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Abstract

In recent years, most 3D point cloud analysis models
have focused on developing either new network architec-
tures or more efficient modules for aggregating point fea-
tures from a local neighborhood. Regardless of the network
architecture or the methodology used for improved feature
learning, these models share one thing, which is the use of
max-pooling in the end to obtain permutation invariant fea-
tures. We first show that this traditional approach causes
only a fraction of 3D points contribute to the permutation-
invariant features, and discards the rest of the points. In
order to address this issue and improve the performance of
any baseline 3D point classification or segmentation model,
we propose a new module, referred to as the Recycling Max-
Pooling (RMP) module, to recycle and utilize the features
of some of the discarded points. We incorporate a refine-
ment loss that uses the recycled features to refine the pre-
diction loss obtained from the features kept by traditional
max-pooling. To the best of our knowledge, this is the first
work that explores recycling of still useful points that are
traditionally discarded by max-pooling. We demonstrate the
effectiveness of the proposed RMP module by incorporat-
ing it into several milestone baselines and state-of-the-art
networks for point cloud classification and indoor semantic
segmentation tasks. We show that RPM, without any bells
and whistles, consistently improves the performance of all
the tested networks by using the same base network imple-
mentation and hyper-parameters. The code is provided in
the supplementary material.

1. Introduction
3D point cloud data analysis has a wide range of appli-

cation areas, including autonomous driving, robotics, and
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Figure 1. Motivation. In most point-based models, after several
layers of neighbor feature aggregation and learning, an N × M
feature matrix is obtained, where N is the number of points and
M is each point’s dimension. Max-pooling is performed at the
end to obtain permutation-invariant features. Max-pooling keeps
features from only part of the points (red boxes), while discarding
some points’ features entirely (all purple rows).

simultaneous localization and mapping (SLAM). With the
ever-increasing availability of 3D sensors, deep learning-
based 3D point cloud processing has made significant
strides over the past few years. However, different from
2D structured image data, 3D point cloud data is a set of
unordered points, and has varying cardinality. Thus, tra-
ditional Convolution Neural Networks (CNNs) cannot be
readily applied to 3D point cloud data.

PointNet [12] is a pioneering 3D point cloud anal-
ysis work using end-to-end deep learning. It employs
max-pooling operation as a symmetric function to obtain
permutation-invariant features from 3D point clouds. Each
point is processed independently by a shared multilayer per-
ceptron (MLP), which does not account for local relation-
ship of neighboring points. To remedy this, later works pro-
posed other network structures or improved point feature
aggregation approaches [13, 14, 22, 24, 27], while still em-
ploying the same max pooling operation. However, as the
point feature aggregation module becomes more complex,
the computational cost of the whole network increases,
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since it needs to go through several neighbor feature ag-
gregation layers to learn a good feature representation.

One common theme with most of the existing ap-
proaches is their use of traditional max-pooling. Fig. 1 il-
lustrates the max-pooling operation, where red and purple
boxes are the kept and discarded features, respectively. For
each of the M features, the feature with the highest value
among N points is kept. Thus, some points (all-purple rows)
may have no contribution in this process, since none of their
features are included in the final permutation-invariant fea-
ture vector. Moreover, for most point cloud classification or
segmentation networks, the main computational load is due
to the neighbor feature aggregation or point feature learn-
ing module. At the end, if only a small group of points
contribute to the final prediction vector, and the rest of the
point features are discarded, then this is also an inefficient
use of the computational resources.

So, why discard if you can recycle? In order to recy-
cle the precious set of discarded features, which are usually
obtained by some complex feature aggregation and learn-
ing modules or complex network structures, we propose
a novel Recycling Max-Pooling (RMP) module. The pro-
posed RMP module performs repeated max-pooling opera-
tions among the points that were discarded by the previous
max-pooling step to obtain the corresponding permutation-
invariant features for training. The proposed RMP module
uses the new set(s) of permutation-invariant features, ob-
tained from the discarded points, to refine the original set
of features obtained by the first max-pooling operation, and
increase the performance of the original network.

Contributions. The main contributions of this work in-
clude the following:

• We first show that many baseline approaches throw away
a significant portion of points after using traditional max-
pooling, and this affects the model performance.

• We also show that the features thrown away indeed pro-
vide comparable performance, to the features that are kept
by a baseline model, when used by themselves. Thus, it is
wasteful to discard them for not only computational rea-
sons but also for performance reasons.

• We propose a novel Recycling Max-Pooling Module
(RPM) to recycle these still informative features for im-
proved performance. To the best of our knowledge, this is
the first work to explore the recycling of discarded point
features, and investigate how to take advantage of a big-
ger portion of the point cloud.

• Our method allows refining the original permutation-
invariant features only during the training process to im-
prove a baseline network’s performance.

• We provide extensive experimental results and compar-
isons with multiple milestone and state-of-the-art (SOTA)
methods on various datasets, including ModelNet40 [23],
ScanObjectNN [21] and S3DIS [1]. The results show

that when the proposed RPM module is incorporated into
these networks, it consistently improves the performance
on point cloud classification and indoor point cloud se-
mantic segmentation tasks.

2. Related Work
CNNs have been proved to work well on tasks involv-

ing 2D images, such as image classification [7, 18], ob-
ject detection [15, 16], and semantic segmentation [10, 17].
However, different from 2D images, 3D point cloud data
is unstructured, making CNNs not readily applicable to
tasks involving 3D point clouds. To address this problem,
PointNet [12] showed that permutation-invariant features
can be obtained from 3D point clouds by a symmetric
function, and used max-pooling operation for this purpose.
Many following methods have been proposed based on this
idea [12,22,24,25], and all these methods use max-pooling
at the end of their models. Similar to the survey in [26],
we classify point cloud analysis methods into 3 categories:
(i) multi-view based models; (ii) Volumetric models; (iii)
point-based methods.
i. Multi-view-based models usually transform 3D point
cloud data into 2D images by projection, and then apply ex-
isting 2D image processing models to perform prediction. A
multi-view CNN (MVCNN) is proposed in [19] to perform
3D point cloud classification and segmentation by first pro-
jecting 3D point cloud into 2D images from different per-
spectives, and then using a CNN model to extract features
from those 2D images. To address the issue of informa-
tion loss, due to 3D to 2D projection, SnapNet [2] generates
pairs of RGB and depth images, by taking snapshots of a
point cloud, and performs point cloud semantic segmenta-
tion with the help of depth images. SimpleView [6], a more
recent multi-view based method, presents that the choice
of training strategy, such as learning rate decay, optimizer
choice etc., has significant effect on network’s performance.
It first projects point cloud into six orthogonal planes to cre-
ate sparse depth images, and then applies ResNet [7] to per-
form classification with a SOTA accuracy.
ii. Volumetric models first transform an unstructured 3D
point cloud data into voxel-grids, and then use 3D CNN to
perform classification and segmentation. VoxNet [11] is an
earlier voxel-based model applying 3D CNN to voxelized
point cloud data. However, large memory requirement and
long training times are the main drawbacks of this approach.
SEGCloud [20] first converts point cloud into coarse voxels,
3D fully convolutional network perform prediction on those
voxels, and the prediction result will be transferred back to
the raw 3D points via trilinear interpolation. PointGrid [8]
is a 3D convolution-based method, which divides space into
a number of grid cells. From each grid cell, a fixed number
of points is selected to allow the network to learn higher-
order local approximation functions. Instead of partition-
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ing points into Cartesian voxels, Cylinder3D [28] partition
points into cylindrical voxels. This method is more suitable
for large-scale and sparsely distributed point clouds.

iii. Point-based models take raw 3D point as input di-
rectly. By performing the max-pooling operation, permu-
tation invariant features are obtained. PointNet [8] is a pio-
neering work in this category. Yet, performing max-pooling
among all points causes losing some local information. To
address this problem, PointNet++ [13] uses a hierarchical
structure. Farthest Point Sampling (FPS) is performed first
to group the point cloud into local neighborhoods in each
layer. Then a shared PointNet is run on each of these groups
separately and aggregates all neighborhoods together for fi-
nal classification and/or segmentation. DGCNN [22] pro-
poses a dynamic edge convolution, in which the feature
of every point is calculated based on its own K-nearest
neighborhood that constantly changes at different layers.
DPFA [3] adopts DGCNN’s structure, but with an atten-
tion mechanism to aggregate neighboring points’ features.
GDANet [25] introduces the Geometry-Disentangle Mod-
ule to dynamically disentangle point clouds into the con-
tour and flat parts of 3D objects. In each layer, features
from contour part and flat part refine all points’s features for
final prediction. CurveNet [24] proposes a novel point fea-
ture aggregation method, and provides SOTA performance
on the ModelNet40 [23] dataset. In each layer, points learn
how to make up a curve and curve’s feature is learned for
final prediction.

3. Recycling Max Pooling (RMP) Module

Our Recycling Max Pooling (RMP) module is designed
to improve the performance of networks that use max-
pooling operation during 3D point cloud processing. In-
stead of performing max-pooling only once, and discarding
a significant portion of perfectly useful features, RMP mod-
ule performs the max-pooling operation repeatedly among
the points that were discarded in the previous max-pooling
stage. This way permutation-invariant features are collected
at multiple levels, which are then recycled to refine and im-
prove the performance of the original model, which only
uses features kept after the first max-pooling operation. The
motivation behind the RMP module is provided in Sec. 3.1.

3.1. Motivation

We first perform an analysis of the percentage of points
kept/utilized or discarded by several baseline models using
traditional max-pooling. Our studies provide two key find-
ings: (i) points that are discarded by the traditional max-
pooling can provide comparable performance when used by
themselves, (ii) a model’s prediction accuracy is correlated
with the point utilization percentage.

Figure 2. Distribution of the number of points kept after one
max-pooling. Distributions for different models have distinct
means. Lighter and darker shades represent the values at the be-
ginning and end of the training, respectively.

3.1.1 Points Utilization Analysis
While existing point-based models focus on developing dif-
ferent point feature learning and neighbor feature aggrega-
tion modules (usually with increasing complexity), they use
the same max-pooling operation in the end for permutation-
invariance. As shown in Fig. 1, max-pooling operation
discards features of some points entirely. To analyze the
percentage of the points discarded, and its effect on the
model performance, we perform experiments with Point-
Net, PointNet++ and DGCNN. These baselines were cho-
sen since most point-based methods have been developed
based on these three networks. After training, PointNet,
PointNet++ and DGCNN are tested on the ModelNet40
classification dataset, and the number of points kept after
the traditional max-pooling is recorded for each test sam-
ple. Table 1 shows the mean and standard deviation (stdev)
for the number of points kept after max-pooling, and also
shows the accuracy for three different models. For all the
models (except PointNet++), the number of points before
max-pooling is 1024. For PointNet++, a fixed number of
points are sampled in each layer, thus, there are 256 points
before max-pooling. Different models have different mean
values, but all have small stdev values. It can also be seen
that the prediction accuracy is positively correlated with the
point utilization percentage, indicating that wisely recycling
some of the discarded points has the promise of increasing
the prediction accuracy. Fig. 2 shows the distribution of the
number of points kept after max-pooling for different mod-
els, where lighter and darker shades represent the values at
the beginning (when models have random weights) and end
of the training, respectively. The distributions at the end of
the training are the shifted versions of those before train-
ing to the right, indicating that the training process is find-
ing various points with useful features and increasing the
number of points kept after the max-pooling. This provides
motivation that recycling some of these discarded points is
favorable. More motivation to come in Sec. 3.1.2.
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Model No.of Pnts before Max-Pooling Mean of no. of kept pnts stdev of no. of kept pnts % of kept pnts Accuracy
PointNet 1024 335.8 39.6 32.80% 90.12%
PointNet++ 256 184.2 15.2 72.00% 93.07%
DGCNN 1024 456.5 30.5 44.60% 92.51%

Table 1. Point utilization analysis of different models that use traditional max-pooling. stdev is the standard deviation. Models not
utilizing any features from most points have lower accuracy.

We have also analyzed the number of points kept after
max-pooling for each class. After recording the number of
utilized points for each sample of each class, we applied a
normal distribution test [4,5] on the data. For all three mod-
els, the number of points selected after max-pooling follows
a normal distribution for most (32 to 33) of the 40 classes
(a table is provided in the Suppl. material). We can ob-
serve that the number of points kept after max-pooling is
related to the sample shape’s complexity, i.e. for more com-
plex shapes, more points are kept to represent the shape in-
formation, or vice versa. After these findings, in the next
section, we analyze whether any of these discarded points
and their features are useful for the task at hand.

3.1.2 Analysis of the Potential of Discarded Points

To analyze the potential of discarded points, we perform
experiments by only using their permutation-invariant fea-
tures (obtained via repeated applications of max-pooling)
for the classification task on ModelNet40. As shown in
Fig. 1, with point-based approaches, after several feature
aggregation layers, a point feature matrix P f

1 ∈ RN1×M

is obtained, where N1 is the number of points before the
first max-pooling, and M is the feature dimension. After
the first max-pooling, a permutation invariant feature vector
F1 ∈ RM is obtained together with the feature matrix of the
discarded points P f

2 ∈ RN2×M , where N2 is the number
of the discarded point after the first max-pooling. Then, we
apply max-pooling on P f

2 to obtain F2 ∈ RM . This recy-
cling process can be repeated n times to obtain the nth level
permutation-invariant feature vector Fn ∈ RM .

In order to explore the potential of permutation-invariant
features from different levels, we obtain F1, F2 and F3

for PointNet, PointNet++ and DGCNN, and use them
individually to test on the ModelNet40 classification task.
Accuracy values obtained with F1, F2 and F3 are provided
in Table 2. For all three models, F2 and F3, by themselves,
provide very similar and comparable performance to F1, yet
all existing models, to our best knowledge, only make use of
F1 for final prediction when these discarded points indeed
have useful features that should be recycled.

Model Using F1 Using F2 Using F3

PointNet 90.12% 89.64% 89.56%
PointNet++ 93.06% 92.76% 92.92%

DGCNN 92.51% 92.22% 92.01%

Table 2. Classification accuracy obtained when permutation-
invariant features F1,F2 and F3 are used by themselves.

3.2. Recycling Max Pooling Module

Motivated by the findings in Sec. 3.1, we propose the
Recycling Max-Pooling (RMP) module to increase the per-
centage of utilized points by recycling the points, which
are discarded by the traditional max-pooling, for training.
Using the notation introduced in Sec. 3.1.2, combining
F1,F2, ...,Fn simply by concatenation or addition is not
the most preferable approach, which is also supported by
our experiments (please see Suppl. material). Instead, our
proposed RMP module first obtains F1,F2, ...,Fn by recy-
cling the discarded points, and then refines F1 by designing
a hierarchical loss function as illustrated in Fig. 3. This
loss function incorporates classification loss and refinement
loss, which are described below:

Max
Pooling

Max
Pooling

Recycle Max Pooling Module

Max
Pooling

Max
Pooling

Classification Loss

Refinement Loss

N Input Points

Point Feature Aggregation and Learning

Layer 1 Layer 2 Layer k

Figure 3. Proposed RMP module. After the point feature aggre-
gation and learning, the classification loss and refinement loss are
obtained by different level’s permutation invariant feature.

3.2.1 Classification Loss
The classification losses Lc

1, Lc
2, ..., Lc

n are calculated based
on the individual predictions of permutation-invariant fea-
tures, F1,F2, ...,Fn, respectively. Lc

i is the cross-entropy
loss between ŷi and yi, where yi is the one-hot encoded
ground truth, and ŷi is the soft-max prediction obtained
based on Fi for i ∈ {1, ..., n}. Then, the classification loss
is defined as:

Lc =

n∑
i=1

Lc
i . (1)

Since different sets of point features are sampled at each
recycling max-pooling level, and the classifier is trained on
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these different batches of points, this allows the classifier to
learn and generalize better.

3.2.2 Refinement Loss
In [9], an Augmenter network is used to transform the input
point cloud. Then, the augmented loss, obtained by feeding
the augmented data to target promotion network, is used to
refine the original loss. Inspired by this, we design our re-
finement loss function to refine F1 by F2,F3, ...,Fn. Con-
trary to [9], we do not employ another network to improve
the target network. Instead, we only perform several layers
of max-pooling, and use the permutation-invariant features
Fi (i ̸= 1), obtained at each recycling layer, to refine F1.

According to the analysis in Sec. 3.1.2 and Table 2, the
accuracy obtained by only using Fi, where i ∈ {2, .., n}, is
lower than the one obtained from F1, which means Lc

i >
Lc
1. Thus, we define the refinement loss for the recycling

level i as follows:

Lr
i =

∣∣∣1− e(L
c
i−ρiL

c
1)
∣∣∣ (2)

ρi = αi · e(
∑k

m=1 ym·ŷm), (3)

where αi > 1, k is the number of classes, and ym and
ŷm are the ground truth and the prediction based on F1,
respectively. During the training process, the classifica-
tion losses Lc

1, Lc
2, ..., Lc

n are minimized as described in
Sec. 3.2.1. By incorporating ρi, Eqn. (2) promotes Lc

1 < Lc
i

for i ∈ {2, ..., n}, so that best point utilization can still be
achieved after the first max-pooling operation. Minimizing
the Lr

i in Eqn. (2) aims to obtain Lc
i ≈ ρiL

c
1 making Lc

i

slightly larger (adjusted by ρi) than Lc
1. It is also not desir-

able for Lc
i to be too large, which would contradict the goal

of minimizing (1). Thus, to avoid Lc
i , and in turn Lc

i−ρiL
c
1,

to get too large, we take absolute value of the difference, so
that Lc

i is restricted and Lr
i >= 0.

At the early stages of the training, the features are not
yet very reliable, which might make the refinement loss
not that beneficial. Therefore, we dynamically adjust the
ρi as in Eqn. (3). When the predictions are not good, i.e.∑k

m=1 ym · ŷm ≈ 0, then ρi = αi. This places more atten-
tion on the predictions made based on F1,F2, ...,Fn. When
each level’s prediction performance becomes stable, ρi in-
creases and F1 starts to be refined by F2, ...,Fn. The over-
all refinement loss is defined as Lr =

∑n
i=2 L

r
i . Combining

the classification loss (Lc) and refinement loss (Lr), the fi-
nal loss function is defined as:

L = (1− λ) · Lc + λ · Lr, (4)

where λ determines the weight of the refinement loss.

4. Experiments
In order to show that the proposed RMP module is gen-

eralizable, and can improve the performance of various net-
works, we have incorporated the RMP module to several
milestone works and recent SOTA methods to perform point
cloud classification and indoor semantic segmentation. In
all the experiments (except ablation studies), we perform
max-pooling twice (n = 2), i.e. we only use one additional
recycling layer. Thus, compared to training the original net-
work, the RMP module does not cause significant overhead.

As stated in [6], the training setup has a great impact
on a network’s performance. To perform fair and commen-
surate comparison, all the models are trained on the same
machine, with the same configuration. The accuracy for the
classification experiments is evaluated without any voting,
i.e., Accuracy = T

T+F , where T and F are true and false
classification, respectively. This is done to show the perfor-
mance improvement provided solely by our proposed RMP
module. Thus, an original model’s accuracy reported here
can be slightly different from what is reported in the corre-
sponding papers.

During training, the accuracy values tends to fluctuate
when a model’s performance is close to converging. Thus,
the highest recorded accuracy, from all training epochs, can
not always reflect a network’s learning ability. Thus, we
also report the smoothed accuracy, which is computed by

SAn = β · SAn−1 + (1− β) ·An, (5)

where SAn and An are the smoothed and highest accuracy
values, respectively, at epoch n. β ∈ [0, 1], and is set to be
0.99 here.

4.1. Point Cloud Classification on ScanObjectNN

In this experiment, we evaluate several milestone base-
lines and SOTA methods, namely CurveNet [24], DPFA [3],
GDANet [25], DGCNN [22], PointNet++ [13] and Point-
Net [12], with and without our proposed RMP module in-
corporated. We perform point cloud classification on the
ScanObjectNN dataset [21] without the background. This
dataset contains 15k objects from 15 categories. Some ex-
ample objects from this dataset are shown in Fig. 4. As
can be seen, missing object parts and nonuniform distribu-
tion of points make this dataset more challenging. Table 3

Chair BedToilet

Figure 4. Example objects from the ScanObjectNN dataset.
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Model Name Highest Acc. Smoothed Acc.
PointNet 79.39% 76.82%
PointNet++ 88.17% 84.75%
DGCNN 83.10% 79.95%
GDANet 84.23% 81.29%
DPFA 84.24% 80.73%
CurveNet 83.84% 81.52%
PointNet (+RMP) 80.57% (↑1.18%) 77.43% (↑0.61%)
PointNet++ (+RMP) 89.02% (↑0.85%) 85.38% (↑0.63%)
DGCNN (+RMP) 87.0% (↑3.97%) 82.42% (↑2.47%)
GDANet (+RMP) 86.27% (↑2.04%) 82.75% (↑1.46%)
DPFA (+RMP) 85.93% (↑1.69%) 81.94% (↑1.21%)
CurveNet (+RMP) 85.54% (↑1.7%) 81.93% (↑0.41%)

Table 3. Classification results on the ScanObjectNN dataset.
The proposed RMP module provides consistent improvement over
all baselines in both the highest and smoothed accuracy values.
Black bold font and blue font show the best performance and the
highest increase provided, respectively.

shows the accuracy values of different SOTA networks with
and without using our proposed RMP module. It can be
seen that for all six models, the proposed RMP module pro-
vides consistent improvement in both the highest (as high
as 3.97%) and smoothed accuracy values. Another obser-
vation is that, compared to the other five models, the RMP
provides the least improvement over PointNet++. This is
expected, since PointNet++ performs several samplings be-
fore the first max pooling. As shown in Table 1, PointNet++
has only 256 points before the first max-pooling operation,
after which 72% of 256 points is already utilized for predic-
tion. Thus, there is a smaller amount of points left, decreas-
ing the amount of useful features for recycling.

4.2. Point Cloud Classification on Modelnet40

In this experiment, we evaluate the same baselines as in
the above experiment with and without our proposed RMP
module on the Modelnet40 [23] dataset for classification.
This dataset contains 12,311 CAD models covering 40 man-
made object categories, and is split into a training set con-
taining 9843 objects, and a testing set containing 2468 ob-
jects. Some examples from this dataset are shown in Fig. 5.
Table 4 shows the accuracy values of different SOTA net-
works with and without using our proposed RMP module.
It can be seen that for all six models, the proposed RMP
module provides consistent improvement in both the high-
est and smoothed accuracy values.

Airplane VaseTent

Figure 5. Example objects from the ModelNet40 dataset

Model Name Highest Acc. Smoothed Acc.
PointNet 90.12% 88.73%
PointNet++ 93.06% 90.69%
DGCNN 92.51% 91.30%
GDANet 92.30% 90.59%
DPFA 93.10% 91.38%
CurveNet 92.82% 92.55%
PointNet (+RMP) 90.60% (↑0.48%) 88.74% (↑0.01%)
PointNet++ (+RMP) 93.27% (↑0.21%) 92.26% ( ↑1.57%)
DGCNN (+RMP) 93.15% (↑0.64%) 91.69% (↑0.39%)
GDANet (+RMP) 93.27% (↑0.97%) 91.70% (↑1.2%)
DPFA (+RMP) 93.67% (↑0.57%) 91.84% (↑0.46%)
CurveNet (+RMP) 93.42% (↑0.6%) 92.98% (↑0.43%)

Table 4. Classification results on the ModelNet40 dataset. The
proposed RMP module provides consistent improvement over all
baselines in both the highest and smoothed accuracy values. Black
bold and blue fonts show the best performance and the highest
increase provided, respectively.

Comparing Tables 3 and 4, the proposed RMP module
provides more accuracy improvement over the original net-
works on the ScanObjectNN dataset. This can be explained
by the fact that the distribution of points in the ScanOb-
jectNN dataset are more irregular and objects have miss-
ing parts. Thus, only the features of the points, kept after
one max-pooling, might not be sufficient to fully represent
object shape information. By learning from permutation-
invariant features obtained at different layers, a more com-
plete shape information is obtained.

4.3. Semantic Segmentation on S3DIS

Among the six models tested for the classification task
on the ScanObjectNN and Modelnet40 datasets, PointNet,
DGCNN and DPFA offer max-pooling based semantic seg-
mentation network structures in their papers. Thus, we also
integrated our RMP module on these three models to eval-
uate it on a different task of semantic segmentation. Point-
Net++ also has the semantic segmentation structure, but its
segmentation model is based on interpolation and upsam-
pling rather than max-pooling. Thus, PointNet++ is not in-
cluded in the semantic segmentation experiments.

S3DIS dataset [1] is a large indoor point cloud dataset.
It contains 6 areas covering 271 rooms. Each point belongs
to one of 13 classes: {clutter, ceiling, floor, wall, beam,
column, door, window, table, chair, sofa, bookcase, board}.
Following PointNet [12], we divide each room into blocks
of 1m×1m×z, where z is the room height in meters. 4096
points are randomly selected from each block as the input
to the network. For these 6 areas, 6-fold cross validation
is performed for all the models with and without our RMP
module. At each fold, one area is set aside for testing, and
the models are trained on the remaining areas. The results
are summarized in Table 5. For all of the 6 areas, both the
overall accuracy (OA) and mIoU of all three models are in-
creased. The average of all 6 folds is also reported showing
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both OA and mIoU are improved for all 3 models. Example
outputs for qualitative comparison are shown in Fig. 6.

Testing
Area Model OA MIoU

Area1

PointNet 77.31% 51.60%
DGCNN 82.10% 62.94%

DPFA 90.32% 70.29%
PointNet(+RMP) 82.84% (↑5.53%) 59.22% ( ↑7.62%)
DGCNN(+RMP) 85.62% (↑3.52%) 63.78% (↑0.84%)

DPFA(+RMP) 90.63% (↑0.31%) 71.75% (↑1.46%)

Area2

PointNet 72.33% 34.96%
DGCNN 78.24% 36.95%

DPFA 87.71% 53.95%
PointNet(+RMP) 78.62% (↑6.29%) 39.7% (↑4.74%)
DGCNN(+RMP) 79.88% (↑1.64%) 43.02% ( ↑6.07%)

DPFA(+RMP) 90.63% (↑2.92%) 54.93% (↑0.98%)

Area3

PointNet 83.47% 47.46%
DGCNN 88.74% 62.03%

DPFA 90.45% 66.04%
PointNet(+RMP) 84.91% ( ↑1.44%) 57.57% (↑10.11%)
DGCNN(+RMP) 89.7% (↑0.96%) 70.23% (↑8.2%)

DPFA(+RMP) 90.58% (↑0.13%) 66.14% (↑0.1%)

Area4

PointNet 73.05% 35.71%
DGCNN 80.62% 42.65%

DPFA 85.94% 51.08%
PointNet(+RMP) 76.93% (↑3.88%) 41.25% ( ↑5.54%)
DGCNN(+RMP) 82.51% (↑1.89%) 45.72% (↑3.07%)

DPFA(+RMP) 87.81% (↑1.87%) 53.87% (↑2.79%)

Area5

PointNet 78.76% 42.00%
DGCNN 82.60% 46.97%

DPFA 87.47% 52.96%
PointNet(+RMP) 79.05% (↑0.29%) 43.23% (↑1.23%)
DGCNN(+RMP) 84.25% (↑1.65%) 48.54% (↑1.57%)

DPFA(+RMP) 88.17% (↑0.7%) 54.58% ( ↑1.62%)

Area6

PointNet 83.81% 57.86%
DGCNN 84.53% 64.57%

DPFA 92.20% 75.23%
PointNet(+RMP) 85.72% (↑1.91%) 63.9% (↑6.04%)
DGCNN(+RMP) 87.94% (↑3.41%) 71.89% ( ↑7.32%)

DPFA(+RMP) 92.34% (↑0.14%) 77.33% (↑2.1%)

6-fold
Cross Validation

Average

PointNet 78.12% 44.94%
DGCNN 83.16% 52.68%

DPFA 89.02% 61.59%
PointNet(+RMP) 81.35% (↑3.23%) 50.81% (↑5.87%)
DGCNN(+RMP) 84.39% (↑1.23%) 57.2% (↑4.52%)

DPFA(+RMP) 89.75% (↑0.73%) 63.17% (↑1.58%)

Table 5. Segmentation results on the S3DIS dataset with 6-fold
cross validation. Overall, the proposed RMP module increases
both the Overall Accuracy (OA) and mean Intersection over Union
(mIoU) for all models.

5. Ablation Study

Since recent works GDANet and DPFA both adopt
the feature-wise neighbor searching strategy proposed in
DGCNN, we used DGCNN as the baseline network to per-
form the ablation studies. Since the benefits of the proposed
RMP are more evident on irregular and/or incomplete point
sets (as discussed in Sec. 4.1), ScanObjectNN datasets is
used for the ablation studies.

5.1. Analysis of n, the number of Max-Poolings
We studied the effect of the number of times max-

pooling operation is repeated. For this experiment, α = 1.7
and w = 0.5. When n = 1, it reduces to the original net-
work. Fig. 7(b), shows the plot of the smoothed and highest

accuracy values versus n. The best smoothed and highest
accuracy values are obtained when n = 2 and n = 3, re-
spectively. When n is increased further the performance
degrades. This makes sense since the first 2 or 3 max-
pooling levels pick up most of the points with useful fea-
tures, capturing an object’s shape etc., and the remaining
points might contain more noise than useful information.
Fig. 7 (a) shows the smoothed accuracy plot of DGCNN,
incorporating the RMP module, versus the training epochs,
for different numbers of max-pooling operation. The curves
for n = 2 and n = 3 almost entirely overlap, and provide
the highest accuracy.

5.2. Analysis of weight value λ

In Eqn. (4), λ is the weight of the refinement loss deter-
mining its contribution to the overall loss function. We an-
alyze the effect of different values of λ on the performance
when n = 2 and α = 2.1. The results are shown in Ta-
ble 6. As can be seen, as the value of λ increases from 0.5
to 0.8, the accuracy values also increase in general. The ac-
curacy improvement ranges between 0.85% and 3.97%, and
the highest performance increase is obtained when λ = 0.8.
When λ > 0.8, the performance does not increase anymore.
This makes sense, since when λ = 1, e.g., the overall loss is
equal to the refinement loss, i.e. the classification loss is not
used. This is not the right approach, since it does not make
sense to use the refinement loss if each Fi is not equipped
with the prediction ability (also supported by the results in
the table).

Model λ Highest Acc. Smoothed Acc.
DGCNN None 83.10% 79.95%
DGCNN (+RMP) 0.5 83.95%(↑0.85%) 81.32%(↑1.37%)
DGCNN (+RMP) 0.6 85.14%(2.04%) 81.79%(↑1.84%)
DGCNN (+RMP) 0.7 85.03%((↑1.93%)) 81.82%(↑1.87%)
DGCNN (+RMP) 0.8 87.07%(↑3.97%) 82.42%(↑2.47%)
DGCNN (+RMP) 0.9 84.69%(↑1.59%) 81.54%(↑1.59%)
DGCNN (+RMP) 1 23.44%(↓59.66%) 25.48%(↓54.47%)

Table 6. Analysis of different λ values on the accuracy

5.3. Analysis of hyper-parameter α

In Eqn. (2), αi is a constant, which is used to compute
the refinement loss of Lr

i , which is employed for Fi to refine
F1. For this ablation study, we only perform recycling once,
i.e. max-pooling is performed a total of 2 times (n = 2).
Thus, we only have α2, which is referred to as α here for
simplicity. The value of λ is set to 0.5. We analyze the effect
of different α values on accuracy, and the results are shown
in Table 7. When α is 1.2, 1.5 or 1.8, the improvement
provided over DGCNN ranges between 1.02% and 1.7%.
α = 1.5 provides the highest performance increase for both
the highest (1.7%)and smoothed accuracy (1.87%). When
α is 2.1 the improvement provided over DGCNN is slightly
less (0.85%) compared to other α values.
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Figure 6. Example segmentation outputs for qualitative comparison. Outputs of PointNet, DGCNN and DPFA without (w/o) and with
(w/) incorporating our proposed RMP module. Some regions are marked by black ellipses to show the improvement provided by RMP.

(a) (b)
Figure 7. Analysis of number of max-pooling levels (n) (a)
Smoothed accuracy plot during training for different values of n,
(b) the smoothed and highest accuracy values versus n.

Model α Highest Acc. Smoothed Acc.
DGCNN None 83.10% 79.95%
DGCNN(+RMP) 1.2 84.12%(↑1.02%) 81.09%(↑1.14%)
DGCNN(+RMP) 1.5 84.80%(↑1.70%) 81.82%(↑1.87%)
DGCNN(+RMP) 1.8 84.46%(↑1.36%) 81.75%(↑1.80%)
DGCNN(+RMP) 2.1 83.95%(↑0.85%) 81.32%(↑1.37%)

Table 7. Analysis of different α values on the accuracy.

5.4. Analysis of the number of input points
In order to analyze the performance with varying in-

put point sparsity, we evaluated DGCNN, with and with-
out the proposed RMP module, by using 512, 1024 and
2048 points, in turn, as input. The results are shown in
Table 8. With the proposed RMP module, the accuracy ob-
tained with 512 points (when input data is sparse) is almost
the same as the one with 1024 points (0.78% difference),
since the RMP module allows making use of more points
via recycling. RMP module improves the performance of
DGCNN by 2.04% even when only 512 input points are
used. Over different number of input points, the RMP mod-
ule provides a stable performance increase.

Model No. of Inp. Pnts Highest Acc. Smoothed Acc.
DGCNN 512 81.97% 78.96%
DGCNN 1024 83.10% 79.95%
DGCNN 2048 84.18% 81.19%
DGCNN(+RMP) 512 84.01%(↑2.04%) 80.86%(↑1.9%)
DGCNN(+RMP) 1024 84.79%(↑1.69%) 81.74%(↑1.79%)
DGCNN(+RMP) 2048 86.73%(↑2.55%) 83.15%(↑1.96%)

Table 8. Analysis of performance with different number of input
points

5.5. Analysis of Training Time
The training times of different models, with and without

the proposed RMP module, on the ScanObjectNN dataset

are listed in Table 9. Original GDANet and CurveNet pro-
vide very slight increase (1.3% and 1.57%, resp.) in the
smoothed accuracy compared to DGCNN, while requiring
much longer training time (5.5 to 6.5 fold increase) due to
their complex feature aggregation layers. In contrast, our
proposed RMP module increases the highest accuracy of
DGCNN by 3.97%, with only a small overhead on train-
ing time (10.97s or 1.46 fold increase per epoch). Since the
recycling is only performed during training, our approach
does not affect the inference times.

Model Training time (s) Highest Acc. Smoothed Acc.
DGCNN 23.53 83.10% 79.95%
DGCNN (+RMP) 34.50 87.07% (↑3.97%) 82.42(↑2.47%)
GDANet 129.41 84.23% 81.29%
GDANet (+RMP) 137.98 86.27% (↑2.04%) 82.75%(↑1.46%)
CurveNet 152.77 83.84% 81.52%
CurveNet (+RMP) 158.09 85.54%(↑1.7%) 81.93%(↑0.41%)

Table 9. Per epoch training time and accuracy of different models
on the ScanObjectNN dataset

6. Discussion and Conclusion

Max-pooling is a commonly used approach to obtain
permutation-invariant features for point cloud processing
tasks. In this paper, we have first shown that methods using
traditional max-pooling throw away a significant portion of
points and that the features of these discarded points indeed
provide comparable performance, to the features that are
initially kept, when used by themselves. Thus, it is wasteful
to discard them for not only computational reasons but also
for performance reasons. To address this, we have proposed
a novel Recycling Max-Pooling Module (RMP) to recycle
these still informative features for improved performance.
We have presented the refinement loss that, when combined
with the classification loss, allows recycled features to re-
fine the initially kept features. We have performed exten-
sive experiments on the ModelNet40, ScanObjectNN, and
S3DIS datasets for classification and segmentation tasks,
and shown that the proposed RMP module is generaliz-
able to various networks, and consistently improves the per-
formance of several SOTA baselines. Since the proposed
approach goes through an extra level to recycle the dis-
carded features during training, this performance improve-
ment comes with a slight increase in the training time.
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