Rethinking Spatial Invariance of Convolutional Networks for Object Counting

Zhi-Qi Cheng1, Qi Dai2, Hong Li3, Jingkuan Song4, Xiao Wu3, Alexander G. Hauptmann1*
1Carnegie Mellon University 2Microsoft Research Asia 3Southwest Jiaotong University
4University of Electronic Science and Technology of China
\{zhiqic,alex\}@cs.cmu.edu, qid@microsoft.com,
\{h1997.work,jingkuan.song\}@gmail.com, wuxiaohk@home.swjtu.edu.cn

Abstract

Previous work generally believes that improving the spatial invariance of convolutional networks is the key to object counting. However, after verifying several mainstream counting networks, we surprisingly found too strict pixel-level spatial invariance would cause overfit noise in the density map generation. In this paper, we try to use locally connected Gaussian kernels to replace the original convolution filter to estimate the spatial position in the density map. The purpose of this is to allow the feature extraction process to potentially stimulate the density map generation process to overcome the annotation noise. Inspired by previous work, we propose a low-rank approximation accompanied with translation invariance to favorably implement the approximation of massive Gaussian convolution. Our work points a new direction for follow-up research, which should investigate how to properly relax the overly strict pixel-level spatial invariance for object counting.

1. Introduction

Object counting has been widely studied since it can potentially solve crowd flow monitoring, traffic management, etc. The previous works \cite{8, 28, 62} believe that the latchkey to improving the object counting is to improve the spatial invariance of CNNs. Based on this starting point, more and more networks (such as dilated CNNs \cite{3, 13, 39}, deformable CNNs \cite{17, 34} and multi-column CNNs \cite{11, 13, 71}) are studied for object counting.

*Work done during a remote research collaboration with CMU.
1Code is at https://github.com/zhiqic/Rethinking-Counting

Figure 1. The left shows the idea of density map generation, and the right is an example from SHTech-PartA dataset \cite{76}, where the red dot is the annotation in groundtruth, and the black dot is the real center position. The density map is generated by smoothing the center points with the multi-dimensional Gaussian distribution. There are two main types of noise: 1) the error ϵ between the true center points and the annotations and 2) the overlap Σ caused by multiple Gaussian kernels. Note that the left is merely an example. The center point of crowd counting usually refers to the center of the head. [Best view in color].

However, this research direction has appeared performance bottlenecks. We noticed that the counting accuracy had not been significantly improved with further continuously optimizing the network architectures. Some recent studies \cite{6, 10, 30, 59} also witnessed a lot of noise during density generation and conjecture that this might be the reason for the performance bottleneck. Although these efforts have made some progress, we are still ignorant of the following questions. 1) \textbf{Is blindly improving spatial invariance valuable for object counting tasks?} 2) \textbf{How does density noise affect performance?}

Before answering these questions, let’s briefly introduce the generation process of the density map. Figure 1 takes crowd counting as an example. The density map is generated by smoothing the center point with multiple Gaussian kernels. This preprocessing converts the discrete counting problem into a continuous density regression, but inevitably brings some noise. In general, there are two types of noise. 1) The error between the actual center point and annotation (i.e., ϵ between the red and black dots). 2) The overlay of Gaussian kernels (i.e., Σ)2. More formal mathematical description is in Sec. 3.1 and 3.2.

2Note that we have some abuse symbols here.
To answer these problems, we have thoroughly verified four mainstream object counting methods (MCNN [77], CSRNet [28], SANet [4] and ResNet-50 [18]) in three different tasks (crowd, vehicles and plants counting). Extensive verification experiments reveal that too strict pixel-level spatial invariance will not only cause the large prediction variances, but also overfitting to the noise in the density map as Sec. 4.2. We observed that the existing models 1) cannot be generalized, even impossible within the same crowd counting task and 2) essentially impossible to learn the actual object position and distribution in the density maps. In general, these experiments provide the following answers. 1) *Solely increasing the spatial invariance is not beneficial to object counting tasks.* 2) *The pixel-level spatial invariance makes the model easier to overfit the density map noise.*

To solve these problems, inspired by the previous works [15, 19, 26, 57], we try to replace the traditional convolution operation with Gaussian convolution. The motivation behind is to mimic the Gaussian-style density generation throughout the whole feature learning, rather than merely generating the final density map. To a certain extent, this modification is equivalent to a relaxation of the pixel-level spatial invariance. After the pixel-grid filters are revised with Gaussian kernels, we can jump out of the over-strict pixel-level restrictions. Fortunately, the experimental result of Sec. 4.4 proved that this relaxation could allow us to avoid overfitting to the density map noise and promisingly learn the object position and distribution law.

Technically, we propose a novel low-rank approximation to simulate the process of Gaussian-style density map generation during the feature extraction. Although previous work [59] uses a multivariate Gaussian approximation to optimize the density map in the loss function, it is unclear how to explicitly model this approximation during the convolution process. Note that the approximation in [59] only imposes the constraints on predicted density maps, while leaving the density estimation unchanged. In contrast, our approach employs Gaussian convolution to replace standard convolution, where our low-rank approximation uses finite Gaussian kernels (Eq. 10) to approximate the massive Gaussian kernel convolution (Eq. 7). It is worth noting that our method concentrates on the density estimation process, while [59] only focuses on the generated density maps.

As shown in Figure 3, we replace the standard convolution operation with Gaussian convolution to provide a novel way to generate the density map. We first propose a *Low-rank Approximation module* to approximate the massive Gaussian convolution. Specifically, we sample a few Gaussian kernels from the groundtruth density map as input, and then employ Principal Component Analysis (PCA) to select some representative Gaussian kernels. Through a simple attention mechanism, the correlation between the selected Gaussian kernels is learned, which is operated to approximate the massive Gaussian convolution. Correspondingly, we also propose a *Translation Invariance Module* to accelerate the inference. On the input side, we adopt the translation invariance to decouple the Gaussian kernel operation to accelerate the convolution operation. At the output side, we utilize the weights obtained from the low-rank approximation module to accomplish approximation. Note that all of our implementations are based on CUDA. It can be seamlessly applied to mainstream CNNs and is end-to-end trainable. To conclude, our contributions are mainly three folds:

- We reveal that the overly restrictive spatial invariance in object counting is unnecessary or even harmful when facing the noises in the density maps.
- A low-rank Gaussian convolution is proposed to handle the noises in density map generation. Equipped with low-rank approximation and translation invariance, we can favorably replace standard convolutions with several Gaussian kernels.
- Extensive experiments on seven datasets for three counting tasks (i.e. crowd, vehicle, plant counting) fully demonstrate the effectiveness of our method.

2. Related works

We divide the literature into two directions as follows.

2.1. Increase the spatial invariance with CNNs

Different from traditional manually designed counting detectors [2, 5, 40, 47], existing mainstream methods convert counting problems into density regression [8, 27, 62, 74]. The main research direction is to improve the spatial invariance of CNNs. The mainstream technical routes include Multi-Column CNNs [11–13, 71, 77], Dilation CNNs [3, 13, 17, 28, 39, 70], Deformable CNNs [17, 34], Residual CNNs [29, 43, 78], Graph CNNs [38], Attention Mechanism [14, 25, 44, 52, 72, 73], Pyramid Pooling [9, 21, 50], and Hierarchy/Hybrid Structures [38, 51]. With the further optimization of parameters and structures, performance bottlenecks have appeared in these approaches, which makes us have to investigate the underlying reasons behind them.

As shown in Figure 2, we briefly visualized the ideas of these methods. From the point of view of convolution, the accuracy can be improved by 1) relaxing the pixel-level spatial invariance (e.g., Dilation/Deformable CNNs), 2) fusing more local features (e.g., Multi-Column CNNs and Spatial Pyramid Pooling), and 3) exploiting Attention/Perspective information. Inspired by this, we utilize a set of low-rank Gaussian kernels with the attention mechanism to relax spatial invariance and fuse local features by replacing standard convolutions. Here we only offer one solution, and follow-up work can continue to explore how to properly relax the spatial invariance.
2.2. Dealing with noise in the density map

Similar to our findings, some studies have also shown notable label noise in density maps [53, 59, 69, 75]. The mainstream approaches to overcome noise are to propose loss functions [6, 10, 30, 35, 42, 48, 60], optimize measurement metrics [30, 54], update matching rules [54, 61], fine-grained noise regions [1, 4, 36, 55], and optimize training processes [1, 4, 32, 79]. Some recent studies have also started to use adversarial [46, 65, 81, 82] and reinforcement learning [33] to handle noise in the density learning.

In summary, these approaches do not reveal the correlation between the spatial invariance and the noise of density maps. Most of them only minimize noise by optimizing the loss or regularization term [23, 31, 42, 59, 68]. For example, a recent work called AutoScale [68] attempts to normalize the densities of different image regions to within a reasonable range. Our work is inspired by previous work [59]. Unlike it only focuses on optimizing the loss, our method attempts to modify the convolution operation to overcome noise during the feature learning.

3. Methods

To better understand our method, we first briefly review the traditional density map generation to reveal the labeling noises of the object counting task.

3.1. Traditional density map generation

The recent mainstream approach turns the object counting task into a density regression problem [27, 50, 63]. For \(N \) objects of image \(I \), the center points of all objects are labeled as \(\{ \hat{D}_1, ..., \hat{D}_i, ... \hat{D}_N \} \). The Gaussian kernel can effectively overcome the singularity in the prediction process. Thus the density of any pixel in an image, \(\forall p_i \in I \), is generated by multiple Gaussian kernels as,

\[
y(p_i) = \sum_{i=1}^{N} N(p_i; \hat{D}_i, \beta I) \tag{1}
\]

\[
= \sum_{i=1}^{N} \frac{1}{2\pi \beta} \exp\left(-\frac{1}{2} \left\| p_i - \hat{D}_i \right\|^2 \right), \tag{2}
\]

where \(N(\hat{D}_i, \beta I) \) is the multivariate Gaussian kernel, the mean \(\hat{D}_i \) and the covariance \(\beta I \) respectively depict the center point position and shape of the object. \(\beta \) is the variance of the Gaussian kernel and \(||x||^2 = x^T(\beta I)^{-1}x \) is the square Mahalanobis distance.

3.2. Noise in object counting task

However, similar to the previous work [53, 59, 69, 75], we found that there are naturally two kinds of unavoidable noises in density map as Figure 1.

1. The error \(\epsilon \) between the true position of the object \(D_i \) and the labeled center point \(\hat{D}_i \);

2. The error \(\Sigma \) between object occlusion and overlapping of multiple Gaussian kernel approximation \(\sum_{i=1}^{N} N(p_i; \hat{D}_i, \beta I) \);

Suppose the labeling error \(\epsilon \) of the center point position is independent and identically distributed (i.i.d) and also obeys the Gaussian distribution. Similar to Eq. 1, the density map of any pixel \(\forall p_i \in I \) with the true center point \(D_i = \hat{D}_i - \epsilon_i \) can also be computed as,

\[
y(p_i) = \sum_{i=1}^{N} N(p_i; \hat{D}_i - \epsilon_i, \beta I) \tag{3}
\]

\[
= \sum_{i=1}^{N} N(q_i; \epsilon_i, \beta I), \tag{4}
\]

where we have made some equivalent changes to the equations. Further replacing \(p_i \) with \(q_i = \hat{D}_i - p_i \), the density map is still as the combination of the Gaussian distribution \(N(\mu, \Sigma) \). The values of mean \(\mu \) and variance \(\Sigma \) are respectively estimated as,

\[
\mu \approx \frac{\sum_{i=1}^{N} N(\epsilon_i, \beta I)}{\sum_{i=1}^{N} \epsilon_i}, \tag{5}
\]

\[
\Sigma \approx \frac{\sum_{i=1}^{N} 1}{2\pi \gamma} N(0, \delta I) - \sum_{i=1}^{N} \mu_i^2, \tag{6}
\]

where \(\beta, \gamma, \delta \) are the variance parameters of the Gaussian function.\footnote{We simply reformulate the parameter by \(\gamma = 2\beta \) to make a concise expression. For more details, please refer to the previous work [59].}
Although the updated density map still obeys a Gaussian distribution, according to Eq. 5 and 6, the mean μ (depicting the center point) and variance Σ (representing shape and occlusion) have more complex forms. This mathematically sheds light on why strict pixel-level spatial invariance leads to severe overfitting label errors. As shown in Sec. 4.2, some state-of-the-art networks still fail to predict actual occlusion in high-density regions, and overestimate the density in low-density regions. Obviously, this is due to overfitting to noise, thereby completely ignoring the position and shape of objects. Below we will present our solution.

3.3. Low-rank Gaussian convolutional layer

Inspired by the previous works [15, 19, 26, 56], we try to replace the standard convolution filters with Gaussian kernels. In this way, the feature extraction can simulate the process of density map generation. After pixel-grid filters are replaced with Gaussian kernels, we can jump out of the strict pixel-level spatial constraints and learn the density map in a more relaxed spatial manner. The modified convolution is as,

$$Y_s = \sum_{i=0}^{N} G(\mu_i, \Sigma_i) \ast X_s + b_s,$$

where \ast and b_s are convolution operation and offsets. X_s and Y are two-dimensional features. Here we only take the features of channel s as an example. Since we want to simulate the density map generation, all N Gaussian kernels $G(\mu_i, \Sigma_i)$ have to be used for convolution. The position and shape of the objects are respectively stipulated by the mean μ_i and the variation Σ_i.

However, Eq. 7 cannot be implemented because it requires massive Gaussian convolutions. Fortunately, previous work [59] uses low-rank Gaussian distributions to approximate the density map. Inspired by this, we proposed a low-rank approximation module (Sec. 3.3.1) to achieve the approximation to Gaussian convolution, and accordingly equipped a translation invariance module (Sec. 3.3.2) to accelerate computation. As shown in Figure 3, we will present these two modules below.

3.3.1 Accelerate with Low-rank approximation

Low-rank approximation module uses a small number of Gaussian kernels with the low-rank connection to approximate an almost infinite Gaussian convolution (Eq. 7). It has been proven [59] that a density map generated by aggregating N Gaussian kernels (N can be hundreds to thousands\(^4\)) could be approximated by K Gaussian kernels $\{G_1(\Sigma_1), ..., G_K(\Sigma_K)\}$, where $K \ll N$. Although previous work [59] uses the low-rank approximation to optimize the density map in the loss function, it is still unclear how to approximate the massive Gaussian convolution.

To this end, we try to approximate the finite Gaussian convolution by learning a few Gaussian kernels, as well as their correlations with an attention mechanism. During the approximation, 2dK Gaussian kernels are randomly sampled. After the Principal Component Analysis (PCA), the eigenvectors $\{G(\Sigma_k)\}_{k=1}^{K}$ corresponding to K non-zero eigenvalues are obtained. Then we initialize the coefficients of picked K Gaussian kernels as,

$$w_k = \langle G(\Sigma_k), G(\Sigma_l) \rangle,$$

where $\langle . , . \rangle$ is the inner product, and Σ_I represents the identity matrix. Because we will further decompose the Gaussian kernel to speed up the computation, the mean μ of the Gaussian kernels is ignored here. Finally, we perform normalization operations,

$$\sigma(w_k) = \frac{\exp(w_k)}{\sum_{l=1}^{K} \exp(w_l)},$$

where w_k are also updated during training. In addition to fusing the local features, it can also help restrict the spatial information in the gradient back-propagation.

\(^4N\) is the number of objects in image as shown in Table 1.
Based on this improvement, the optimized Gaussian convolutional layer is computer as,

\[Y_s = \sum_{k=0}^{K} \sum_{j=0}^{K} (w_k \circ \sum_{i=0}^{K} (G(\mu_i, \Sigma_j) \ast X_s)) + b_s, \]

(10)

where \(\circ \) is the entry-wise product. We utilize the low-rank Gaussian kernels to complete the approximation process. Following we will continue to apply the translation invariance module to further optimize our method.

3.3.2 Accelerate with translation invariance

Translation invariance module aims to decompose the convolution operation between the Gaussian kernel and the input feature map to accelerate the inference. Accomplishing convolution operations of all Gaussian kernels in Eq. 10 requires a lot of computational resources. Using the translation invariance of Gaussian kernel, the convolution operation between the Gaussian kernel and the input features can be efficiently implemented as,

\[G(\mu_k, \Sigma_k) \ast x = \mathcal{T}_{\mu_k}[G(0, \Sigma_k)] \ast x \]

(11)

\[= \mathcal{T}_{\mu_k}[G(0, \Sigma_k) \ast x], \]

(12)

where \(\mathcal{T}_{\mu_k}[y] = g(y - \mu_k) \) is the translation of the function \(g() \). \(G(0, \Sigma_k) \) is Gaussian kernels with zero mean. The benefit of this is that we can ignore the mean of Gaussian kernels in the convolution operation. Since Eq. 12 is only accurate for discrete \(\mu_k \), we treat the translation function \(g() \) as bilinear interpolation in the actual implementation,

\[\tilde{T}_{\mu_k}[y] = \sum_{i} \sum_{j} a_{ij} \cdot g(y - [\mu_k] + [i, j]), \]

(13)

where \(a_{ij} \) are the weights in bilinear interpolation, which allow computing subpixel displacements and can be implemented efficiently in CUDA.

Finally, our proposed low-rank Gaussian convolutional layer can be computed as,

\[Y_s = \sum_{k=0}^{K} \sum_{j=0}^{K} (w_k \circ \tilde{T}_{\mu_k}[G(\Sigma_j) \ast X_s]) + b_s, \]

(14)

where all implementations are based on CUDA. Thus our proposed layer can be applied to mainstream CNNs. In most cases, we replace all the convolutional layers (or 3x3 convolutional layers in all residual and pyramid pooling blocks) with our Gaussian convolutional layers.

Complexity Analysis. Theoretically, considering input \(X = [H, W, C_i] \) and output \(Y = [H, W, C_o] \), supposing \(N \) Gaussian kernels are used in density map generation, the complexity of the initial Gaussian convolution (Eq. 7) is \(\mathcal{O}(K C_i H W N k_w k_h) \), where \(k_w, k_h \) indicate the upper bound of the size of Gaussian kernels. When utilizing low-rank approximation, the complexity of Eq. 10 is \(\mathcal{O}(K C_i C_o H W K k_w k_h) \), where \(K \) is the number of the sampled kernels, \(K \ll N \). By further applying translation invariance, the complexity of Eq. 14 is \(\mathcal{O}(4K C_i C_o H W) \), where 4 is related to the bilinear interpolation. Table 2 also shows experimental time cost of our method, which demonstrates the effectiveness of two acceleration components.

4. Experiments

4.1. Experiment settings

Dataset. We evaluate our method on three application, i.e., crowd, vehicle, and plant counting. For crowd counting, five datasets are used for evaluation, including Shang-haiTech (STech) PartA and PartB [76], UCF_CC-50 [22], UCF-QNRF [24] and JHU-CROWD++ [49]. For vehicle and plant counting, two datasets, i.e., TRANCOS [16] and MTC [37] are used, respectively. Table 1 gives a summary of these datasets.

Baseline Networks. We evaluate our method by integrating it with four baselines including MCNN [77], CSRNet [28], SANet [4], and ResNet-50 [18]. The training procedures follow third-party Github repositories5. Training details are slightly different from the original paper. For example, batch processing and other functions are included. Following previous works [10,44,61], MCNN and CSRNet are tested on the whole images, while SANet is evaluated on image patches. Additionally, Mean Absolute Error (MAE) and Mean Square Error (MSE) are used as evaluation measurements.

4.2. Reveal the label noise of object counting

We verified the prediction variance on four mainstream object counting methods (i.e., MCNN [77], CSRNet [28], SANet [4], and ResNet-50 [18]).

Large variance in prediction. As shown in Figure 5, four object counting methods have a large prediction variance on SHTech-PartA and UCF-QNRF datasets. Even more surprising is that the variance does not decrease as the performance (spatial invariance) increases. The results in Figure 5 meaningfully reveal its hidden reason, namely that the overly strict pixel-level spatial invariance makes the model severely overfit to the density map noise.

5https://github.com/gjy3035/C-3-Framework

Table 1. Object counting benchmarks. [Min, Max] and #images are the range of objects per image and the number of images.

<table>
<thead>
<tr>
<th>Datasets</th>
<th>[Min, Max]</th>
<th>#Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHTech-PartA [76]</td>
<td>[33, 3,139]</td>
<td>482</td>
</tr>
<tr>
<td>UCF_CC-50 [22]</td>
<td>[94, 4,543]</td>
<td>50</td>
</tr>
<tr>
<td>Crowd</td>
<td>[49, 12,865]</td>
<td>1,525</td>
</tr>
<tr>
<td>UCF-QNRF [24]</td>
<td>[0, 7,286]</td>
<td>4,250</td>
</tr>
<tr>
<td>JHU-CROWD++ [49]</td>
<td>[9, 578]</td>
<td>716</td>
</tr>
<tr>
<td>Vehicle</td>
<td>[9, 107]</td>
<td>1,244</td>
</tr>
<tr>
<td>Plant</td>
<td>[0, 100]</td>
<td>361</td>
</tr>
</tbody>
</table>

19642
Underestimation of high-density areas. We performed a similar validation for high-density regions to find out the reasons for the large prediction variance. In the second column of Figure 5, we noticed that the prediction variance in high-density areas is more severe than the entire image. The overall statistics prove that the model severely underestimates density in high-density areas. What is even more surprising is that this variance appears to increase as the performance (spatial invariance) increases.

Overestimated in low density areas. Likewise, in the third column, we analyzed the low-density area. Overall, the variance is reduced compared to high-density areas. We speculate that fewer Gaussian kernels are in the low-density area, which inherently has lower annotation noise. Although the variance is slight than the high-density area, the overall variance is still more severe than the entire image. We guess this is because the high and low-density areas compensate each other to reduce the variance.

Ignorance of position and shape. To further clarify the large prediction variance, we visualized some examples. Figure 4 shows the obvious difference between the predicted density maps and the true position of the object (indicated by the red dot). In some low-density areas, the prediction results ignore many objects (i.e., the density map does not cover many red dots). Likewise, in some high-density regions, the crowd is poorly estimated (that is, the clustering on the density map is inconsistent with the trend of the red dots). To sum up, these visualizations show that blindly improving spatial invariance does not learn the location and shape of objects.

Table 2. Cost on MCNN (batchsize 1, image size 256²). LRA and TI refer to Low-Rank Approximation and Translation Invariance. The Vanilla setting uses 256 Gaussian kernels per layer.

<table>
<thead>
<tr>
<th>Time (milliseconds)</th>
<th>Vanilla</th>
<th>LRA</th>
<th>LRA+TI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>51.3</td>
<td>13.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Backward</td>
<td>160.0</td>
<td>44.1</td>
<td>12.6</td>
</tr>
</tbody>
</table>

Figure 4. Visualization of robustness to annotation noise, where red dots are groundtruth annotations. Here we generate the noisy dataset by randomly moving the annotation points by {0, 8, 16, 32} pixels. Visualization results exhibit the results of two examples with/without our proposed Gaussian convolutional layer.

Figure 5. Comparative analysis of the prediction variance. The variance refers to the difference in the results at different convergence states. The error refers to the difference between the prediction and the groundtruth. Left to right are the analysis results of the full image, high-density area, and low-density area. The results clearly show that there is a huge variance in prediction results.

Figure 6. The ablation study of MCNN [77]. The number after CONV indicates the range of using our proposed layer.

4.3. Ablation study

We perform ablation studies with our method. Due to space limitations, we only use MCNN [77] as an example.

Effectiveness of accelerated modules. We conduct ablation studies to verify the effectiveness of low-rank approximation and translation invariance modules. Table 2 shows the experimental time cost of our proposed layer. Compared with the original Gaussian convolution, our offered two acceleration modules can significantly improve the computational efficiency.

Where should it be replaced? As shown in Figure 6, we performed ablation studies on the three column convolutional structures of MCNN. Overall, the three column structures have roughly the same results. We noticed that replacing our layers in the first three convolutional layers will achieve larger improvements. We also got similar results in other baselines. Our method has fewer parameters than the original convolutional layer. Thus in most cases, we replace all the convolutional layers (or 3×3 convolutional layers in all residual blocks and pyramid pooling blocks) with our Gaussian convolutional layers.

How to set the Gaussian kernels? Our method has three hyperparameters, i.e., the mean μ, variance σ, and the number of Gaussian kernels K. The mean value can be instantly set according to the stride of the original convolutional layer. Thus we will only discuss variance Σ and the number of K in the experiment.
large enough ($K = 100$), we estimate the change of Gaussian kernel variance in each convolution layer. We observe that the variance merely changed in the first convolutional layer. Inspired by this, we usually set K to 16 with variance from $[-0.5, 0.5]$ in the first two convolutional layers, and set K to 2 or 4 in the successive convolutional layers with variance from $[-0.1, 0.1]$.

4.4. Compare with state-of-the-art methods

We compared our method with state-of-the-art methods in three applications (crowd, vehicle, plant counting).

Table 3. Comparison with the state-of-the-art methods on SHTech-PartA [76], UCF_CC_50 [22], UCF-QNRF [24] and JHU-CROWD++ [49] datasets. The best results are shown in bold. This also applies to the following tables.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Venue</th>
<th>SHTech-PartA MAE</th>
<th>SHTech-PartA MSE</th>
<th>UCF_CC_50 MAE</th>
<th>UCF_CC_50 MSE</th>
<th>UCF-QNRF MAE</th>
<th>UCF-QNRF MSE</th>
<th>JHU-CROWD++ MAE</th>
<th>JHU-CROWD++ MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSCNet</td>
<td>CVPR’20</td>
<td>55.4</td>
<td>97.7</td>
<td>198.4</td>
<td>267.3</td>
<td>71.3</td>
<td>132.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMSNet</td>
<td>ECCV’20</td>
<td>56.7</td>
<td>93.4</td>
<td>208.4</td>
<td>297.3</td>
<td>101.8</td>
<td>163.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MNA [59]</td>
<td>NeurIPS’20</td>
<td>61.9</td>
<td>99.6</td>
<td>-</td>
<td>-</td>
<td>85.8</td>
<td>150.6</td>
<td>67.7</td>
<td>258.5</td>
</tr>
<tr>
<td>DM-Count</td>
<td>NeurIPS’20</td>
<td>59.7</td>
<td>95.7</td>
<td>211.0</td>
<td>291.5</td>
<td>85.6</td>
<td>148.3</td>
<td>66.0</td>
<td>261.4</td>
</tr>
<tr>
<td>GLoss</td>
<td>CVPR’21</td>
<td>61.3</td>
<td>95.4</td>
<td>-</td>
<td>-</td>
<td>84.3</td>
<td>147.5</td>
<td>59.9</td>
<td>259.5</td>
</tr>
<tr>
<td>URC [59]</td>
<td>ICCV’21</td>
<td>72.8</td>
<td>111.6</td>
<td>294.0</td>
<td>443.1</td>
<td>128.1</td>
<td>218.1</td>
<td>129.7</td>
<td>400.5</td>
</tr>
<tr>
<td>SDNet</td>
<td>ICCV’21</td>
<td>55.0</td>
<td>92.7</td>
<td>197.5</td>
<td>264.1</td>
<td>80.7</td>
<td>146.3</td>
<td>59.3</td>
<td>248.9</td>
</tr>
<tr>
<td>MCNN (ours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSRNet</td>
<td>CVPR’20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SANet</td>
<td>CVPR’20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ResNet-50 (ours)</td>
<td></td>
<td>94.2</td>
<td>141.8</td>
<td>282.6</td>
<td>387.2</td>
<td>204.2</td>
<td>280.4</td>
<td>165.3</td>
<td>486.6</td>
</tr>
<tr>
<td>CSRNet (ours)</td>
<td></td>
<td>61.2</td>
<td>97.8</td>
<td>215.4</td>
<td>296.4</td>
<td>84.2</td>
<td>152.4</td>
<td>69.4</td>
<td>262.4</td>
</tr>
<tr>
<td>SANet (ours)</td>
<td></td>
<td>59.2</td>
<td>95.4</td>
<td>209.2</td>
<td>278.4</td>
<td>86.6</td>
<td>162.8</td>
<td>68.9</td>
<td>270.6</td>
</tr>
<tr>
<td>ResNet (ours)</td>
<td></td>
<td>54.8</td>
<td>89.1</td>
<td>186.3</td>
<td>256.5</td>
<td>81.6</td>
<td>153.7</td>
<td>58.2</td>
<td>245.1</td>
</tr>
</tbody>
</table>

Table 4. Results on SHTech-PartB [76] dataset.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Venue</th>
<th>SHTech-PartB MAE</th>
<th>SHTech-PartB MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSCNet</td>
<td>CVPR'20</td>
<td>6.4</td>
<td>11.3</td>
</tr>
<tr>
<td>AMSNet</td>
<td>ECCV'20</td>
<td>6.7</td>
<td>10.2</td>
</tr>
<tr>
<td>DM-Count</td>
<td>NeurIPS'20</td>
<td>7.4</td>
<td>11.8</td>
</tr>
<tr>
<td>GLoss</td>
<td>CVPR'21</td>
<td>7.3</td>
<td>11.7</td>
</tr>
<tr>
<td>URC [59]</td>
<td>ICCV'21</td>
<td>12.0</td>
<td>18.7</td>
</tr>
<tr>
<td>MCNN (ours)</td>
<td>CVPR'16</td>
<td>110.2</td>
<td>173.2</td>
</tr>
<tr>
<td>CSRNet</td>
<td>CVPR'18</td>
<td>68.2</td>
<td>115.0</td>
</tr>
<tr>
<td>SANet</td>
<td>CVPR'18</td>
<td>58.0</td>
<td>97.8</td>
</tr>
<tr>
<td>ResNet-50 (ours)</td>
<td></td>
<td>54.8</td>
<td>89.1</td>
</tr>
</tbody>
</table>

Table 5. Results on TRANCOS [16] and MTC [37] dataset.

<table>
<thead>
<tr>
<th>Methods</th>
<th>TRANCOS MAE</th>
<th>TRANCOS MSE</th>
<th>MTC MAE</th>
<th>MTC MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMG [58]</td>
<td>2.6</td>
<td>3.89</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TasselNetv2 [66]</td>
<td>-</td>
<td>-</td>
<td>5.4</td>
<td>8.8</td>
</tr>
<tr>
<td>S-DCNet [67]</td>
<td>-</td>
<td>-</td>
<td>5.6</td>
<td>9.1</td>
</tr>
<tr>
<td>CSRNet [28]</td>
<td>3.56</td>
<td>-</td>
<td>9.4</td>
<td>14.4</td>
</tr>
<tr>
<td>CSRNet (ours)</td>
<td>2.2</td>
<td>2.6</td>
<td>3.2</td>
<td>4.6</td>
</tr>
<tr>
<td>MCNN (ours)</td>
<td>7.7</td>
<td>7.4</td>
<td>8.7</td>
<td>12.3</td>
</tr>
<tr>
<td>SANet (ours)</td>
<td>2.5</td>
<td>2.8</td>
<td>3.4</td>
<td>4.5</td>
</tr>
<tr>
<td>ResNet (ours)</td>
<td>2.1</td>
<td>2.6</td>
<td>3.1</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Table 6. Robustness to annotation noise. Both [59] and CSRNet adopt VGG backbone. Results of VGG are from Figure 4 of [59].

<table>
<thead>
<tr>
<th>Methods</th>
<th>MAE (↓)</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSRNet (w/o)</td>
<td>119.2</td>
<td>125.4</td>
<td>133.7</td>
<td>142.5</td>
<td>166.2</td>
<td></td>
</tr>
<tr>
<td>VGG [59]</td>
<td>85.8</td>
<td>91.0</td>
<td>96.0</td>
<td>97.0</td>
<td>99.0</td>
<td></td>
</tr>
<tr>
<td>CSRNet (ours)</td>
<td>84.2</td>
<td>85.7</td>
<td>89.0</td>
<td>92.2</td>
<td>95.4</td>
<td></td>
</tr>
</tbody>
</table>

Result of crowd counting. Table 3 shows the results of crowd counting in the free camera perspective. We considered the prediction variance and selected the worst result for reporting. Except for MCNN, the other three modified baselines outperform other state-of-the-art methods. Compared to the original baselines, our variant has also achieved a huge improvement. The performance of the light MCNN is even close to some of the most advanced methods.

Table 4 shows the results in the surveillance scenarios. Like free views, our model surpasses other state-of-the-art approaches, but the improvement in surveillance scenarios is not as much as free perspective. We guess there is more noise in generating density maps in the free view. Due to the noisy label in the groundtruth of SHTech-PartB, our method cannot further improve performance.

Result of object counting. We also evaluated vehicle and plant counting. Table 5 shows that our model works well for vehicle scenarios. The improvement is minor compared to the crowd counting because the vehicle scene holds less noise. For plant counting, we got similar results. Our model outperforms other state-of-the-art methods. Notable is the improvement in the MSE metric, which shows that our method is more robust. The overall performance is very close to the groundtruth.

4.5. Robustness to annotation noise

We follow previous work [59] to verify robustness to annotation noise. We generate a noisy dataset by randomly moving the annotation points by $4, 8, 16, 32$ pixels. Then we train the model on noisy datasets with or without our
proposed Gaussian convolutions. Table 6 shows the comparison. Though the performances of all methods decrease as the annotation noise increases, our method is still more robust than other methods. Figure 4 also illustrates the predicted results of two examples with/without our method.

4.6. Visualization of convolution filters

We visualized the convolution filters to evaluate whether our model can simulate the density map generation and learn the spatial information of the objects. Figure 7 shows the results after visualization. In general, our method can effectively learn the perspective law of the distribution of objects. The results in the plant counting (column 3) are particularly obvious due to the more consistent scenarios. Our method learns the planting distribution and even reflects the planting interval. In contrast, the original SANet [4] only shows some noise in the image (e.g., marking Poles). Similarly, our method also learns the distribution of pedestrians and vehicles by counting pedestrians and vehicles under the surveillance viewing angle (columns 2 and 4). On the contrary, the original SANet blindly guesses high-density areas or overestimates low-density regions. We also found similar results under the free perspective (columns 1 and 5), where our method can approximate crowd density distribution in pedestrian streets and squares.

5. Conclusion

We reveal the relationship between spatial invariance and density map noise. Extensive experiments prove that if only instinctively improve the spatial invariance of CNNs, the model will easily overfit to the density map noise. Inspired by this, we utilize a set of locally connected multivariate Gaussian kernels for replacing the convolution filters. Unlike the pixelized-based filter, our proposed variant can approximately simulate the process of density map generation. Considering the characteristics of object counting, we try to use translation invariance and low-rank approximation to improve the efficiency. Extensive experiments show that our method outperforms other state-of-the-art methods. Our work points out the direction for future research. It can avoid wildly improving the spatial invariance for the object counting. In the future, we will further analyze the relationship between the Gaussian kernel and spatial invariance.

Acknowledgements. This work was partially supported by the Air Force Research Laboratory under agreement number FA8750-19-2-0200; the financial assistance award 60NANB17D156 from U.S. Department of Commerce, National Institute of Standards and Technology (NIST); the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center (DOI/IBC) contract number D17PC00340; the Defense Advanced Research Projects Agency (DARPA) grant funded under the GAILA program (award HR00111990063). The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the U.S. Government.
References

[40] Zheng Ma and Antoni B Chan. Crossing the line: Crowd counting by integer programming with local features. In *CVPR*, pages 2539–2546, 2013. 2

[41] Zhiheng Ma, Xiaopeng Hong, Xing Wei, Yunfeng Qiu, and Zheng Ma and Antoni B Chan. Crossing the line: Crowd counting by integer programming with point super-resolution. In *ICCV*, pages 3205–3214, 2021. 7

[70] Zhaoyi Yan, Ruimao Zhang, Hongzhi Zhang, Qingfu Zhang, and Wangmeng Zuo. Crowd counting via perspective-guided fractional-dilation convolution. IEEE TMM, 2021. 2

[79] Zhen Zhao, Miaojing Shi, Xiaoxiao Zhao, and Li Li. Active crowd counting with limited supervision. In ECCV. Springer, 2020. 3

