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Abstract

The limited availability of annotated data often hinders
real-world applications of machine learning. To efficiently
learn from small quantities of multimodal data, we lever-
age the linguistic knowledge from a large pre-trained lan-
guage model (PLM) and quickly adapt it to new domains
of image captioning. To effectively utilize a pretrained
model, it is critical to balance the visual input and prior
linguistic knowledge from pretraining. We propose Visu-
alGPT, which employs a novel self-resurrecting encoder-
decoder attention mechanism to quickly adapt the PLM
with a small amount of in-domain image-text data. The
proposed self-resurrecting activation unit produces sparse
activations that prevent accidental overwriting of linguis-
tic knowledge. When trained on 0.1%, 0.5% and 1% of
the respective training sets, VisualGPT surpasses the best
baseline by up to 10.0% CIDEr on MS COCO [43] and
17.9% CIDETr on Conceptual Captions [63]. Furthermore,
VisualGPT achieves the state-of-the-art result on IU X-ray
[15], a medical report generation dataset. Our code is
available at https://github.com/Vision—CAIR/
VisualGPT.

1. Introduction

Recent performance gains in image captioning [13, 24,

,31,75] are achieved on top of large-scale data corpora
such as MS COCO [43] or Conceptual Captions [63], each
containing hundreds of thousands of captions. Manual an-
notation of captions requires considerable time and effort.
On the other hand, semi-automatic collection of image-
caption pairs from the Internet, as used by Conceptual Cap-
tions [63], may generate incorrect or undesirable training
data even after multiple rounds of cleaning. Data for spe-
cialized domains like medical report generation [15,40] and
low-resource language captioning [ 8, 74] cannot be easily
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Figure 1. Our VisualGPT model transfers the knowledge from
a pre-trained language model to the caption decoder. A self-
resurrecting encoder-decoder attention is designed to connect the
multi-level visual features and caption decoder.

scaled. Improving the data efficiency of image captioning
networks would enable quick data curation, description of
rare objects, and applications in specialized domains.

In this paper, we investigate the data efficiency prob-
lem for image captioning. This problem is distinct from
the novel object captioning problem [ 1, 23], which relies on
abundant in-domain data but zero out-of-domain data. In-
stead, we aim to improve the performance of image caption-
ing systems trained on a small subset of in-domain data.

We propose to improve data efficiency by leveraging pre-
trained language models (PLMs) [17, 34, 46, 60], such as
BERT [16], XLNet [77], and GPT [6, 58, 59]. Via self-
supervised learning, these models acquire rich linguistic
and semantic knowledge, which has been shown to inform
downstream tasks in NLP [7,21]. However, the adapta-
tion of PLMs pretrained on unimodal textual data for mul-
timodal tasks remain under-investigated.
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Figure 2. Comparison of the part-of-speech distributions of the
MS COCO and WikiText-2 datasets [51]. We use the spacy parser
and show only the most important categories.

A key challenge in utilizing PLMs is to bridge the do-
main gap between multi-modal data and the unimodal tex-
tual data the PLMs are pre-trained on. In Figure 2, we
compare the part-of-speech distributions of MS COCO and
WikiText-2 [51]. MS COCO employs 75% more nouns but
14% fewer verbs, which indicates a bias toward descriptions
of static objects rather than actions. This suggests that, in
order to effectively utilize PLMs in image captioning, we
must balance prior linguistic knowledge acquired from pre-
training and visual input information.

Figure 1 depicts the overall architecture of our pro-
posed model, dubbed as VisualGPT. In the commonly used
encoder-decoder architecture for image captioning, we ini-
tialize the parameters of the decoder from PLMs such as
GPT-2 [59], whereas the encoder layers are randomly ini-
tialized. In addition, we propose an attention mechanism
with self-resurrecting activation units (SRAUs), which bal-
ances the input from the visual encoder and the linguistic
input from the previous decoder layer. The proposed mech-
anism can produce sparse activations while not being as vul-
nerable to the zero-gradient problem as regular gates; the
self-resurrecting gates can be “turned on” again after being
zeroed out.

Empirical results demonstrate that, when trained on
0.1%, 0.5%, and 1% of the MS COCO and Conceptual
Captions data, Visual GPT outperforms several strong base-
line models. We achieve the state-of-the-art result on IU X-
ray [15], a medical report generation dataset. With several
ablation experiments, we verify the effectiveness of PLMs
and the proposed self-resurrecting attention mechanism.

Contributions. We make the following contributions:

* We explore the data efficiency problem for image
captioning by utilizing pretrained language models
(PLMs) as the caption decoder. With only a small
amount of in-domain training data, the proposed tech-
nique quickly adapts PLMs to the cross-modal task of

image captioning. To our knowledge, this is the first
work that focuses on efficiently adapting large pre-
trained language models for image captioning.

* We propose a novel encoder-decoder attention with
self-resurrecting activation units (SRAUSs), which can
balance features from the visual and textual modalities.
SRAU produces sparse activations that reduce acciden-
tal overwriting of pretrained weights.

2. Related Work

Image Captioning. Image captioning has been exten-
sively studied in computer vision research. Early methods
[19,31,37,65,79] focus on filling templates with extracted
objects, attributes, and relationships. With the advent of
deep learning, researchers proposed end-to-end neural net-
works that encode an image into vector representations and
decode a caption word by word [27,71]. Many improve-
ments to the encoder [11,38,49,75,76,80,81], the decoder
[72,73,78], and the attention mechanism [8, 13,24, 33, 36]
has since been proposed. Encoding the image using object
regions has proven beneficial [2]. Reinforcement learning
enables model optimization with non-differentiable evalua-
tion metrics [14,45,61,64]. [9, 12] investigate fine-grained
control of caption generation. [14, 64] adopt GAN-like ar-
chitectures that encourage human-like captions.

A few formulations of the image captioning problem
deviate from the traditional supervised learning paradigm.
Novel object captioning aims to describe objects that do
not exist in the training data [1,23,41,50,70]. Feng et al.
[20] propose unsupervised captioning without using paired
image-caption supervision. Kim er al [29] focus on learning
efficiency and improve the data efficiency by learning from
auxiliary unpaired image-caption data.

Self-supervised NLP Models. Self-supervised training of
large neural networks on textual data proves to be an im-
portant technique in the creation of high-performance NLP
models. Several self-supervision signals have been pro-
posed, such as autoregressive language modeling [5, 52],
which includes the GPT series of models [0, 58, 59], and
masked language modeling, which includes ELMo [56] and
BERT-related methods [16,32,47].

In this paper, we propose a quick adaptation technique
for network weights obtained using the language model-
ing (LM) objective. However, the proposed technique can
easily be applied to other models, as the masked language
modeling objective can be converted to the LM objective
by masking only the last word in the textual sequence. Un-
like neural networks pretrained on multimodal data (e.g.,
[39,48,57,66,67,82,83]), our method only requires a small
amount of multimodal training data and focuses on adapting
linguistic knowledge learned from the textual modality.
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Figure 3. Architectures of vanilla Transformer [

], Transformer with AoA module [

(c)

] (AoA Transformer), M? Transformer [13], and

VisualGPT. We denote [ and H as the visual and language features, respectively. Z,,—1 is the output from decoder layer m — 1. Within

the circles, o, BY and B represent different gating units.

3. Preliminaries: Transformer for Captioning

The Transformer [68] has become one of the standard
models for image captioning. At its core lies the multi-head
dot-product attention mechanism. Taking three input matri-
ces, query @, key K, and value V, the attention function
can be written as

Attn(Q, K, V') = softmax (WZQ)(W> WV,

VD
6]

where W4, Wk, and WV are trainable parameters and D
is a scaling factor. Intuitively, the attention operation can
be seen as encoding W9(@Q) as convex combination of the
row vectors of WV The multi-head attention repeats the
process with multiple sets of W4, W*, and W7; the results
are concatenated and linearly projected back to the same
dimensionality.

In visual captioning tasks, we apply a visual encoder
whose output is I € RP*S, O is the length of the input
sequence, which in this work is a sequence of objects in the
image. S is the hidden dimension size. The decoder net-
work outputs words in the caption sequentially.

When decoding word ¢+1, the encoder-decoder attention
takes as input the visual encoding / and the current state of
the decoder H € R**S. We apply the attention operation
with H as the query and I as both the key and the value.
The encoder-decoder attention is then

EncDecAttn(H, I) = Attn(H, I, 1). 2)
After that, we apply the AddNorm operator, which contains
a residual connection and layer normalization [3] and can
be written as LayerNorm(EncDecAttn(H, ) + H).

Researchers have proposed other variants of the encoder-
decoder attention. In Figure 3, we contrast these decoder
architectures with the proposed VisualGPT model. The
Attention-on-Attention (AoA) module [24] provides an al-
ternative method for combining the visual encoding I and
the linguistic information H from the decoder. For an-
other method for combining visual and linguistic informa-
tion, M? Transformer [13] connects all decoder layers to
all encoder layers. In Figure 3, it is represented by the box
labeled as Meshed Connection Sum.

4. VisualGPT

Pretrained language models (PLMs) such as GPT-2 [59]
are trained on data from a single modality. We use a PLM as
the caption decoder and feed visual information to the PLM
via the encoder-decoder attention, which plays a crucial role
in quickly adapting the PLMs.

With the design of the encoder-decoder attention, we aim
to carefully balance visual information from the encoder
and linguistic knowledge stored in the PLM. During the
generation of visual words, such as “person”, “truck”, or
“dog”, the model should attend to visual information. In
contrast, the generation of determiners or connectives re-
quires only linguistic knowledge. Ideally, we would like to
exploit the massive amount of linguistic knowledge stored
in the PLM weights (e.g., [44]), while referring to the vi-
sual input only when required. To achieve this goal, we
introduce a pair of specialized gating units.

4.1. Self-Resurrecting Activation Unit

The encoder-decoder attention EncDecAttn(H, I) may
be seen as encoding the linguistic information H with visual
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information /. In VisualGPT, we control the balance be-
tween these two modalities using two complementary gates
BYs and B'™. The output of this module is

B"® ® EncDecAttn(H,I) + B™ @ H, 3)

where ® denotes element-wise multiplication. Letting
BYi, j] and B""[i, j]] denote the elements in the matrices,
they are computed in pairs as

B™i,j) = o(Hli, )1 (o (H[i, j]) > 7).

lanf; - .. .o (4)
B, j] = (1 = o(H[i, j])1(1 — o (H[i, j]) > 7),

where T is a predefined threshold hyperparameter and 1(-)
is the indicator function, which returns 1 if the inner state-
ment is true and O otherwise.

An alternative to SRAU is ordinary complementary gates
(OCG), computed as o (H i, j]) and 1 — o (H]|i, j]) (see Fig-
ure 4, top left). OCG can output values that are very close
to zero. In contrast, with the indicator functions SRAU di-
rectly sets values less than the threshold 7 to zero, thereby
introducing sparsity. When 7 is set to 0, SRAU becomes
OCG. As the gradient cannot backpropagate through zero
gates, SRAU prevents optimization from disrupting pre-
trained weights that capture linguistic knowledge. This
property is crucial in effective utilizing of pretrained mod-
els. In contrast, when the OCG gates output near-zero val-
ues, some small but non-zero gradients may still overwrite
existing linguistic knowledge.

Another advantage of SRAU is its ability to escape from
zero outputs. It is possible for one gate to output zero and
have zero gradient while the gradient for the other gate
remains usable (e.g., when z in Fig 4 is close to 1.3 or
—1.3). The asymmetry allows gradient-based optimization
to change the zero-outputting gate by changing the other
gate. For this reason, we name these gates self-resurrecting
activation units.

The asymmetry of SRAU may appear counter-intuitive.
We contrast SRAU with a “normalized” version where the
two gates B"[i, j] and B[, j] become symmetric.

BVis[i ]] _ BVis[ivj]

’ BV15[27J] + B]an [7”.]] ’ (5)
plany: - Blan[i’-ﬂ
B*[i, j] =

- BYS[i, ] + B[, 5]
These gates lose the asymmetry that enables the self-
resurrecting property.

In Figure 4, we visualize OCG, SRAU, and normalized
SRAU. In ablation experiments, we show that SRAU out-
performs than both OCG and normalized SRAU.

4.2. The Architecture and Training of VisualGPT

For completeness, we introduce the overall architecture
for VisualGPT. The image encoder comprising K Trans-
former layers. Given an image, we extract objects in the

Ordinary Complementary Sigmoid Gates Normalized SRAU: t=0.2
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Figure 4. Top Left: Ordinary complementary sigmoid gates. Top
Right: Normalized SRAU 7=0.2. Bottom: SRAU 7=0.2. The x-
axis indicates the function inputs and the y-axis indicates outputs.

image using an off-the-shelf object detection network. After
that, we feed the spatial location into the image encoder. As
such, the image encoder outputs I of dimension S x O x K.

The caption decoder contains M layers and its param-
eters are initialized from a PLM. We insert the encoder-
decoder module, which is randomly initialized. We also
apply meshed connections between the encoder and the de-
coder like in M? Transformer. The network is trained to
maximize the probability of the next token w; conditioned
on tokens wi,...,w;—1 and the encoder output I. Af-
ter a predefined number of epochs on supervised learning,
we switch to self-critical reinforcement learning [61] with
CIDEr as the reward.

5. Experiments
5.1. Datasets and Evaluation Metrics

We evaluate our model on three datasets, MS COCO
[43], Conceptual Captions [63], and IU X-ray [15]. MS
COCO contains 123,287 images and each of them is an-
notated with 5 different captions. We follow the Karpa-
thy split [28] for the validation and test set. The Concep-
tual Captions dataset [63] contains around 3.3M images for
training and 28K for validation, with much higher diversity
than COCO. As the test data is not publicly available, we
instead use the public validation data as our test set, and ran-
domly sample 5000 different image-caption pairs from the
training set as the validation set. To create the small train-
ing data setup for MS COCO and Conceptual Captions, we
randomly sample 0.1%, 0.5% and 1% image-caption pairs
as training data, which matches to (567, 2,835 and 5,670
pairs) for COCO and (3,300, 16,500, and 33,000 pairs) for
Conceptual Captions. We repeat the experiments 4 times
with different random seeds, and report the average perfor-
mance. We report metrics for BLEU [54], METEOR [4],
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COCO Conceptual

Method PLM | Bl B4 M R C Bl B4 M R C
0.1% training data
Transformer [68] None | 574 13.1 16.7 40.7 408 | 124 24 49 152 21.2
M? Transformer [13] None | 569 13.1 169 40.6 409 | 13.1 28 48 155 235
AoA Transformer [24] None | 56.6 13,5 159 40.7 384 | 114 24 46 147 209
X-Transfomrer [53] None | 567 129 165 406 404 | 128 2.7 47 153 23.1
OSCAR [39] BERT | 53.8 119 17.1 395 410 | 122 24 43 148 219
Transformer GPT | 56.8 153 170 412 429 | 132 25 50 151 219
M? Transformer GPT | 549 147 166 41.1 410 | 119 26 49 154 240
AoA Transformer GPT | 555 144 162 407 40.1 | 11.8 28 4.6 139 205
VisualGPT (Normalized SRAU) GPT | 55.7 15.0 16.8 412 424 | 133 29 51 158 258
Visual GPT (Our SRAU) GPT | 582 164 18.5 419 451 | 139 32 56 16.7 27.7
0.5% training data
Transformer None | 62.8 18.8 194 252 592 | 132 33 55 163 29.6
M? Transformer None | 63.3 194 198 456 613|145 3.6 6.0 17.1 320
AoA Transformer None | 63.5 202 194 458 639|138 33 56 179 318
X-Transformer None | 629 19.0 19.6 457 62.0| 142 35 58 173 32.1
OSCAR BERT | 59.2 18,0 21.0 453 602 | 144 37 6.1 172 335
Transformer GPT | 65.1 218 20.6 466 695|162 38 65 183 356
M? Transformer GPT | 647 21.8 20.7 47.1 685|139 36 60 172 34.1
AoA Transformer GPT | 642 212 205 465 672 | 148 36 62 17.6 34.1
VisualGPT (Normalized SRAU) GPT | 653 21.8 209 470 693 | 149 39 6.1 18.0 359
VisualGPT (Our SRAU) GPT | 66.2 221 211 473 703|159 42 6.7 185 37.2
1% training data

Transformer None | 66.0 219 21.1 473 719|139 37 63 18.1 379
M? Transformer None | 67.1 234 213 483 73.0| 16.0 4.1 68 189 398
AoA Transformer None | 67.6 236 215 484 755|149 41 65 186 39.0
X-Transformer None | 67.0 23.6 212 48.1 47.1 | 156 4.0 6.6 187 395
OSCAR BERT | 67.2 233 225 49.1 784 | 16.1 42 6.7 189 40.6
Transformer GPT | 685 251 221 49.0 805 | 178 42 6.7 19.0 402
M? Transformer GPT | 682 250 224 492 804 | 154 39 65 179 39.1
Ao0A Transformer GPT | 685 246 220 486 784 | 154 39 6.5 179 385
VisualGPT (Normalized SRAU) GPT | 68.7 252 223 492 806 | 153 42 6.7 183 40.3
Visual GPT (Our SRAU) GPT | 69.5 256 22.6 496 809 | 163 43 69 193 409

Table 1. Performance of the compared methods training on 0.1%, 0.5% and 1% of MS COCO and Conceptual Caption image-caption
pairs. The best performance in each configuration is in bold. Ablated models are marked in gray .

ROUGE [42], and CIDEr [69].

IU X-ray [15] is a radiography dataset containing 7,470
chest X-ray images and 3, 955 human-written reports. As
the dataset is already small, we follow the original split,
which has a training set of 5, 226 images and 2, 770 reports.
Most reports have two images corresponding to the frontal
and lateral viewpoints.

5.2. Experimental Settings

Baselines. We compare our model with several state-of-the-
art transformer-based models, including:

¢ Plain Transformer [68].

L]
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AoA Transformer, which inserts an attention-on-
attention (AoA) module [24] into every transformer
layer, as depicted by Figure 3 (b). Following [13], we
slightly update the original AoA network in [24] by re-
placing the LSTM with Transformers in order to create
a fair Transformer-to-Transformer comparison.

M? Transformer [13], which proposes a meshed con-
nection between encoder and decoder and is one of the
best-performing models on MS COCO.

X-Transformer [53], which employs bilinear pooling
to selectively capitalize on visual information and is



Models B-1 B2 B3 B4 R M C
Att2in 224 129 89 6.8 308 - 297
CoAtt 455 28.8 205 154 369 - 277
HRGR 43.8 29.8 20.8 15.1 322 - 343
CMAS-RL 464 30.1 21.0 154 371 - 275
Chen et al. 47.0 304 219 16.5 37.1 18.7 -

VisualGPT (ours) 48.0 31.3 22.2 159 37.4 20.5 49.7

Table 2. Performance on the IU X-ray dataset.

one of best-performing models on MS COCO.

¢ OSCAR [39], which finetunes BERT initialization on
image-language dataset.

Since Visual GPT has GPT as the pretrained decoder, for fair
comparisons, we also create variants of Transformer, AoA
Transformer and M?2 Transformer with GPT as the decoder.
For VisualGPT, we set 7 to 0.2 in all experiments. We also
explored the effect of different 7 and find 7 in the range
of [0,0.2] to offer the right level of sparsity. For all other
baselines, we tune the hyperparameters on the validation
set of MS COCO. We train our model and all the baselines
in reinforcement learning setting following the work in [13].
Please see the supplemental material for more details on hy-
perparameters and experimental results.

5.3. Quantitative Results

Small In-domain Training Data. Results on MS COCO
and Conceptual Captions are presented in Tables 1. Visu-
alGPT outperforms the best-performing baseline model by
4.1 CIDEr when trained on 0.1% of MS COCO data, 6.4
CIDEr when trained on 0.5% data and 2.5 CIDEr with 1%
training data. On Conceptual Caption dataset, VisualGPT
also outperforms all the baselines. It outperforms the best
baseline model by 4.2 CIDEr under 0.1% training data, 3.5
CIDEr under 0.5% data and 0.3 CIDEr under 1% data.

Comparison with BERT-based model. We compared
with OSCAR [39] which is a BERT-based [16] model with
good performing results in many benchmarks. We run their
model without pretraining on a large-scale image-language
corpus for the fair comparison with our model. The main
difference between BERT and GPT is their different pre-
training objectives, where BERT uses masked language
modeling and GPT is the autoregressive prediction of the
next word. GPT has more similar learning behaviors to the
image captioning model compared to BERT since they are
both optimized by autoregressively generating the next lan-
guage word. The experimental result in Table 1 shows that
VisualGPT is better than OSCAR in both datasets, which
confirms our selection choice of using GPT as a decoder.

Medical Report Generation. We compared VisualGPT
against state-of-the-art medical report generation models

Models B-1 B4 M R C

Kim et al. [30] 58.1 134 159 - 360
Kim et al. + unpaired 63.0 18.7 20.7 - 55.2
Gu et al. [27] 462 54 132 - 177
Feng et al. [20] 589 18.6 179 - 549
VisualGPT (ours) 67.1 24.3 219 48.6 75.8

Table 3. Comparison with unsupervised and semi-supervised
learning methods using Kim et al.’s split of MS COCO. Kim et
al. employ only 1% images for training in contrast to 1% image-
caption pairs from Table 1. Note that Kim et al. + unpaired also
use the rest of training data as unpaired images and texts. The
gray shading denotes baselines that use a large amount of un-
paired images and texts during training.

including Att2in [61], CoAtt [26], HRGR [35], CMAS-
RL [25] and the model from Chen et al. [10]. This dataset
only contains around 2, 770 medical reports in the training
set, which is less than 1% COCO data and poses a data-
efficiency challenge. We follow the same experimental set-
ting as in [10]. The results show that VisualGPT outper-
forms the baselines for most evaluation metrics and creates
a new state-of-the-art. It shows the value of leveraging GPT
knowledge into the highly specific domain which has very
“expensive” and insufficient paired data. We hope our find-
ing could inspire future work in other domains.

Comparison Against Semi-supervised and Unsuper-
vised Methods. Kim ez al. [30] proposed a semi-supervised
learning method to improve the data efficiency of image
captioning. They used 1% of images and all their captions
as training data, rather than 1% of all the image-caption
pairs in Table 1, hence they cover less images since each
image is associated to more than 1 caption. For Kim et al.
+ unpaired, they also employ the other 99% of MS COCO
as unpaired images and captions for training. We replicate
their setup by only training with 1% of images. As shown in
Table 3, without using additional unpaired images and cap-
tions, the proposed VisualGPT method outperforms Kim er
al. [30] by 20.6 CIDEr score.

We also compare Visual GPT against unsupervised meth-
ods of Gu et al. [22] and Feng et al. [20], which use tens
of millions of unpaired images and captions. Even though
these are not fair comparisons, it is encouraging to see Vi-
sual GPT surpassing these baselines by utilizing the super-
vision of only 1133 training images.

5.4. Ablation Studies

Ablation on cross-attention: To fairly compare our SRAU
with other cross-attention mechanisms in the baselines, we
also initialize their decoder with 12-layer GPT and keep
the same encoder as Visual GPT. We contrast between plain
cross-attention, meshed cross-attention, and attention-on-
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CIDEr performance on different thresholds for SRAU
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Figure 5. CIDEr performance v.s. different thresholds 7 with 0.1%
0.5%, 1% and 5% training data.

attention (AoA) modules. For AoA Transformer, we add the
Ao0A module on top of cross-attention. Table 1 shows the
results, which demonstrate that SRAU is better than other
cross-attention modules in exploiting the GPT knowledge
within the image-caption task.

Ablation on SRAU: We create an ablation called Normal-
ized SRAU, where we replace the SRAU with the normal-
ized SRAU (see Figure 4) and use GPT2 initialization. We
provided the results in table 1. The normalized SRAU
results in substantially lowered performance, decreasing
CIDEr from full VisualGPT by 2.7, 1.0, and 0.3 respec-
tively on the three setups on MS COCO, and it also de-
creases from Full VisualGPT by 2.2, 1.3 and 0.6 respec-
tively on Conceptual Caption. This demonstrates that the
self-resurrecting property is beneficial for learning from
small data. We experimented with Leaky ReLU and GELU,
which ameliorate zero gradients, but the training crashed
due to the lack of upper limits for function values.

We explored different 7 among (0, 0.1 0.2) and show
their CIDEr performance on different percentage of COCO
training data in the Figure 5. 7=0 is equivalent to ordinary
complementary sigmoid gates. We can observe that 7 = 0.2
can give us the best performance in most cases, indicating
the usefulness of incorporating sparsity in our SRAU com-
plementary gates.

5.5. Human Study

In addition to automatic evaluation metrics, we conduct
two human studies to further evaluate the quality of gen-
erated captions. In the first study, we asked participants
directly for preference over generated captions. We ran-
domly selected 250 test images from the three setups of

Method 0.1% data 0.5% data 1% data
Transformer 18.4% 17.2% 16.8%

Ao0A Transformer 11.5% 20.9% 25.0%
M? Transformer  30.9% 22.8%  20.8%
VisualGPT 392% 391% 37.4%

Table 4. The percentage of votes received by VisualGPT and base-
line models under different quantity of training data.

Q1. Does the caption miss things shown in the image?
Answer Ours M?2Transformer Transformer AoA GT

No 719 624 633 621 973
Yes 367 438 456 447 73
No Rate 0.66 0.59 0.58 0.58 0.93

Q2. Does the caption describe things not in the image?
Answer Ours M2Transformer Transformer AoA GT

No 720 692 633 655 448
Yes 360 418 423 412 43
No Rate 0.67 0.62 0.60 0.61 0.96

Table 5. Human evaluation of object hallucination and omission.
GT denotes the ground-truth captions.

GT: the lady is sitting on the wood bench

Ours a woman sitting on a bench in a park
attention 0.7 0.78 0.82 0.76 0.8-0.8 0.69 0.85

GT: a laptop with a keyboard and mouse are on this desk

Ours a laptop sitting on a desk with a mouse

0.85 10.64 0.76

attention 0.7 0.78 0.81 0.7 0.7

GT: a cat is sitting in front of a television

Ours a cat is sitting in front of a television

attention 0.8/0.86 0.8 0.83 0.7 0.72 [0.6 0.71

GT: a number of people sitting on a snowy surface with skis

Ours a couple of people sitting on a snowy surface

{ . attention 0.8 0.87 [0.71 0.85 | 0.91 0.76 0.71

Figure 6. Visual scores of words in generated captions. We show
the raw visual scores and highlight them according to normalized
visual scores. High visual scores are in blue and low scores in red.

0.1%, 0.5%, and 1% training data. For every image, we
generated one caption from VisualGPT and each of three
high-performing baselines from Table 1, Transformer [68],
M? Transformer [13], and AoA Transformer [24], all with
three decoder layers. Every image was evaluated by 5 dif-
ferent Turkers, who chose the caption that most accurately
described the image content. We received 3750 (250 images
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x b Turkers x 3 setups) valid responses.

We summarize the results in Table 4. Overall, the cap-
tions generated by VisualGPT received the largest share of
votes, 39.2% for the 0.1% training data split, 39.1% for the
0.5% split, and 37.4% for the 1% split. For each train-
ing setup, we conducted Pearson’s Chi-square test [55],
which shows the differences are statistical significant with
p < 0.05 in all cases.

In the second study, we evaluate if using pretrained
language models introduces excessive linguistic prior that
could cause the known object hallucination problem [62].
From the models trained using 1% COCO data. We ran-
domly sampled 250 images with the generated caption from
each model. For each image, we asked 5 different partic-
ipants if the caption (1) described non-existent objects or
(2) missed objects existing in the image. To catch random
clickers, we created 5 images with verified captions, so that
we knew the right answers of these questions. Participants
who answered these questions wrongly were considered un-
reliable and removed from the results.

The results are in Table 5. Compared to the baselines,
VisualGPT has less hallucination and higher coverage of
objects. The study also finds that the ground-truth captions
has the least amount of hallucination and highest coverage
of objects in the image. This finding lends positive support
to the validity of the experimental protocol.

5.6. Analysis

In this section, we visually examine examples from the
VisualGPT model trained on 1% of MS COCO. First, we
show example captions generated by VisualGPT in Figure
6 and the associated BV at the last decoder layer. Note
that for every word generated, we have a 768-dimensional
visual gate vector, which is a slice of BV* at different de-
coding time steps. We take the mean of the gate vector as
the visual score for that word. After that, we normalize

the visual scores across the dataset to the [0, 1] interval and
highlight the words accordingly. Blue indicates high visual
scores and red indicates low visual scores. We observe that,
in agreement with our intuition, VisualGPT assigns high vi-
sual scores to words like “desk” and “snowy surface” and
low visual scores to determiners and prepositions.

In Figure 7, we plot the distribution of B** and B!*" at
every decoder layer as a box-and-whisker diagram. We also
show the words with the highest and lowest visual scores,
which are again in line with our expectations. Additionally,
we observe that, going from layer O to layer 9, the decoder
makes increasing use of visual information, but the upper-
most layers, 10 and 11, make more balanced use of informa-
tion. We hypothesize that the low layers focus on low-level
linguistics like syntax, whereas the middle layers learn to
fuse linguistic information with visual information. Finally,
the two information sources become balanced in the upper-
most layers.

5.7. Limitation

One limitation of our proposal is that, as experiments in
the supplementary material show, the gap between baseline
models and VisualGPT gradually vanishes as in-domain
training data increase. The phenomenon is more pro-
nounced in COCO than Conceptual Captions, which has
a more diverse vocabulary. We hypothesize that linguistic
knowledge from pretrained models is the most useful when
the training data are small and do not provide sufficient cov-
erage of the vocabulary.

6. Conclusions

We present VisualGPT, a data efficient image caption-
ing model which leverages the linguistic knowledge from
the pretrained language model. To bridge the semantic gap
between different modalities, we design a novel encoder-
decoder attention mechanism with an unsaturated rectified
gating function. We evaluate our model on 0.1%, 0.5% and
1.0% of MS COCO and Conceptual Captions, and IU X-
ray, a small medical imaging report dataset. VisualGPT
achieves the state-of-the-art result on IU X-ray and outper-
forms strong baseline models.

VisualGPT may solve the realistic need when training
captioning models on low-resource languages or highly spe-
cialized domains, where it could be challenging to find an-
notators to collect a large amount of data.
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