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Abstract

Human skeleton-based action recognition offers a valu-
able means to understand the intricacies of human behav-
ior because it can handle the complex relationships be-
tween physical constraints and intention. Although several
studies have focused on encoding a skeleton, less atten-
tion has been paid to embed this information into the la-
tent representations of human action. InfoGCN proposes
a learning framework for action recognition combining a
novel learning objective and an encoding method. First,
we design an information bottleneck-based learning objec-
tive to guide the model to learn informative but compact
latent representations. To provide discriminative informa-
tion for classifying action, we introduce attention-based
graph convolution that captures the context-dependent in-
trinsic topology of human action. In addition, we present
a multi-modal representation of the skeleton using the rel-
ative position of joints, designed to provide complemen-
tary spatial information for joints. InfoGCN1 surpasses
the known state-of-the-art on multiple skeleton-based ac-
tion recognition benchmarks with the accuracy of 93.0%
on NTU RGB+D 60 cross-subject split, 89.8% on NTU
RGB+D 120 cross-subject split, and 97.0% on NW-UCLA.

1. Introduction

Human action recognition is a fundamental problem in
computer vision with rich applications, including emer-
gency detection [36], sign language recognition [35], and
gesture recognition for VR / AR [57], to name a few. In
particular, human action recognition based on the skele-
ton [6, 7, 19, 44, 58] has attracted much interest in computer
vision because of its robustness against a cluttered back-
ground. One of the key achievements in skeleton-based ac-
tion recognition is a graph convolution network (GCN [21])
based approach.

*These authors contributed equally to this work
1Code is available at github.com/stnoah1/infogcn

Figure 1. Conceptual diagram of InfoGCN. We propose an IB
objective and a corresponding loss to guide our model to learn
maximally informative representations for skeleton-based action
recognition. The encoder infers an intrinsic topology of joints,
which provides contextual information beyond physical connec-
tivity. The colored lines on the bottom indicate inferred intrinsic
topology, and the thickness represents the strength of the relation.

This paper introduces a novel skeleton-based prediction
framework for action recognition. Our approach advances
the state-of-the-art in three critical aspects. The first is
the algorithm for representation learning. A large body of
works have demonstrated that representation learning con-
siderably influences the performance of machine learning
tasks [2, 5, 13, 23, 29, 59, 61]. Our approach is inspired
by the information bottleneck (IB) theory [49]. We derive
novel IB objective and the corresponding loss to learn the
latent representation to be maximally informative to the tar-
get variable while compressing the input information con-
ditionally and marginally, as illustrated at the top of Fig. 1.
The model learned with the proposed objective performs
recognition by encoding implicit and general latent repre-
sentation, bridging the input-level physical information and
action semantics.

The second is the encoding method of the skeleton.
Graph representation of the skeleton using bone connectiv-
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ity (extrinsic topology) [27, 33, 44, 56, 60] has an inherent
limitation: it can ignore possible joint relations, called an
intrinsic topology. When we “take a selfie”, for instance,
there may be an intrinsic relation between the hand hold-
ing a phone and the upper body since we jointly move them
to locate the upper body on the screen of the phone (as the
inferred intrinsic topology from our model in Fig. 1). The
intrinsic topology of joints [40] provides contextual infor-
mation to recognize human action. In this context, we de-
velop a novel self-attention based graph convolution (SA-
GC) module, to extract the intrinsic graph structure when
encoding a sequence of the skeleton. As shown at the bot-
tom of Fig. 1, for the similar poses that appear in different
actions, the inferred topologies can be different based on
their behavioral contexts.

Lastly, we propose a multi-modal skeleton representa-
tion by utilizing the joints’ relative positions. It provides
complementary spatial information of a joint. An ensemble
of the models trained with the representations drastically
improves recognition performance.

By coupling the aforementioned three proposals, we in-
troduce a new learning framework for skeleton-based ac-
tion recognition named InfoGCN. To verify the effective-
ness of our approach, we perform empirical evaluations
in skeleton-based action recognition and compare our re-
sults with competitive baselines on three popular bench-
mark datasets: NTU RGB+D 60 & 120 [30, 42], and NW-
UCLA [55]. Experimental results show that our model
achieves state-of-the-art performance on all three datasets
in terms of accuracy. Analysis shows that the learned la-
tent representation of action adheres to the proposed IB con-
straints, and the context-dependent intrinsic topology is in-
ferred adaptively depending on the behavioral context.

Our contributions are as follows:
• Information Bottleneck Objectives. We introduce a

novel learning objective based on IB that aims to learn an
efficiently compressed latent representation of an action.

• Self-Attention based Graph Convolution. We propose
an SA-GC module that infers a context-dependent intrin-
sic topology in spatial modeling of a skeleton.

• Multi-Modal Representation. We present a multi-
modal representation of a skeleton for the model ensem-
ble that drastically improves action recognition perfor-
mance.

• Empirical Verification. Extensive experiments demon-
strate the advantages of our work. InfoGCN achieves
state-of-the-art performance on the three datasets in
skeleton-based action recognition.

2. Related Works
In the early stages of deep learning-based approaches for

skeleton-based action recognition, convolutional neural net-
works (CNNs) [10, 32, 46] and recurrent neural networks

(RNNs) [11, 25, 31, 53] were the standard models to adopt.
However, the capability of these methods were limited as
they did not explicitly exploit the structural topology of the
joints. Since the introduction of GCN [21], various ap-
proaches exploiting the graph structure of extrinsic topol-
ogy have been introduced [26, 33, 43, 56]. Various graphs,
including a spatio-temporal graph [56] and a directed graph
[43], have been proposed to model the skeleton. Multi-scale
graph convolutions [26, 33] have been presented to cap-
ture long-range dependencies of joints. Nonetheless, these
methods are not able to represent the intrinsic topology, lim-
iting the ability to capture the contextual information of the
action.

Recent works [27, 44] focus on joint topology model-
ing that can infer intrinsic relations. AS-GCN [27] and 2s-
AGCN [44] propose methods that adaptively learn joint re-
lations from the data. However, since the captured topolo-
gies are independent of a pose, it has difficulties encod-
ing the context of an action whose pose changes over time.
CTR-GCN [6] is similar to our work in terms of context-
dependent intrinsic topology modeling. In contrast to our
work, CTR-GCN focuses on embedding joint topology in
different embedding channels. Meanwhile, unlike previous
studies that focus only on spatio-temporal feature aggrega-
tion of the skeleton, to the best of our knowledge, InfoGCN
is the first approach that leverages an information-theoretic
objective to better represent latent information.

3. InfoGCN
InfoGCN is a novel learning framework that predicts the

action class for a given sequence of skeletons. In this sec-
tion, we first derive an IB-based learning objective and the
corresponding loss (Sec. 3.1). In addition, we introduce a
neural architecture (Sec. 3.2) and multi-modal representa-
tions of the skeleton for the model ensemble (Sec. 3.3). The
overall learning scheme is presented at the end. Note that
all notations used in this section are summarized in the Ap-
pendix.

3.1. Information-Bottleneck Objectives

The goals of this section are to define an objective
based on IB for learning a latent representation from a se-
quence of skeletons and to derive its variational bound and
tractable loss. The proposed formulation can be applied to
other problems such as human motion prediction and self-
supervised learning.

3.1.1 Learning Objective

We aim to design a stochastic latent variable Z containing
compressed information with respect to the input variable
X (a sequence of skeletons), while preserving maximum
information for the target variable Y (an action label). This
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constrained optimization can be transformed to an uncon-
strained one with a Lagrangian multiplier: maxZ I(Z;Y )−
β1I(Z;X), where I(·; ·) is mutual information and β1 is
the Lagrangian multiplier. As in prior works [2, 13], we
assume that the relation of variables follows the graphical
model Z ← X ↔ Y , and the only accessible content is
the stochastic encoder p(z|x). In infoGCN we propose the
following objective equivalent to maximizing the prior IB
objective (See Appendix):

R(Z) = I(Z;Y )− λ1I(Z;X)− λ2I(Z;X|Y ), (1)

where λ1 and λ2 are control parameters. The first term
I(Z;Y ) forces Z to be informative enough for predicting
Y . The second term ensures that Z is concise. The third
term allows the latent variable Z to be compressed with re-
spect to the input variable X when a class is given. Our
objective adopts the combination of the compression regu-
larizer terms from VIB [2] and CEB [13] while retaining
the IB philosophy. Our derived objectives are more general
than those of [2,13] while incorporating the previous objec-
tives as special cases (VIB when λ1 = 0 and CEB when
λ2 = 0).

3.1.2 Variational Bound

Here we derive the variational bound of our IB objective
(Eq. (1)). The variational bound of each term of R(Z) is de-
rived following recent studies [2,4,37], which estimate mu-
tual information using tractable variational bound and deep
learning techniques. We obtain the variational lower bound
for I(Z;Y ) using a variational classifier q(y|z):

I(Z;Y ) ≥ Ep(x,y)p(z|x)[log q(y|z)] +H(Y ), (2)

where the first term of RHS corresponds to log-likelihood
and the second term of RHS is constant when the underly-
ing data generating distribution is fixed, so it does not affect
the optimization. Following [13, 17], we define r(z) as the
variational marginal and r(z|y) as the variational class con-
ditional marginal. We obtain the variational upper bounds
of I(Z;X) and I(Z;X|Y ) as in [13, 17]

I(Z;X) ≤ Ep(x)p(z|x)[log
p(z|x)
r(z)

], (3)

I(Z;X|Y ) ≤ Ep(x)p(z|x)p(y|x)[log
p(z|x)
r(z|y)

]. (4)

Substituting Eqs. (2) to (4) into Eq. (1), we have

R(Z)≥Ep(x,y)p(z|x)[log q(y|z)]−λ1Ep(x)p(z|x)[log
p(z|x)
r(z)

]

− λ2Ep(x)p(z|x)p(y|x)[log
p(z|x)
r(z|y)

]. (5)

Derivations of Eqs. (2) to (4) are provided in the Appendix.

3.1.3 Training Loss

We define the loss function for training InfoGCN from the
lower bound of our objective function (Eq. (5)). The first
term of Eq. (5) can be approximated by the empirical loss
of the prediction network combining the encoder and the
classifier:

LCLS = −Ep(x,y)p(z|x)[log q(y|z)]

≈ − 1

|D|
∑

xi,yi∈D
Ep(z|xi)[log q(yi|z)], (6)

where D = {(xi, yi)} is a given dataset.
The second term of Eq. (5) can be further decomposed

following [16, 34].

Ep(x)p(z|x)[log
p(z|x)
r(z)

]=I(Z;X)+DKL(p(z)||r(z)) (7)

We perform two simplifications. The first is to drop
I(Z;X) to prioritize that Z contains compressed informa-
tion with respect to X [19, 34]. The second is to replace
the intractable KL-diverse term DKL(p(z)||r(z)) with the
tractable Maximum-Mean Discrepancy (MMD [12,14,28]),
which has proven to be valid and effective in the litera-
ture [61]. We set the domain and codomain as a Euclidean
space and feature map as an identity. This gives us the fol-
lowing marginal-MMD loss:

LmMMD = DMMD(p(z)||r(z))
= ||µp(z) − µr(z)||22, (8)

where µp(z) =
1

|D|
∑

xi,yi∈D Ep(z|xi)[z]; µr(z) is the mean
of the variational marginal distribution r(z).

The last term of bound in Eq. (5) is decomposed fol-
lowing the same procedure with Eq. (7), and we have the
following conditional-marginal-MMD loss as

LcmMMD = DMMD(p(z|y)||r(z|y))

=
∑
y

||µp(z|y) − µr(z|y)||22, (9)

where µp(z|y) = 1
|Dy|

∑
xi,yi∈Dy

Ep(z|xi)[z], and Dy =

{xi, yi|yi = y}.
Finally, we have a total loss function to train our model:

LTOTAL = LCLS + λ1LmMMD + λ2LcmMMD. (10)

3.2. Neural Architecture

We introduce a neural architecture that can model the
context-dependent intrinsic topology of joints by leveraging
the self-attention mechanism [51]. It includes an encoder-
classifier structure as illustrated in Fig. 2.
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3.2.1 The Importance of Learning Intrinsic Topology

We present the importance of intrinsic topology by show-
ing that GC using only extrinsic topology can cause severe
inefficiency and information loss in terms of message pass-
ing. Assume that both hand joints have an intrinsic relation
due to bilateral symmetricity of the body structure. These
two leaf nodes must pass messages through the physically
connected path to transmit information to each other. When
transferring information following the mechanism of GC, it
requires an increase in the depth of the network in propor-
tion to the length of the shortest path for message passing,
which implies serious inefficiency in information exchange
between two nodes.

Furthermore, information loss can happen. GC per-
forms a nonlinear transformation after averaging features
of neighbor nodes. If the feature vectors representing the
information for the nodes are not linearly independent, it
is not easy to reconstruct the information of each neighbor
after averaging. Let α be the minimum portion of diluted
information of a node caused by vector composition. If the
distance between two nodes has an intrinsic relation l, in-
formation can be transmitted with the maximum ratio of
(1 − α)l. When α > 0, the longer l, the more informa-
tion can be diluted.

A straightforward approach is to increase the convolu-
tion kernel size by powering the adjacency matrix as in
[19, 26], but this is not ideal because it cannot dynamically
model possible intrinsic topologies. A better solution is to
adaptively infer the joint relations required to change infor-
mation. Therefore, we propose an architecture that utilizes
a self-attention mechanism to capture the intrinsic topology.

3.2.2 Architecture Overview

The encoder is composed of an embedding block and a
stack of L = 9 encoding blocks followed by a global av-
erage pooling layer. The embedding block transforms a se-
quence of the skeleton to initial joint representations. Then,
encoding blocks extract spatio-temporal features from the
initial joint representations. We leverage the method of the
reparameterization trick in VAE [20]. With an auxiliary
independent random noise ϵ ∼ N (0, I), z is sampled as
z = µ + Σϵ, where the mean µ and diagonal covariance
matrix Σ of the multivariate Gaussian distribution are in-
ferred from the output of the encoder. The trick makes the
model trainable by estimating unbiased gradients in an end-
to-end fashion with gradient-based optimization.

A classifier, composed of a single linear layer and soft-
max function, converts the latent vector z to the model pa-
rameter of the categorical distribution.

Figure 2. InfoGCN Architecture. We guide our neural architec-
ture to learn the class conditional representation of skeleton-based
action with the information bottleneck objective. The model is
composed of an encoder and a classifier. The encoder with the
SA-GC module captures context-dependent intrinsic joint topol-
ogy to better represent action.

3.2.3 Embedding Block

The human skeleton can be represented as a graph G(V,E)
with joints as a set of N vertices V and bone as edges
E. Edges can be represented as an adjacency matrix A ∈
RN×N , where Ai,j = 1 if joints i and j are physically con-
nected, otherwise 0. A sequence of skeleton graphs is rep-
resented as a joint feature tensor X ∈ RT×N×C , where T
is the number of total frames of the skeleton and C is the
feature dimension.

The embedding block linearly transforms the joint fea-
tures to D(0) dimensional vectors with learnable parameters
and then adds positional embeddings (PE) to inject posi-
tional information of joints. We adapt learnable PE, which
is shared across times.

H(0)
t = Linear(Xt) + PE, (11)

where H(0)
t , PE ∈ RN×D(0)

; t is the time index.
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3.2.4 Encoding Block

The core of our encoding block consists of two sub-
modules: a Self-Attention based Graph Convolution (SA-
GC) module for spatial modeling and a Multi-Scale Tem-
poral Convolution (MS-TC) module for temporal modeling.
The input and hidden representation of joints are encoded
sequentially with an SA-GC, an MS-TC, a residual connec-
tion, and a layer normalization [3] (See Fig. 2).

Spatial Modeling. We propose a novel module SA-GC to
infer context-dependent intrinsic topology. Before describ-
ing SA-GC, we revisit vanilla GC [21], which is composed
of two processes; 1) average neighborhood vertex features
and 2) linearly transform aggregated features. The update
rule of hidden representation for GC is as follows

H(l+1)
t = σ(ÂH(l)

t W(l)), (12)

where normalized adjacency matrix Â = D− 1
2 (A+ I)D− 1

2 ,
D is the diagonal degree matrix of A + I, W(l) ∈
RD(l)×D(l+1)

is learnable parameters of the l-th layer, and
σ(·) indicates nonlinear activation function like ReLU [1].

SA-GC utilizes the self-attention [51] of joint features to
infer intrinsic topology and uses the topology as a neigh-
borhood vertex information for the GC. A self-attention is
an attention mechanism that relates different joints of the
body. Considering all possible joint relations, SA-GC in-
fers positive and bounded weight, called self-attention map,
to represent the strength of the relation. We linearly project
joint representation Ht to queries and keys of D′ dimen-
sions with learned matrices WQ,WK ∈ RD×D′

to get a
self-attention map.

SA(Ht) = softmax(
HtWK(HtWQ)

T

√
D′

) (13)

In addition to the self-attention map, we let SA-GC learn a
topology Ã shared over time and instance as in [6, 44]. The
shared-topology and self-attention map have M multi-head
to make the model jointly attend from different representa-
tion subspaces. For a head in 1 ≤ m ≤M , we combine the
shared topology Ãm ∈ RN×N with the self-attention map
SAm(Ht) ∈ RT×N×N to obtain the intrinsic topology.

Ãm ⊙ SAm(Ht) ∈ RT×N×N , (14)

where ⊙ indicates broadcasted element-wise product. We
employ D′ = D/8 and M = 3 in this work.

SA-GC utilizes Ãm ⊙ SAm(Ht) as neighborhood infor-
mation for GC. The overall update rule of joint representa-
tion is formulated as

H(l+1)
t =σ

( M∑
m=1

(
Ã

(l)

m ⊙ SAm(H(l)
t )

)
H(l)

t W(l)
m

)
(15)

We employ a residual connection [15] with 1 × 1 convolu-
tion around the SA-GC module.

Figure 3. Illustration of multi-modal representation of the skele-
ton. Arrows describe the k-th mode representation of pointed ver-
tices. As in [44], we define the joint close to the center of mass as
the source joint, and the joint far from it as the target joint. Blue
dots denote vertices with no corresponding source.

Temporal Modeling. To model the temporal feature of
the human skeleton, we adopt the MS-TC module [6, 33]
as shown in Fig. 2. This module consists of three convo-
lution branches with different combinations of kernel sizes
and dilation rates. The outputs of convolution branches are
concatenated. A residual connection with 1×1 convolution
is around this module.

3.3. Ensemble with Multi-Modal Representation

In this section, we introduce a generalized form of
well-known skeleton representation such as bone and joint,
which we call multi-modal representation. We train our
model with each modal representation and ensemble upon
inference. The representation provides complementary fea-
tures using the relative position of joints. See Fig. 3 for
illustration.

Shi et al. [44] introduce bone information, which is de-
fined as a vector pointing toward its target joint from its
source joint that are physically connected, as shown at
k = 1 in Fig. 3. Previous works [6, 33, 44] show that the
ensemble of models trained with bone and joint informa-
tion drastically improves action recognition performance,
implying that these different representations of skeleton are
complementary. We propose multi-modal skeleton repre-
sentation to define additional representations, based on the
fact that bone information is a linear transformation of joint.
In detail, we generalize joint-bone relation at time t as

X̃
(k)

t = (I− Pk)Xt, (16)

where P ∈ RN×N denotes a binary matrix that contains
source-target relations of the skeleton graph, Pij = 1 if the
i-th joint is the source of the j-th joint, otherwise 0. We
set the row corresponding to the center of mass in P as a
zero vector so that it does not have a source joint. We refer
to X̃

(k)

t as the k-th mode representation of a skeleton. The
representations with different k values provide distinct spa-
tial features for a joint. We define K = maxv d(v) + 1 for
v ∈ V , where d(v) gives the shortest distance in the number
of hops between the vertex v and the center of mass. Then,
if k = 1, the k-th mode representation X̃

(k)

t corresponds
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Acc (%)Methods X-Sub X-View
ST-GCN [56] 81.5 88.0
AS-GCN [27] 86.8 94.2
2s-AGCN [44] 88.5 95.1
SGN [60] 89.0 94.5
DGNN [43] 89.9 96.1
ST-TR-agcn [39] 90.3 96.3
Shift-GCN [9] 90.7 96.5
DC-GCN+ADG [8] 90.8 96.6
PA-ResGCN-B19 [47] 90.9 96.0
DDGCN [22] 91.1 97.1
Dynamic GCN [58] 91.5 96.0
MS-G3D [33] 91.5 96.2
MST-GCN [7] 91.5 96.6
CTR-GCN [6] 92.4 96.8
Ours 93.0 97.1

Acc (%)Methods X-Sub X-Set
SGN [60] 79.2 81.5
2S-AGCN [44] 82.9 84.9
ST-TR-agcn [39] 85.1 87.1
Shift-GCN [9] 85.9 87.6
DC-GCN+ADG [8] 86.5 88.1
MS-G3D [33] 86.9 88.4
PA-ResGCN-B19 [47] 87.3 88.3
Dynamic GCN [58] 87.3 88.6
MST-GCN [7] 87.5 88.8
CTR-GCN [6] 88.9 90.6
Ours (Joint) 85.1 86.3
Ours (Bone) 87.3 88.5
Ours (Joint + Bone) 88.5 89.7
Ours (4 ensemble) 89.4 90.7
Ours (6 ensemble) 89.8 91.2

Methods Acc (%)
Lie Group [52] 74.2
Actionlet ensemble [54] 76.0
HBRNN-L [11] 78.5
Ensemble TS-LSTM [24] 89.2
AGC-LSTM [45] 93.3
Shift-GCN [9] 94.6
DC-GCN+ADG [8] 95.3
CTR-GCN [6] 96.5
Ours 97.0

Table 1. Comparative results on NTU RGB+D 60 [42] (left), NTU RGB+D 120 [30] (middle), and NW-UCLA [55] (right). We evaluate
our model in terms of classification accuracy (%). The performance of baseline methods is based on their papers. Bold figures indicate the
best value for each dataset. X-Sub, X-view, and X-Set represent cross-subject, cross-view, and cross-setup splits, respectively.

to the bone as defined in [44] and if k = K, joint since
PK = 0. For instance, at k = 1 in Fig. 3, a joint of the
center of mass is represented as a blue dot, so K is equal to
5 in this case.

3.4. Learning Framework

This section describes the overall training regime of In-
foGCN. Sequences of the skeletons are batched together af-
ter being resized to 64 frames as in [6]. The model is up-
dated to minimize the total loss (Eq. (10)) using SGD opti-
mizer with a momentum coefficient 0.9. We set the µr(z) to
be 0 so that LmMMD behaves as a regularizer of the norm of
µ̂p(z). We set the µr(z|y) of each action class as random or-
thogonal vectors [41] with a scale of 3. During the training,
we estimate µ̂p(z) and µ̂p(z|y) by averaging marginal and
class conditional marginal latent vectors of a mini-batch, re-
spectively. Also, we employ label smoothing [48] of value
0.1. During inference, we ensemble models that trained
with different k-mode representations as the multi-stream
ensemble in [6, 33, 44].

4. Experiments
To demonstrate the advantages of InfoGCN, we con-

duct skeleton-based action recognition on three large-scale
datasets. We compare our model with strong baselines and
conduct ablation studies to examine the effect of individual
components. Our model is implemented with PyTorch [38],
and trained and tested using an NVIDIA RTX A6000 GPU.
Further details of our experimental setups are described in
the Appendix.

4.1. Datasets

NTU RGB+D. NTU RGB+D 60 [42] is a large-scale 3D
human activity dataset having 56,880 videos composed of

60 action classes. NTU RGB+D 120 [30] is an extended
version of NTU RGB+D 60 with an additional 60 extra ac-
tion classes and contains 114,480 videos. As recommended
by [30, 42], we report classification accuracies under cross-
subject and cross-view settings for NTU RGB+D 60 and
cross-subject and cross-setup settings for NTU RGB+D120.
NW-ULCA. NW-ULCA [55] has 1,494 videos of 10 dif-
ferent actions simultaneously captured from three cameras.
We use data from the first two cameras for training and the
other for testing as in [55].

4.2. Experimental Results

We compare our results with previous state-of-the-art
methods in Table 1. We set K to be 8 for NTU RGB+D
60 & 120 and 6 for NW-UCLA. In the middle of Table 1,
ensemble of pose and motion with multi-modal represen-
tation k = {1,K} and {1, 2,K} are denoted as 4 and 6
ensemble, respectively. Here, motion means joint move-
ment between two subsequent time frames. In the left and
right of Table 1, we report the results of 6 ensemble. On
all three datasets, InfoGCN achieves state-of-the-art perfor-
mance, validating the effectiveness of our work. With the
same ensemble setup with CTR-GCN (4 ensemble) [6] on
NTU-RGB+D 120, our model outperforms CTR-GCN by
a margin of 0.5% and 0.1% in cross-subject and cross-set,
respectively (see the middle of Table 1). These results em-
pirically verify the advantage of InfoGCN in skeleton-based
action recognition.

4.3. Ablation Studies

To analyze the effect of individual components of In-
foGCN, we examine the classification accuracy of differ-
ent configurations of our model. All experimental ablation
studies are conducted on NTU RGB+D 120 cross-subject
split with joint information (k = K).
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Methods Acc (%)
LTOTAL 85.1

w/o LmMMD 84.6
w/o LcmMMD 84.6
w/o LmMMD, LcmMMD 84.3

Methods Acc (%)

Ã⊙ SA(Ht) 85.1
SA(Ht) 84.7
Ã 84.5
Â 82.8

Table 2. Comparison of classification accuracies based on (left) re-
moving LmMMD or LcmMMD from the total loss and (right) different
topology inference methods.

Acc (%)Methods 4-Stream Multi-modal
Baseline 88.8 89.2 (0.4↑)
+ LmMMD,LcmMMD 89.1 (0.3↑) 89.4 (0.6↑)
+ SA-GC 89.1 (0.3↑) 89.5 (0.7↑)
+ LmMMD,LcmMMD, SA-GC 89.4 (0.6↑) 89.8 (1.0↑)

Table 3. Comparisons of classification accuracies when applying
the proposed components of InfoGCN to the baseline.

MMD loss. We first validate the effect of MMD losses
derived from IB objective in Sec. 3.1.3. To confirm that
our objective increases the effect of generalization directly
leading to improved test accuracies, we compare the per-
formance of our model trained with different losses by re-
moving each of the loss terms from LTOTAL as shown in the
left of Table 2. We observe that the performance of our
model trained without both LcmMD and LmMMD drops 0.8%
compared with the original one. The performance of In-
foGCN trained without LcmMMD and without LmMMD drop
both 0.5%, confirming that MMD losses guide our model to
learn better representation for action classification.

Context-dependent topology. We compare the classifi-
cation accuracy of models using different topology infer-
ence methods as shown in the right of Table 2. We use each
inferred topology as neighborhood information for GC. We
see that the models with adaptive topology inference meth-
ods such as Ã,SA(Ht), and Ã⊙ SA(Ht) outperform static
extrinsic topology Â. Moreover, context-dependent topol-
ogy Ã ⊙ SA(Ht) is superior to other methods, demonstrat-
ing the effectiveness of SA-GC.

Multi-modal representation. We compare the perfor-
mance of ensembles of models trained with different com-
bination of multi-modal representations. In the middle of
Table 1, we observe the improvement of performance as the
number of modalities for ensemble increases. On the cross-
subject, accuracies of joint+bone, 4, and 6 ensembles are
improved by 3.4%, 4.3%, and 4.7%, respectively, compared
to the accuracy of joint only. This implies that multi-modal
representations increase the diversity of input features and
the number of corresponding trained models, further max-
imizing the effect of the ensemble. The accuracies tend to
be saturated after 6 mode ensemble (See Appendix). As k
increases, the number of vertices without a source increase,
which are marked as blue dots in Fig. 3, and they do not
provide distinctive features.

Figure 4. (Left-middle) PCA projection of latent representation to
2D when trained with or without MMD loss. We randomly se-
lect five action classes for visualization from NTU RGB+D 120
dataset. Different colors indicate different classes. (Right) cosine
similarity between µ̂p(z|y) and µr(z|y). Each row and column in-
dicates different classes.

Contribution of each Component We scrutinize the con-
tribution of each InfoGCN component as shown in Table 3.
The baseline was built by replacing the SA-GC with the
GC in [56] from our model (Sec. 3.2) and trained only with
LCLS. The 4-stream ensemble [6, 7, 9, 43] is adopted for
the baseline to compare with the ensemble results of mod-
els trained with multi-modal representations as inputs. We
observe that SA-GC and MMD losses (LmMMD, LcmMMD)
both improve baseline accuracy by 0.3% each. In addition,
when we adopt multi-modal representations for the model
ensemble, the accuracy improved by 0.4% compared to the
4-stream ensemble baseline.

5. Analysis
We conduct an in-depth analysis of the proposed learn-

ing objective and context-dependent intrinsic topology. All
analyses are based on the model trained with the joint
(k = K) on NTU RGB+D 120 cross-subject split.

5.1. Information Bottleneck Constraint

To validate the effect of the proposed objective, we
trained our model with or without MMD loss and com-
pared action representations by principal component anal-
ysis (PCA [50]) as shown in Fig. 4. Latent representa-
tion learned with MMD loss presents a denser and non-
overlapped class conditional distribution that seems more
discriminative on the subspace spanned by the first two prin-
cipal components than those without MMD loss. We ob-
serve similar patterns in all other classes but visualize only
five categories for simplicity.

We compare the cosine similarity between the µ̂p(z|y) av-
eraged on the test set and the µr(z|y) as shown in the right
of Fig. 4. We see that the diagonal elements of the matrix
have values closer to 1 while off-diagonal entries are near 0,
indicating µ̂p(z|y) and µr(z|y) are well aligned as intended.
We attribute the performance gain to the observation that
MMD loss successfully constrains the mean of class condi-
tional representation to be close to µr(z|y), which is set to
be class-wise orthogonal.
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Figure 5. Examples of context-dependent intrinsic topology of
SA-GC. Colored lines indicate inferred topology from a specified
joint (a hand or a foot) to all the other joints. The thickness of the
colored lines and the size of circles on joints are proportional to
the strength of the inferred relation. Black bounding boxes indi-
cate similar poses with different intrinsic topologies.

5.2. Context-Dependent Intrinsic Topology

Behavioral Context. Fig. 5 gives examples of the topol-
ogy inferred by SA-GC. We observed that similar poses
(grouped by bounding boxes) could have different intrin-
sic topologies depending on their behavioral context, which
may be the reason why our model better distinguishes be-
havior patterns. For instance, One foot jumping and kicking
something at t = 32 in Fig. 5 have similar poses. Their in-
trinsic topologies (colored lines), however, are distinctive.
Attention from the joint of the right foot to the left arm is
stronger in action kicking than jumping. One possible expla-
nation is that the left hand moves in the opposite direction to
the right foot to balance the body when kicking something,
so they are strongly coupled. Whereas the joints of the right
foot and the left hand are not much related when jumping
with one foot. We also observed the marginal attention to
see effectiveness of intrinsic topology for describing con-
text as shown in the left of Fig. 6. The joint of the right
hand in action taking a selfie has a large magnitude of atten-
tion, while the right foot is strongly attended in action one
foot jumping. This observation is intuitive since the right
hand is actively involved in action taking a selfie, and the
foot is mostly used in action one foot jumping. Moreover,
multi-head attentions provide different behavioral contexts
for action as shown in the right of Fig. 6.
Asymmetric Message Passing. Unlike the extrinsic topol-
ogy, self-attention maps are inferred to be asymmetric as
shown in Fig. 6. Since the amount of message passing
between the joints can differ depending on the direction,
SA-GC can transfer information between joints efficiently,
overcoming the limitation of GC described in Sec. 3.2.1.

Figure 6. Examples of self-attention maps in Eq. (13) along with
the magnitude of attention for each skeleton joint. The size of
circles in the skeleton joint represents the magnitude of attention,
which is defined as the sum of the column of each joint in the
self-attention map. We visualize self-attention maps with different
heads m of the last encoding block. The darker the color, the
higher the value is in the self-attention map.

6. Limitations
Despite the state-of-the-art performance of InfoGCN on

three datasets, its effectiveness in the dataset with a large
number of classes (i.e., 400 actions for kinetics-400 [18])
remains to be tested. This warrants further investigation
to demonstrate the model’s capacity to deal with the larger
number of classes and larger batch size. Besides, it would
be interesting to extend our approach to meta-learning and
self-supervised learning to exploit unlabeled data. Lastly,
the application of InfoGCN is confined to human skeleton
modeling. That being said, we should note that InfoGCN
can be applied to any structured data, such as the motion of
particles and articulated objects.

7. Conclusion
We present an information bottleneck-based representa-

tion learning framework, InfoGCN, for skeleton-based hu-
man action recognition. It is built based on a variational
bound of the information-theoretic objective, encouraging
the mean of the class conditional marginal to be nearly or-
thogonal. We propose a novel self-attention-based graph
convolution module, SA-GC, and demonstrate that it can
effectively glean behavioral context information from data
using the inferred intrinsic topology. We further introduce a
multi-modal representation of the human skeleton for model
ensemble. Notably, our framework achieves state-of-the-
art performance on three popular benchmark datasets for
skeleton-based action recognition.
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