. Unlike the TTS method, which synthesises

speech only with a single voice, voice cloning (VC) task

[11, 32, 40] seeks to generate multiple speeches with dif-

ferent voices. Based on Deep Voice [3] and Tacotron [46],

Deep Voice 2 [11] map the voices from different speakers

into a common space and use the low-dimensional embed-

ding from this common space as a condition to aid the gen-

eration process. Jia et al. [20] propose a multi-speaker TTS

framework, which consists of three sub-modules (i.e., en-

coder, synthesizer and vocoder), which is able to synthe-

sise a high-quality speech from given text. More recent

extensions [2, 6, 9, 30] focus on synthesising the voice of

an unseen person using a few samples only. Specifically,

to synthesise a person’s voice from only a few audio sam-

ples, Arik et al. [2] study two approaches: speaker adaption

and speaker encoding. The speaker adaption seeks to fine-

tune a trained multi-speaker model for an unseen speaker

using a few audio-text pairs while the speak encoding tries

to directly estimate the speaker embedding from audios of

an unseen speaker. Chen et al. [9] propose an adaptive TTS

system by using the meta-learning approach. Different from
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VC task, our V2C additionally requires the prosody/tone of

generated speeches to match with the reference video.

Prosody Transfer. To produce realistic speech, prosody

transfer (PT) [5, 17, 37, 38, 43, 47, 48] seeks to grasp

prosody from reference audios. Specifically, extending

from Tacotron [46], Skerry-Ryan et al. [37] propose an en-

coder architecture to learn a representation of prosody from

reference spectrogram slices, which are derived from the

reference audio. Global Style Tokens (GSTs) [47] models

the styles of different speakers using an interpretable em-

bedding, which can be used as a condition when transfer-

ring the different speaking styles. Based on the variational

autoencoder (VAE) framework [22], Hsu et al. [17] design a

neural sequence-to-sequence TTS model, which categorises

the speaking styles into several latent attributes and hence

controls the speaking style via adapting these attributes.

To transfer speaking style which is underrepresented in the

dataset, Whitehill et al. [48] propose an adversarial cycle-

consistent training procedure for a multi-reference neural

TTS system. Overall, the goal of prosody transfer is to cap-

ture both the voice and emotion from the reference audio,

and therefore the task is defined without the use of the infor-

mation from visual side. By contrast, V2C task is proposed

to infer the voice emotion from a reference video, which has

many real-world applications such as movie dubbing.

3. V2C Task and V2C-Animation Dataset
3.1. Problem Definition for V2C Task

Given a triplet Z = {Ztext, Zaudio, Zvideo} (i.e., text,

reference audio and reference video), our Visual Voice

Cloning (V2C) task aims to generate a speech Ywave (i.e., a

waveform in time-domain) from text Ztext, which should

use the voice of reference audio Zaudio and be with the

emotion derived from reference video Zvideo. In Figure 1,

we take movie dubbing as an example. Given a movie clip

(i.e., reference video), a subtitle (i.e., text) and a reference

audio, we seek to synthesise a speech from subtitle accord-

ing to both the character’s emotion derived from movie and

the voice from reference audio.

3.2. Dataset Construction for V2C Task

The dataset for V2C task should cover all three modal-

ities and the samples from different modalities need to be

aligned with each other. As there is no an off-the-shelf

dataset suitable for this new task, we collect the first V2C

dataset, called V2C-Animation.

Data Collection. We search for Blu-ray animated movies

with the corresponding subtitles and then select a set of

26 movies of diverse genres. Specifically, we first cut the

movies into a series of video clips according to the subti-

tle files. Here, we use an SRT type subtitle file. In ad-

dition to subtitles/texts, the SRT file also contains starting

… ……Reference
Video

Subtitle
01:25:15,611 → 01:25:18,148
Arendelle deserves to stand with you.

… …
No. 1340

Figure 2. An example of how to cut a movie into a series of

video clips according to SRT subtitle files. Note that the SRT files

contain both starting and ending time-stamps for each video clip.

No. 1340 refers to the sequential number of the current utterance.

and ending time-stamps to ensure the subtitles match with

video and audio, and sequential number of subtitles (e.g.,

No. 1340 in Figure 2), which indicates the index of each

video clip. Based on the SRT file, we cut the movie into a

series of video clips using the FFmpeg toolkit [42] (an auto-

matic audio and video processing toolkit) and then extract

the audio from each video clip by FFmpeg as well. Note

that, to alleviate the impact from the background music, we

only extract the sound channel of the centre speaker, which

mainly focuses on the sound of the speaking character.

Data Annotation and Organisation. Inspired by the or-

ganisation of LibriSpeech dataset [31], we categorise the

obtained video clips, audios and subtitles into their cor-

responding characters (i.e., speakers) via a crowd-sourced

service. To ensure that the characters appeared in the video

clips are the same as the speaking ones, we manually re-

move the data example that does not satisfy the requirement.

Then, following the categories of FER-2013 [14] (a dataset

for human facial expression recognition), we divide the col-

lected video/audio clips into 8 types including angry, happy,

sad, etc. In this way, we totally collect a dataset with 10,217

video clips with paired audios and subtitles. All of the anno-

tations, time-stamps of the mined movie clips and a tool to

extract the triplet data will be released. We randomly split

60% samples as training data, 10% samples as validation

data and 30% samples as testing data.

3.3. V2C-Animation Dataset vs. Related Datasets

We compare our V2C-Animation dataset against ones

of the VC, TTS, and PT tasks. In addition, we consider

some Movie Description (MD) datasets and Lip Reading

Sentence (LRS) datasets, which contain both video and text

like ours. Specifically, the VC/TTS/PT datasets include

LJ Speech [19], LibriSpeech [31], VCTK [49] and Lib-

riTTS [51], the MD datasets involve MPII-MD [36] and

MovieQA [41], while LRS datasets contain LRS2 [10]1.

From Table 1, the statistic results demonstrate that our V2C-

1The LRS2 dataset has two subsets: LRS2-main and LRS2-pretrain.

On LRS2-pretrain, the utterance of each video may contain multiple sen-

tences. But each video only corresponds to a single sentence on LRS2-

main. There is some overlap between LRS2-pretrain and LRS2-main sets.
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Dataset Text Audio Video Identity Emotion #Movies #Video Clips #Audio Clips #Speakers Avg. S Avg. A/V (s)

LJ Speech [19]
√ √ √

- - 13100 1 17.23 6.57

LibriSpeech [31]
√ √ √

- - 250698 2484 32.55 14.10

VCTK [49]
√ √ √

- - 44070 108 7.41 3.59

LibriTTS [51]
√ √ √

- - 375086 2456 16.86 5.62

MPII-MD [36]
√ √

94 68337 - - - 3.88

MovieQA [41]
√ √

140 6771 - - 6.20 202.67

LRS2-main [10]
√ √ √

- 48164 48164 - 7.13 1∼2

LRS2-pretrain [10]
√ √ √

- 96318 96318 - 21.43 ∼10

V2C-Animation
√ √ √ √ √

26 10217 10217 153 6.51 2.40

Table 1. We compare our V2C-Animation dataset with several existing multi-modal datasets. “Identity” and “Emotion” indicate whether

the datasets contain annotations corresponding to the speaker’s identity and emotion. The notations “#Movies”, “#Video Clips”, “#Audio

Clips” and “#Speakers” refer to the number of movies, videos, audios and speakers/characters, respectively. “Avg. S” indicates the average

length of subtitle while “Avg. A/V” is the average duration of audio/video.

Dataset LJ Speech LibriSpeech

Avg. P (Hz) 127.27 ± 11800.96 88.15 ± 7313.39

Dataset LibriTTS V2C-Animation (Ours)

Avg. P (Hz) 93.97 ± 9295.67 117.99 ± 16910.77

Table 2. We compare the average and variance of pitch from our

V2C-Animation dataset and the related datasets. “Avg. P” refers

to the average values of pitches with the corresponding variances.

Animation dataset is unique, covering all the three modali-

ties (i.e., text, audio and video) with both identity and emo-

tion annotations, while most others only focus on the two

modalities and all of them are without emotion annotations.

To further compare the differences between our V2C-

Animation dataset and related datasets, following [37], we

visualise the pitch tracks of the samples from our dataset

and others. Specifically, we randomly select an audio sam-

ple from LJ Speech, LibriSpeech and LibriTTS, respec-

tively. Due to the varying lengths of audios, for a fair com-

parison, we crop two seconds of audio from each compared

sample. As shown in Figure 3, the audio pitches from the

existing datasets are more smooth and the ranges of fre-

quency (Hz) are narrower than ours. Moreover, we pro-

vide average and variance values of the pitch tricks. Table 2

shows that the variance of our V2C-Animation is largest,

which further demonstrates that our proposed dataset has a

wider range of frequency (Hz). Both the visual and statis-

tical results demonstrate that our V2C-Animation dataset is

more challenging due to the varied prosody.

4. Visual Voice Cloning Network (V2C-Net)

For the V2C task, we propose a baseline model, called

Visual Voice Cloning Network (V2C-Net), which is based

on a widely used TTS framework FastSpeech2 [34]. As

shown in Figure 4, our model contains three main compo-

nents: a multi-modal encoder, a synthesizer and a vocoder.

Figure 3. Examples from the existing Text-to-Speech (TTS)

datasets (i.e., LJ speech, LibriTTS and LibriSpeech) and our V2C-

Animation dataset. A pitch of 0 Hz refers to an unvoiced segment.

We input a triplet (i.e., text, reference audio, and reference

video) into the encoder and output three types of features

(i.e., phoneme, speaker, and emotion). Based on these fea-

tures, we use the synthesizer to generate a mel-spectrogram

(see Figure 4 right side), which is a time-frequency repre-

sentation of the audio signal. Last, we convert the generated

mel-spectrogram into waveform (i.e., speech, see Figure 4

right-bottom) by the vocoder.

4.1. Multi-modal Encoder for Feature Extraction

Given a triplet Z = {Ztext, Zaudio, Zvideo}, the output

feature/embedding X from the multi-modal encoder is

X = {x1, ...,xL} = f(Z), (1)

where L is the length of input sentence (i.e., the number

of phoneme). f(·) is the multi-modal encoder, mainly con-

taining three sub-modules: a text encoder ftxt, a speaker

encoder fspk, and an emotion encoder femo. Here, Ztext,
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Figure 4. Overview of V2C-Net. It consists of three main components: a multi-modal encoder, a synthesizer and a vocoder. A triplet (i.e.,

text, reference audio and reference video) is fed into the multi-modal encoder (Sec. 4.1) and it outputs three types of embeddings. Based

on these embeddings, the synthesizer (Sec. 4.2) generates a mel-spectrogram. Finally, the mel-spectrogram is converted into the waveform

(i.e., speech) by the vocoder (Sec. 4.3).

Zaudio and Zvideo indicate the input text, reference audio

and reference video, respectively. We obtain the i-th output

feature xi = oi ⊕ u⊕ v, where oi is the embedding of the

i-th phoneme derived from text Ztext. The embeddings u
and v are the outputs of fspk and femo, respectively. The

notation ⊕ indicates the operation of element-wise add.

Text encoder. Following the structure of FastSpeech2, we

take 4 Feed-Forward Transformer (FFT) blocks [35] as our

text encoder. Based on such a text encoder, we produce a

series of phoneme embeddings O = {o1, ...,oL} from an

input text Ztext. Mathematically, the process can be defined

as O = ftxt(Ztext).
Speaker encoder. To explore the voice characteristics of

different speakers, we adopt a speaker encoder fspk, which

has the same architecture as [45], comprising 3 LSTM

layers and a linear layer. The speaker encoder first con-

verts a sequence of mel-spectrogram frames, derived from

the reference audio, to a series of hidden embeddings by

LSTM, and then maps the last hidden embedding to a fixed-

dimensional vector via the linear layer. For convenience, we

define the process as u = fspk(σ(Zaudio)), where u refers

to the speaker embedding while σ is a mapping function,

converting the audio from waveform to mel-spectrogram.

Emotion encoder. To exploit the emotion from video, we

design an emotion encoder EE , which captures the embed-

ding of the whole video clip Zvideo. To be specific, we use

the I3D model [7] as our emotion encoder femo and calcu-

late the emotion embedding v by v = femo(Zvideo).

4.2. Synthesizer for Mel-Spectrogram Generation

To generate the mel-spectrogram from the conditional

phoneme embedding X = {x1, ...,xL}, we introduce

a synthesizer inspired by FastSpeech2 [34], and obtain

the predicted mel-spectrogram frames Y = {y1, ...,yT },

where T is the number of mel-spectrogram frames. Here,

the synthesizer mainly contains four parts: a duration pre-

dictor, a pitch predictor, an energy predictor, and a mel-

spectrogram decoder. Loss function of the synthesizer is

LS = Lmel + λ1Ldur + λ2Lpitch + λ3Lenergy, (2)

where Lmel, Ldur, Lpitch and Lenergy refer to the losses

of mel-spectrogram, duration predictor, pitch predictor and

energy predictor, respectively. The λ1, λ2 and λ3 are hyper-

parameters, and we set λ1 = λ2 = λ3 = 1 in practice. The

details are depicted in the following.

Duration Predictor. To alleviate the problem of length

mismatch between the input embedding X and mel-

spectrogram frames Y (i.e., L �= T ), we introduce a du-

ration predictor Sd, which takes the embedding X as in-

put and predicts the duration D = {d1, ..., di..., dL} =
{Sd(x1), ..., Sd(xi)..., Sd(xL)} of each phoneme embed-

ding. The i-th phoneme duration di indicates the number

of copies for i-th phoneme embedding xi. Then, we use a

Length Regulator (LR):

Xmel = LR(X ,D) = LR(X , Sd(X )), (3)

where Xmel is extended phoneme embedding2 with length

T . To optimise the duration predictor, we use Montreal

forced alignment (MFA) [28] tools to obtain the ground-

truth phoneme duration sequence, and then calculate a mean

square error (MSE) loss between ground-truth D̂ and pre-

dicted D. Formally, the loss can be defined as

Ldur =
1

L

L∑

i=1

(d̂i − di)
2. (4)

Pitch and Energy Predictors. To affect the prosody and

volume of speech, following [34], we employ a pitch pre-

dictor Sp and an energy predictor Se, respectively. Specif-

ically, to predict the pitch contour, we use continuous

2For example, if di = 2, Xmel would be Xmel = {...,xi,xi, ...}.

For simplicity, we redefine Xmel as Xmel = {x1, ...,xt, ...xT }
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wavelet transform (CWT) to convert the continuous pitch

into pitch spectrogram [16, 39], and take it as ground-truth

to optimise the pitch predictor Sp by MSE loss:

Lpitch =
1

T

T∑

t=1

(p̂t − pt)
2, (5)

where p̂t and pt = Sp(xt) denote the t-th ground-truth and

predicted pitch value, respectively. For energy, we follow

the operation in [34] that calculate an L2-norm of the am-

plitude of each short-time Fourier transform (STFT) frame

and take it as energy. The corresponding loss function is

Lenergy =
1

T

T∑

t=1

(êt − et)
2, (6)

where êt and et = Se(xt) are the t-th ground-truth and

predicted energy value, respectively. Last, we encode

each pitch and energy value into the corresponding em-

bedding by the embedding layers φ and ϕ separately, and

then add the pitch and energy embeddings into the ex-

tended phoneme embedding Xmel. Mathematically, the

mel-spectrograms Y can be generated by

Y = g (Xmel ⊕ φ(Sp(Xmel))⊕ ϕ(Se(Xmel))) , (7)

where g(·) refers to a mel-spectrogram decoder, consist-

ing of 6 FFT blocks [35]. To optimise the predicted mel-

spectrogram, we use the loss function:

Lmel =
1

T

T∑

t=1

‖ŷt − yt‖, (8)

where ŷt denotes the t-th frame of the ground-truth mel-

spectrogram while yt ∈ Y is the predicted one.

4.3. Vocoder for Speech Synthesis

In Figure 4, to convert the generated mel-spectrogram Y
into time-domain waveform Ywave, we use HiFi-GAN [23]

as our vocoder, which mainly focuses on the raw waveform

generation from mel-spectrogram by GANs [13]. The gen-

erator of HiFi-GAN can be divided into two major modules:

a transposed convolution (ConvTranspose) network and a

multi-receptive field fusion (MRF) module. Specifically, we

first upsample the mel-spectrogram Y by ConvTranspose,

which seeks to take an alignment between the length of the

output features and the temporal resolution of raw wave-

forms. Then, we feed the upsampled features into the MRF

module, which consists of multiple residual blocks [15], and

take the sum of outputs from these blocks as our predicted

waveform. Here, we follow the settings of [23] that use the

residual blocks with different kernel sizes and dilation rates

to ensure different receptive fields. We optimise the vocoder

via the objective function that contains an LSGAN-based

loss [27], a mel-spectrogram loss [18], and a feature match-

ing loss [25]. In practice, we use the “universal” check-

point provided in the official code of HiFi-GAN without

fine-tuning on any of the synthesised mel-spectrograms.

5. Experiments

We evaluate the quality of generated speech in terms of

three aspects: 1) objective evaluation, 2) subjective evalu-

ation, and 3) identity and emotion accuracy. The objective

and subjective evaluation metrics aim to assess the qual-

ity of generated speeches by comparing with ground-truth

ones. By contrast, the identity accuracy and emotion accu-

racy focus on whether the generated speeches involve the

desired voice (i.e., identity) and emotion, respectively. We

provide both quantitative and qualitative results on the V2C-

Animation dataset. More details are in the following.

5.1. Evaluation Metrics

Objective Evaluation Metric. To assess the quality of gen-

erated speech, we use Mel Cepstral Distortion (MCD) [24]

metric, which compares Mel Frequency Cepstral Coeffi-

cient (MFCC) vectors C = {c1, c2, ..., ci, ..., cM} and C′ =
{c′1, c′2, ..., c′j , ..., c′N} derived from the generated speech

and ground truth, respectively. We sum the Euclidean dis-

tance over the first K(K = 13) MFCC values:

MCD(C, C′) =
1

T

T∑
t=1

d(ct, c
′
t) =

1

T

T∑
t=1

√√√√ K∑
k=1

(ct,k − c′t,k)2,

(9)

where M = N = T refers to the number of speech/audio

frames. The ct,k and c′t,k denote the k-th MFCC value

of the t-th speech frame from generated and ground-truth

speeches, respectively, while ct = (ct,1, ct,2..., ct,K) and

c′t = (c′t,1, c
′
t,2..., c

′
t,K).

Note that the MCD metric requires the lengths of two in-

put speeches to be the same (i.e., M = N ). When M �= N ,

the existing voice cloning methods like [37] simply extend

the shorter speech to the length of longer one by padding

0 for the time-domain waveform. In this way, the value

of MCD may become extremely large if the mismatching

occurs at the beginning of two speeches. To avoid this is-

sue, Battenberg et al. [4] use an improved MCD metric,

called MCD-DTW, which adopts the Dynamic Time Warp-

ing (DTW) [29] algorithm to find the minimum MCD be-

tween two speeches. However, MCD-DTW would achieve

a better value as long as there is a match between two

speeches. This is not reasonable as a better generated

speech should have a similar length with the ground truth.

To alleviate the above issues, we propose a MCD-DTW

weighted by Speech Length (MCD-DTW-SL), which eval-

uates both the length and the quality of alignment between

two speeches. In MCD-DTW-SL, to evaluate whether the

two speeches (i.e., C and C′) are aligned, we still use

DTW algorithm to calculate the minimum distance among

them. Specifically, we compute the cumulative distance

γi,j = d(ci, c
′
j) + min(γi−1,j−1, γi−1,j , γi,j−1), where

γi,j is the minimum cumulative distance from index (1, 1)
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Methods MCD ↓ MCD-DTW ↓ MCD-DTW-SL ↓ Id. Acc. ↑ Emo. Acc. ↑ MOS-naturalness ↑ MOS-similarity ↑
Ground Truth 00.00 00.00 00.00 90.62 84.38 4.61 ± 0.15 4.74 ± 0.12

SV2TTS [20] 21.08 12.87 49.56 33.62 37.19 2.03 ± 0.22 1.92 ± 0.15

SV2TTS* [20] 17.41 11.16 15.92 38.21 41.24 3.20 ± 0.20 3.09 ± 0.33

FastSpeech2 [34] 12.08 10.29 10.31 59.38 53.13 3.86 ± 0.07 3.75 ± 0.06

V2C-Net (Ours) 11.79 10.09 10.05 62.50 56.25 3.97 ± 0.06 3.90 ± 0.06

Table 3. Comparison with the state-of-the-art methods. We provide the results of both objective (i.e., MCD, MCD-DTW and MCD-DTW-

SL) and subjective evaluation metrics (i.e., MOS-naturalness and MOS-similarity). “Id. Acc.” and “Emo. Acc.” are the identity and

emotion accuracy of the generated speech, respectively. The method with “*” refers to a variant taking video (emotion) embedding as an

additional input. “Ground Truth” denotes the results on ground-truth samples. ↑ (↓) means that the higher (lower) value is better.

to (i, j). Then, we obtain the objective minimum dis-

tance γM,N by accumulating R distances in total, where

max(M,N) ≤ R < M +N − 1. Besides, considering the

influence of lengths, we design a simple but effective co-

efficient η = max(M,N)
min(M,N) . Formally, we calculate the metric

MCD-DTW-SL(C, C′) =
η

R
· γM,N . (10)

Subjective Evaluation Metric. To further evaluate the

quality of generated speech, we conduct a human study by

using a subjective evaluation metric. Specifically, following

the settings in [20], we use a Mean Opinion Score (MOS)

evaluation approach based on subjective listening tests. In

this approach, we use the Absolute Category Rating (ACR)

scale [33] with rating scores from 1 to 5 (i.e., from “Bad” to

“Excellent”) in 0.5 point increments. Based on such an ap-

proach, we mainly evaluate the generated speeches with re-

spect to naturalness and similarity. 1) MOS-naturalness: to

assess the naturalness of the generated speech, we randomly

sample 100 generated audios from the testing set and divide

them into 4 groups. Each group is rated by a single rater. 2)

MOS-similarity: to evaluate whether the generated speech

is well aligned with the desired voice and prosody, we com-

pare each generated speech with the ground-truth one from

the same speaker. We use the same samples as when eval-

uating MOS-naturalness above. Each pair is rated by the

rater according to the similarity between two speeches.

Identity and Emotion Accuracy. To evaluate whether the

generated speech carries proper speaker identity and emo-

tion, we propose an identity accuracy and an emotion ac-

curacy, respectively. The identity accuracy aims to verify

whether the generated speech can be recognised as the same

speaker as the input reference audio. Similarly, the emo-

tion accuracy reflects whether the generated speech contains

the same emotion like the reference video. To this end, we

first use GE2E [45] model as our audio encoder to obtain a

fixed-dimensional audio embedding for each speech. Then,

based on the audio embeddings {ai1, ...,aiH}3 of the i-th
speaker, we obtain the centroid a′i of the i-th speaker by

a′i = Ed[aih] =
1
H

∑H
d=1 aih, where H refers to the num-

ber of audio belonging to the i-th speaker. Last, we compare

3The embeddings have been normalised using L2 norm.

the cosine similarity between the embedding of generated

speech and each centroid, and then classify it into the cate-

gory the most similar centroid belongs to. Similarly, we can

calculate the emotion accuracy in the same way as well.

5.2. Quantitative Evaluation

To evaluate the performance of our method, we com-

pare V2C-Net with several state-of-the-art methods. In Ta-

ble 3, our V2C-Net consistently outperform the existing VC

models (e.g., the MCD-DTW-SL of our V2C-Net is 10.05
while the SV2TTS model only achieves 49.56). Besides,

we propose a variant of SV2TTS model, called SV2TTS*,

which takes the video embedding derived from our method

as an additional input. From Table 3, SV2TTS* achieves

better performance compared with SV2TTS, which fur-

ther demonstrates the effectiveness of our video component.

Note that the Id. Acc. and Emo. Acc. on the ground truth

are not 100%. This is because our pre-trained identity and

emotion classification models are not perfect.

5.3. Qualitative Evaluation

To further assess the quality of generated speech, we

show the visualised results of the proposed methods, base-

line method and ground-truth, respectively. In Figure 5,

compared with FastSpeech2, both the energy (volume)

curve and the fundamental frequency curve (i.e., F0 curve)

of the mel-spectrogram generated by our V2C-Net is more

similar to the ground-truth (GT) ones. Notably, as the dura-

tion of audio should be predicted as well, the lengths of the

generated audio and the GT one may be different.

5.4. Effect of Reference Audio and Video

To investigate the effect of reference audio and video,

we compare the generated speeches by removing them al-

ternately and show the quantitative results (i.e., identity and

emotion accuracy) in Table 4. The results show that with

the control of reference audio, our V2C-Net achieves higher

identity accuracy obviously than the counterpart without

reference audio (i.e., from 25.00% to 59.38%). After fur-

ther incorporating the information of reference video, the

model obtains the best performance on both two metrics.
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FastSpeech2 V2C-Net (Ours) Ground Truth

If they knew what I knew, they'd
never let him stay.

Subtitle/Text

Emotion: sad

… …

Speaker: Tim (Boss Baby)

Figure 5. Mel-spectrogram of generated and ground-truth audios. Orange curves are F0 contours, where F0 is fundamental frequency of

audio. Purple curves refer to energy (volume) of audio. Horizontal axis is duration of audio. We highlight main difference via red circle.

ref. A ref. V Id. Acc. ↑ Emo. Acc. ↑

V2C-Net

√
25.00 47.61√
59.38 53.13√ √
62.50 56.25

Table 4. Effect of reference audio and video. “ref. A” and

“ref. V” denote the reference audio and reference video separately.

“Id. Acc.” and “Emo. Acc.” are identity and emotion accuracy of

the generated speech, respectively. ↑ means higher value is better.

Task Dataset MCD ↓ MOS-naturalness ↑

VC

VCTK [49] - 4.07 ± 0.06

LibriSpeech [31] - 3.98 ± 0.06

Multi-speaker [37] 12.37 -

V2C V2C-Animation (Ours) 21.08 2.03 ± 0.22

Table 5. Comparisons on the difficulties of the conventional Voice

Cloning (VC) and Visual Voice Cloning (V2C) tasks. We show the

performance of SV2TTS [20] trained on different datasets. VCTK,

LibriSpeech and Multi-speaker are widely used in VC task. ↑ (↓)
means higher (lower) value refers to better performance.

5.5. Comparing Difficulties of V2C and VC Tasks

To investigate whether our V2C task is more challeng-

ing than the conventional VC task, we compare results

of the SV2TTS method [20] on both our V2C-Animation

dataset and the existing VC datasets (e.g., VCTK [49], Lib-

riSpeech [31] and Multi-speaker [37]). In Table 5, SV2TTS

obtains 4.07 ± 0.06 and 3.89 ± 0.06 MOS-naturalness on

VCTK and LibriSpeech, respectively, which are higher than

that on our V2C-Animation dataset (2.03±0.22 in Table 5).

Besides, the SV2TTS model achieves 12.37 MCD value

on Multi-speaker dataset [37], which is better than the re-

sults of the same model on our V2C-Animation dataset (i.e.,

21.08 in Table 5). It demonstrates that the proposed V2C

task is more non-trivial as the same VC model obtains worse

results on our V2C-Animation dataset than others.

5.6. Future Work and Discussion on Social Impacts

Limitations and Future Work. In the future, we may ex-

tend V2C-Net in two aspects. First, to grasp the emotion

from video, we simply use I3D model as emotion encoder.

However, it may not well disentangle emotion from char-

acter identity (see results in Table 4). To alleviate this is-

sue, we may design an emotion-aware loss to capture more

discriminative emotion features. Second, we integrate the

multi-modal features (i.e., text, audio, video) by a simple

operation (i.e., element-wise add), which may result in sub-

optimal performance. Thus, a more promising model for

feature fusion is necessary, e.g., COOT [12] or VATT [1].

Discussion on Social Impacts. We provide a new V2C

task, which takes advantage of many real-world applica-

tions, e.g., movie dubbing or restoring the ability to commu-

nicate naturally for users who have lost their voice. How-

ever, the technology has a risk to be used maliciously for

fake voice generation, which may be misused to financial

scams by combining with video deepfakes. To avoid this

issue, in this paper, we only focus on the voice generation

based on animated movies without any personally identifi-

able information, e.g., face of the real person.

6. Conclusion

In this paper, we propose a novel task, Visual Voice

Cloning (V2C), extended from conventional Voice Cloning.

It seeks to convert a paragraph of text to speech with the de-

sired voice and emotion from reference audio and video,

respectively. To facilitate the research of this new task, we

collect the first V2C-Animation dataset. We also design a

V2C baseline method, namely Visual Voice Cloning Net-

work (V2C-Net), based on FastSpeech2 (a widely used TTS

framework). Moreover, to assess the quality of the gen-

erated speech, we propose a variant of MCD-DTW, called

MCD-DTW-SL, which is weighted by speech length. The

experimental results demonstrate the effectiveness of our

V2C-Net, but it is still far from saturation.
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