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Abstract

It is well known that Winograd convolution algorithms
speed up the widely used small-size convolutions. How-
ever, the problem of quantization of Winograd convolutions
is challenging – while quantization of slower Winograd al-
gorithms does not cause problems, quantization of faster
Winograd algorithms often leads to a significant drop in the
quality of models. We introduce a novel class of Winograd
algorithms that balances the filter and input channels in the
Winograd domain. Unlike traditional Winograd convolu-
tions, the proposed convolution balances the ranges of in-
put channels on the forward pass by scaling the input ten-
sor using special balancing coefficients (the filter channels
are balanced offline). As a result of balancing, the inputs
and filters of the Winograd convolution are much easier to
quantize. Thus, the proposed technique allows us to obtain
models with quantized Winograd convolutions, the quality
of which is significantly higher than the quality of models
with traditional quantized Winograd convolutions. More-
over, we propose a special direct algorithm for calculat-
ing the balancing coefficients, which does not require ad-
ditional model training. This algorithm makes it easy to
obtain the post-training quantized balanced Winograd con-
volutions – one should just feed a few data samples to the
model without training to calibrate special parameters. In
addition, it is possible to initialize the balancing coefficients
using this algorithm and further train them as trainable
variables during Winograd quantization-aware training for
greater quality improvement.

1. Introduction
Lightweight architectural designs of Convolutional Neu-

ral Networks (CNNs) together with quantization have paved
the way for the deployment of demanding computer vision
applications on mobile devices. Parallel to this, alternative
formulations of the convolution operation, such as FFT or
Winograd, have been adapted for the use in CNNs allowing
further speedups. Winograd convolutions [28] (also known
as Toom-Cook algorithm [7, 27]) are the fastest known al-
gorithm for spatially small convolutions, but their use in a

quantized context is often accompanied by a quality drop
due to significant numeric errors. The significant speed
and power consumption advantage of quantized Winograd
convolutions motivates the research in this direction, see
Tab. 1. As we can see, the quantized Winograd is 2.3×
(50/21.5) faster than the float16 direct convolution. In prac-
tice, speedups up to 4× (ARM CPUs) can be achieved [20].

Implementation FP16, ms INT8, ms

Direct conv 50 30
Winograd conv 25 21.5

Table 1. Inference time for ResNet-18 on 224 × 224 × 3 input,
BOLT inference framework [11], ARM CPU: Kirin 990.

Winograd convolutions Lavin et al. [15] generalized the
Winograd’s minimal filtering algorithm [28] for filters with
k × k kernels that are widely used in modern CNNs. This
generalization is called Winograd 2D-convolution. Its main
idea is based on the fact that the minimal filtering algorithm
for computation of m outputs with k-tap FIR filter requires

µ(F (m, k)) = m+ k − 1 (1)

multiplications, instead of mk multiplications required for
the direct 1D-convolution. Further in the paper we will use
the short form F (m, k) that denotes F (m ×m, k × k) – a
2D-convolution with kernel size k × k producing m × m
outputs. The parameter m is called the tile size. In this
paper, we consider the most popular case of Winograd con-
volutions – with 3× 3 kernel and stride 1. Traditionally, the
Winograd convolution algorithm is written in the following
matrix form:

Y = AT
(
(BTXB)⊙ (GWGT )

)
A, (2)

where the tensor indices are omitted for simplicity. Various
versions of Winograd transformation matrices A,B,G are
used for different tile sizes m. Our proposed method can be
generalized to any m (including complex Winograd [22]).
In this paper, we use traditional Winograd transformation
matrices from [15] for F(4, 3) and F(6, 3) Winograd algo-
rithms. The definitions of these matrices are presented in
Appendix A.
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(a) Balanced Quantized Winograd algorithm. The relative complexity is noted in the bottom
right corners. We add a new cheap operation to the prepossessing stage – the channel balanc-
ing of Winograd-domain inputs and filters (highlighted in red). The weights transformation is
done offline, therefore its complexity is not taken into account. ⌊·⌉ is a quantization operator
defined by Eq. (3).

(b) The dependence of the proportions of the algorithm stages complexity on the
number of filters and channels (C = F ). Multiplication in Winograd domain is
the heaviest stage for large C and F . Hence, its speedup by quantization (integer
arithmetic) is very relevant. The results of the theoretical evaluation of the balancing
overhead, as well as the results of the inference time measurements for our imple-
mentation of the quantized Winograd convolutions (with and without balancing),
can be found in Appendix C. The balancing overhead is small and shrinks fast with
increasing C and F. The relative complexities on the left scheme (a) are written for
F = C = 32.

Figure 1. The scheme of Balanced Quantized Winograd convolution and computational complexity proportions for the case of 3×3 kernel
and stride 1.

Fig. 1a shows how the stages of the Winograd algo-
rithm. Note that the standard Winograd convolution does
not include the balancing and quantization/dequantization
stages also shown in the figure. Initially, a sliding win-
dow of size a × a with stride m is moved over the feature
map, and a sub-tensor X of the corresponding size (please,
see inscriptions in the figure) is cut out from the feature
map tensor, where a = m + k − 1. Then, the c-th tile
Xc ∈ Ra×a is mapped to the Winogard domain using ma-
trix B: Xc → Vc, c = 1, 2, ..., C. The same procedure
is performed for the weights (W → U), however, it is
done off-line before the inference, hence, its computational
complexity is not taken into account. After these steps, the
mapped input V is convolved with the mapped weights U.
Finally, an invert transformation of tensor M obtained on
the previous step is made using matrix A. This procedure is
performed in parallel for m ×m output pixels and is more
efficient than the direct convolution.

Winograd computational bottleneck Winograd trans-
formation matrices A and B have a simple structure, so
they can be hard coded in the inference code to additionally
increase the performance. To estimate the relative complex-
ity of the algorithm stages, we calculate the number of sum
and mul operations as if we used a direct matrix multipli-
cation (instead of hard coded). Even though this estimate
may be far from reality, as it strongly depends on the type
of inference engine (CPU, GPU or DNN accelerator), let us
consider it as an approximate estimation (see the percent-
age in the bottom right corners of Fig. 1a). As you can see,

the multiplication in the Winograd domain (obtaining ma-
trix M ) is the most computationally intense stage: it takes
52.8% of all computations (calculated for C = F = 32).
Moreover, as the number of filters F or/and the number of
channels C increases, the ratio tends to 100% (see Fig. 1b).
Therefore, acceleration of that stage by quantization is very
desirable.

Key problem As a rule, the smaller the tile size m, the
less the quality drops during quantization of the Winograd
convolution F(m, 3); however, acceleration of the quan-
tized Winograd convolution also becomes lower. Using the
Winograd algorithm with small tile size (m = 2) often al-
lows quantization without a quality drop, while Winograd
algorithms with bigger tiles (m ⩾ 4) are very difficult to
quantize (see Tab. 3 or Tab. 4). There are many studies
addressing this issue, however, oftentimes the quality drop
still remains unacceptable. We found one of the reasons
why the quality drop in the post-training quantization (PTQ)
cannot be compensated by the quantization-aware training
(QAT) – it is a significant disbalance of the data ranges in
the Winograd domain (see Sec. 4). We propose a technique
aimed at solving this problem: to equalize the ranges of the
Winograd-domain input channels on the forward pass by
scaling the input tensor using special balancing coefficients
(the filter channels are balanced offline). As can be seen in
Fig. 2a and Appendix C, the balancing is a very cheap op-
eration, but it significantly decreases the accuracy drop, for
example, by 1.8 times for ResNet-18 (ImageNet, F(6, 3), 8
bit, Tab. 4).
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Table 2. The summary of the main well-known works and frameworks that propose methods for quantization of Winograd convolutions.

Work Quant Type Offset BN
fusing

Scale
types

Weights &
Activations Winograd

[17], IEEE-2020 PTQ Dynamic Yes No scalar both F(2, 3)
[11], ICLR-2019 PTQ Dynamic No Yes scalar both F(2, 3)

[22], ARM, 2019 PTQ Dynamic Yes No tile weighs only
F(2, 3), F(4, 3),
complex Winorgad

[10], MLSyS-2020 QAT Static No No scalar both
F(2, 3), F(4, 3), F(6, 3),
trainable transforms

[6], BOLT
inference framework PTQ

Dynamic,
Static No Yes

tile,
tile for act. both F(4,3)

Our contribution Contributions of this work can be sum-
marized as follows:

1. We introduce a novel method for balancing of the
channel ranges of the inputs and filters of the quantized
Winograd convolutions. It is characterized by:

(a) Lightweight: a small computational overhead;

(b) Compatibility: compatible with any existing
techniques for quantization of Winograd convo-
lutions and works well for both PTQ and QAT
(Ω is a trainable variable in that case);

(c) Universality: does not depend on the type of
Winograd algorithm.

2. Our experiments on super-resolution (SR) and image
classification tasks conducted for various bitwidths
(b = 4, 6, 8), tile sizes m (m = 4, 6), quantiza-
tion types (dynamic/static) and scale types (scalar/tile)
show that the proposed balancing technique signifi-
cantly improves the quality of Winograd quantization.

Our technique is not a panacea, but it extends the applica-
tion area of the quantized Winograd convolutions substan-
tially. We believe that it will have its rightful place in the
standard quantization pipeline as an additional technique to
further improve the quality of Winograd quantization.

2. Related works
Quantization is a powerful tool for compressing and ac-

celerating neural networks by using low-precision numbers.
Quantization without training, also called Post-Training
Quantization (PTQ), is a difficult and demanding task, since
such quantization does not require complex calculations,
has a high execution speed and can be efficiently performed
on mobile devices. Various PTQ methods are actively pro-
posed by the research community [1, 18, 23–25]. Cross-
layer equalization and quantization bias correction tech-
niques from paper [24] are effective methods that do not
require any data and can help preserve the quality of the

quantized model. The cross-layer equalization procedure
from [24] is based on channel balancing of weights of sub-
sequent convolutions. Also, the idea of factorization of
layer channels to improve the quality of subsequent quan-
tization is investigated in [21]. In these works, the chan-
nel balancing technique is applied only to weight tensors
of traditional direct convolutions. AdaRound [23] is one of
the popular and effective methods for PTQ, which allows
to adaptively adjust the round function for different weight
components of the model layers. While being the quickest
approach, PTQ usually leads to the decrease in quality of a
quantized network.

Quantization-Aware Training (QAT) is a popular way to
obtain a quantized model with a high quality [4, 5, 8, 9, 13,
29]. In many studies on QAT, the authors reach quantized
quality close to the original. QAT employs stochastic gra-
dient descent with quantized weights and activations during
training. This class of quantization methods has a few draw-
backs – these methods require a full training dataset (usu-
ally it is private and it’s distribution can be restricted) and
computationally expensive training (a fine-tuning time of a
quantized model can reach a full-precision training time),
which sometimes is not available. A popular solution to the
problem of non-differentiability of rounding functions dur-
ing training of quantized models is to estimate the gradients
of such functions using straight-through estimators [3].

The Winograd algorithm for acceleration of CNNs was
first applied by Lavin et al. in [15]. Since then, a lot of re-
search has been focused on improving Winograd convolu-
tions, in particular on the study of quantization of Winograd
convolutions. The most popular works on quantization of
Winograd convolutions are summarized in Tab. 2. In [19],
Winograd convolutions are extended to Residue Number
System (RNS), which enables the use of bigger Wino-
grad transformation tiles. Work [16] proposes a method of
post-training quantization of Winograd convolutions, which
uses a special optimization of quantization parameters to
increase the final quality. Also there are some inference
frameworks that support quantized Winograd convolutions,
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(a) The idea of Channel balancing. Before balancing: the heterogeneity
of channel ranges in V and U tensors leads to the increase of quantiza-
tion error. After balancing: multiplying an element in V and dividing
the corresponding one in U by same value Ωi does not change the norm
of M, but can equalize the channel ranges and as a result significantly
improve the quality of quantization.

(b) ResNet-20 model with Winograd convolutions on CIFAR-10 dataset. The ratio of the expectation
of the standard deviation of channel ranges after balancing to the one before balancing for inputs and
filters of all Winograd convolutions. In the great majority of cases, the channel balancing significantly
reduces the standard deviation of channel ranges of both inputs V and weights U . For F(6, 3) algorithm
there is a small number of cases of increasing the dynamic ranges variance for the weight U (see the
ratios of layers 0, 1, 7 and 15), but the overall positive impact of the equalization is still strong.

Figure 2. Channel balancing procedure for Quantized Winograd convolutions.

for example, BOLT [6], LANCE [17] or IntelCaffe [11].
As a rule, inference frameworks that support quantized
Winograd convolutions automatically perform post-training
quantization. More complex and efficient Winograd algo-
rithms are more vulnerable to quantization, and therefore
many frameworks [11, 17] do not use the most efficient al-
gorithms due to a significant accuracy drop caused by quan-
tization. Also, many frameworks implement dynamic quan-
tization with online calculation of quantization scales of
Winograd-domain inputs for each input sample, since it pro-
vides better quality, although it is less efficient than static
quantization, for which we need to preliminary evaluate the
input quantization scales.

Many of the proposed methods for quantization of Wino-
grad convolutions are based on PTQ, because it is conve-
nient. However, there are several works [2, 10] that ad-
dress QAT of Winograd convolutions. In [10], in addition
to QAT, to prepare a model with quantized Winograd con-
volutions, Neural Architecture Search (NAS) is used to se-
lect different values of tile size m for different Winograd
convolutions. Also, different additional techniques can be
used to improve the quality of quantized Winograd con-
volutions, such as using tile scales or affine quantization
scheme [14]. However, often the quality drop remains un-
acceptable, especially in the case of more efficient Wino-
grad algorithms (m ≥ 4) or in the case of quantization with
scalar scale, which is the main quantization format in some
existing frameworks [11,17]. The balancing technique pro-
posed in this paper allows to significantly increase the qual-
ity of the quantized Winograd convolutions, and as a result,
use more efficient Winograd algorithms and quantization
formats without drop in model quality.

3. Preliminaries
For the sake of brevity, we refer the reader to the white

paper [25] to learn about the SOTA quantization algorithms
and terms. In our paper, we used symmetric uniform quan-
tization [14]:

Z̃ = ⌊Z · s⌉ = Clip
(
Round

(
Z · s

)
,−B,+B

)
, (3)

where the tilde denotes that Z̃ is a tensor of integers from
interval [−B,B] (same notation used in Fig. 1a), B =
2b−1−1, b is the quantization bitwidth and s = B/max |Z|
is the quantization scale (we discuss it below). There are
more precise quantization types, which can improve the re-
sults presented in the paper, for example, the affine quanti-
zation with offsets [14]. We choose Eq. (3) for simplicity.

Let us focus now on the quantization scales sv and su
corresponding to inputs V and weight U in Winogard do-
main accordingly. As can be seen in Fig. 1a, they are used
in two quantization (V̂ → Ṽ and Û → Ũ) and one de-
quantization (M̃ → M) stages. In our work, we considered
two types of quantization scales:

1. Scalar: sv, su ∈ R are scalars, and are used for quan-
tization of tensors V and U correspondingly (tensor
sizes are given in Fig. 1a). This case is the most diffi-
cult for quantization (see Tab. 3), but it was considered
in many previous studies (see Tab. 2).

2. Tile: sv, su ∈ Ra×a are square matrices. Each pixel
Vij ∈ RC in tensor V ∈ RC×a×a has its own quanti-
zation scale (sv)ij . This means that we quantize pixels
independently. Such an approach is much more pre-
cise, since the dynamic range of pixels varies signifi-
cantly. For simplicity, same pixels in filters share the

12510



same quantization scale: (su)ij is used for quantiza-
tion of tensor Uij ∈ RF×C .

From the quality perspective, the scalar scale sv ∈ R is
much worse than the tile scale sv ∈ Ra×a (see Tab. 3), but
from the number of operations they are equal (see step 3 in
Fig. 1a): both sv ⊙ V̂c and sv · V̂c require a2 operations,
V̂c ∈ Ra×a. Furthermore, this paper covers two quantiza-
tion types related to quantization scale sv:

1. Dynamic: sv is recalculated for every input V in the
inference stage dynamically:

(sv)
n
ij =

B

max |Vn
ij |

, (4)

where n denotes the n-th processing iteration, Vn
ij ∈

RC . The approximate relative cost of that makes up
a quarter of the relative cost of the quantization stage
in Fig. 1b. In practice, the dynamic approach is rarely
used, because it is hard to implement efficiently, how-
ever, it is much more precise (see Tab. 3 and Tab. 4).

2. Static: sv is estimated using a set of inputs V, ob-
tained using the training or the calibration dataset.
There are different methods how to estimate sv (see
[25]). For simplicity, we use the simplest approach:

(sv)ij =
1

N

N∑
n

(sv)
n
ij , (5)

where n denotes the n-th element of the calibration set,
and N denotes the number of elements in this set.

Now, we can write the formula of the Quantized Wino-
grad convolution (QW):

Yf = AT

∑C
c ⌊BTXcB · sv ⌉ ⊙ ⌊GWfcG

T · su ⌉

susv
A.

(6)
For simplicity, Eq. (6) is written for the scalar scales. A
computation in the numerator (M̃ in Fig. 1a) is done using
integer arithmetic. Using INT8 data speeds up the compu-
tations from 1.4× to 2.2× (strongly depends on the imple-
mentation) by increasing the number of elements processed
at the same time, improving the efficiency of the cache uti-
lization, and reducing the number of read/write operations
to RAM.

4. Balancing Winograd convolution channels
The following rule holds for any method of calculating

convolutions, in particular, for Winograd convolutions: the
more balanced the channel ranges of inputs and weights of
the convolution, the better its quantization. We can divide

the channels of the Winograd-domain input by some balanc-
ing coefficients Ω and multiply the corresponding channels
of the Winograd-domain filter by the same balancing coef-
ficients Ω (the rectangles denote the data ranges in Fig. 2a).
As a result, the transformed full-precision Winograd convo-
lution (hereinafter the “FP Winograd”) is equivalent to the
original Winograd convolution. Moreover, if the balancing
coefficients are chosen correctly, the new Winograd convo-
lution is easier to quantize, since the channel ranges of the
Winograd-domain inputs and filters become more balanced
(Fig. 2a: small rectangles are stretched and large ones are
squeezed, and as a result, all channels have their ranges
equalized). By analogy with formulas from Eq. (6), the
Balanced Quantized Winograd (BQW) convolution can be
written as:

Yf = AT

(
C∑
c

⌊
BTXcB

Ω

⌉
⊙
⌊
GWfcG

T ⊙Ω
⌉)

A,

(7)
where quantization scales su and sv are omitted (but their
existence is implied) to improve readability. Here, it is clear
that balancing of the FP Winogard does not change the out-
put Yf , because the variable Ω is eliminated. Please, note
that division and multiplication by Ω ∈ RC×a×a are the
element-wise operations (Hadamard product).

The scheme in Fig. 1a shows the formula from Eq. (7),
from the computational stages perspective. Let us first focus
on the sizes of tensors: tensor V ∈ RC×a×a and tensor
Ω have equal sizes, but the tensor U ∈ RF×C×a×a is a
four-dimensional tensor. So, to balance the weights U, it is
necessary to multiply each Uf element-wise by Ω F times.
It is not an issue, however, as this mapping U → Û and the
quantization Û → Ũ are performed offline.

Fig. 1b shows that the relative complexity of balancing
is initially small (1.2%, Fig. 1a) and decreases fast with in-
creasing C and F . Moreover, in the case of static quanti-
zation, scale sv of the Ω tensor can be fused in it, and the
balancing overhead will be zero (see Sec. 6).

The correct choice of the balancing parameters Ω signif-
icantly reduces the variance of the channel ranges of the
Winograd-domain filter and inputs, and therefore allows
maintaining a high model quality during quantization of
Winograd convolutions. For the case of post-training quan-
tization of Winograd convolutions, we propose a special di-
rect algorithm for calculating the balancing tensor without
additional model training, see Sec. 5. This algorithm uses
the distributions of the input tensors of Winograd convo-
lutions – one should just pass a few data samples to the
model to calibrate expectations of Winograd-domain inputs
(without training). Fig. 2b shows the ratio of the expectation
of standard deviations of channel ranges of the Winograd-
domain filters and inputs after balancing to the one before
balancing for ResNet-20 model with Winograd convolu-
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tions on CIFAR-10 dataset for this algorithm. As can be
seen from this diagram, the proposed balancing algorithm
significantly reduces the standard deviations of the channel
ranges for the Winograd-domain filters and inputs. As will
be shown below, the proposed algorithm for finding the bal-
ancing coefficients can significantly improve the quality of
post-training quantization for various computer vision net-
works with Winograd convolutions, see Sec. 7. Moreover,
we demonstrate that it is possible to initialize the balanc-
ing coefficients using this algorithm and further train them
as trainable variables during Winograd quantization-aware
training for greater quality improvement, see Sec. 7.

5. Post-training setup of balancing coefficients
The cross-layer weights equalization method (CLE,

[24]) performs balancing of the channel ranges of weights
of the two subsequent direct convolutions. The formula
of the balancing coefficients is derived as an analytical so-
lution of the optimization problem, aimed to balance the
weight tensors of the subsequent layers. We generalize this
optimization problem and its solution to the case of joint
balancing of the Winograd-domain filters and inputs. We
define the precision of channel c in the frequency domain
(i, j) in balanced Winograd-domain filter Û as pcij :

pcij =
rcij
Rij

, (8)

where rcij is the quantization range of channel c in fre-
quency domain (i, j) in tensor Û, and Rij is the total range
of Û in frequency domain (i, j). In the case of symmet-
ric quantization [14], we have rcij = 2 · maxf |Ûfcij | and
Rij = 2 · maxf,c |Ûfcij |. Similarly, we define the preci-
sion of channel c in frequency domain (i, j) in the balanced
Winograd-domain input V̂ as qcij :

qcij =
tcij
Tij

, (9)

where tcij is the quantization range of channel c in frequency
domain (i, j) in V̂ and Tij is the total range of V̂ in fre-
quency domain (i, j). To calculate the values of tcij and Tij ,
we calculate the maximum absolute values of components
of tensor V for each channel c and Winograd-domain fre-
quency (i, j) for several data batches, and then estimate the
average value of the obtained maximum absolute values for
these batches.

In the best case, the ranges of each channel for each
Winograd domain are equal to the total range of this Wino-
grad domain, which means that we use the maximum possi-
ble representative power per channel. As a result, we want
to find balancing coefficients Ω such that the total precision
per channel for the Winograd-domain inputs and filters is

maximized jointly for each frequency (i, j) in the Winograd
domain: ∑

c

pcij · qcij → max
Ω

. (10)

A similar optimization problem is formulated in [24]
with respect to the precision of channels of two adjacent
layers, and analytical solution of this problem is given.
Analogically, the solution to optimization problem from
Eq. (10) can be written out explicitly:

Ωc
ij =

√
tcij
rcij

. (11)

The choice of balancing coefficients using formula from
Eq. (11) provides the maximum value of total precision per
channel for the Winograd-domain inputs and filters from
Eq. (10), and therefore promotes the preservation of the
quality of Winograd convolutions after quantization.

6. Fusing of balancing coefficients
Fusing the balancing coefficients into quantization scale

is possible for the case of static quantization:

M =
Ũ⊙ ⌊sv ·V/Ω⌉

su · sv
→ M =

Ũ⊙ ⌊sΩ ·V⌉
su · sv

, (12)

where sΩ is equal to sv
Ω and has dimensions (C, a, a). In

this case, the same number of operations are performed in
the inference stage as in the case of the traditional Wino-
grad convolution. However, it requires storing a small num-
ber of additional parameters – balancing scales sΩ. In the
case of dynamic quantization, there is a need to perform
additional operations of dividing the inputs into balancing
tensors. These operations make up a very small part of the
operations performed during the inference of the neural net-
work, see Fig. 1.

7. Experiments
In this section, we compare the quality of models with

QW and BQW convolutions. To this end, we conduct ex-
periments with different architectures for image classifica-
tion and image super-resolution tasks. In our experiments,
we use pre-trained full-precision models, in which we re-
place all direct 3 × 3 convolutions (stride 1) with Wino-
grad convolutions and quantize them. Usually, several first
and last convolutions are replaced by the Winogard convo-
lutions with the smaller tile size m = 2 to boost quality of
a quantized model. This trick is not necessary for us, since
our aim is to prove the positive impact of balancing.

The symmetric uniform quantization (Eq. (3)) is applied
to both weights and inputs of Winograd convolutions. To
make a comprehensive ablation study, we made same ex-
periments for different quantization types (dynamic/static),
quantization scales (tile/scalar), and bitwidths (b = 4, 6, 8).
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Table 3. Quantization of ResNet-20 with Winograd convolutions on Cifar-10. The full-precision model accuracy is 91.73%.

Scale
type

Quantization
type

Winograd
algorithm Bits PTQ, accuracy, % QAT, accuracy, %

QW (Baseline) BQW QW (Baseline) BQW

Tile

Static
F(4, 3)

4 10.00 10.00 33.79 85.33
6 76.30 79.36 85.98 90.74
8 89.93 90.31 91.18 91.75

F(6, 3) 6 33.74 39.75 30.27 83.79
8 81.29 81.44 48.77 90.57

Dynamic
F(4, 3) 6 84.28 86.43

N/A8 91.45 91.83

F(6, 3) 6 51.10 61.37
8 90.90 91.18

Scalar Static F(4, 3) 8 16.22 68.23 N/ADynamic F(6, 3) 8 18.06 78.96

Table 4. Post-training quantization of models with Winograd convolutions on ImageNet into 8 bit (scale type: tile).

Model
Full-precision

accuracy
Quantization

type
Winograd
algorithm

Accuracy, %,
QW

Accuracy, %,
BQW

ResNet-18 69.76%
Static F(4,3) 66.15% 67.54%

F(6,3) 53.56% 60.59%

Dynamic F(4,3) 67.72% 68.94%
F(6,3) 60.17% 66.08%

ResNet-34 73.30%
Static F(4,3) 70.81% 71.86%

F(6,3) 62.34% 66.52%

Dynamic F(4,3) 71.71% 72.86%
F(6,3) 67.43% 70.87%

ResNet-50 76.15%
Static F(4,3) 75.36% 75.84%

F(6,3) 73.75% 74.47%

Dynamic F(4,3) 75.84% 76.10%
F(6,3) 75.01% 75.79%

Table 5. Static 8-bit PTQ of ESPCNN model for 3x super-resolution with F(4, 3) Winograd convolutions on Set5 and Set14 datasets.

Quantization
(scale type: tile)

Set5, PSNR
to ground truth

Set14, PSNR
to ground truth

Set5, PSNR
to full-precision model

Set14, PSNR
to full-precision model

Full-precision model 30.74 dB 27.06 dB ∞ ∞
Quantized Winograd (baseline) 29.41 dB 26.33 dB 35.89 dB 35.72 dB
Quantized Balanced Winograd 30.24 dB 26.76 dB 39.62 dB 39.15 dB

To initialize the scale parameters of the Winograd-domain
inputs V in the case of static quantization, we pass several
data samples through the model and estimate the average
data ranges (see Eq. (3)). In our experiments, we use 10000
samples from training sets for image classification tasks
and 3200 samples from the training set for image super-
resolution tasks for both calibration of balancing coeffi-
cients and estimation of quantization scales of Winograd-

domain inputs in the case of static quantization.

PTQ for image classification We have conducted experi-
ments for static and dynamic PTQ of ResNet-20 [12] model
on the CIFAR-10 dataset, and ResNet-18, ResNet-34 and
ResNet-50 models [12] on the ImageNet dataset. In these
experiments, we use F(4, 3) and F(6, 3) Winograd algo-
rithms. For experiments on CIFAR-10, we quantize the
models to 6 and 8 bits for the case of the tile scale, and
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Figure 3. PTQ of ESPCNN model for 3-x super-resolution: comparison of QW and BQW (F (4, 3), static 8 bit, scale type: tile).

for the case of scalar scale we provide only the results of
quantization of F(4, 3) Winograd algorithm to 8 bits. For
experiments on ImageNet, we quantize the models to 8 bits
and provide results for the case of the tile scale. Validation
accuracy of the quantized models with QW and BQW con-
volutions is given in Tab. 3 and Tab. 4. We observe that us-
ing channel balancing significantly improves the quality of
the quantized models with Winograd convolutions for var-
ious Winograd algorithms and quantization formats in the
case of PTQ.

QAT for image classification We also conducted experi-
ments for static QAT of ResNet-20 model on the CIFAR-10
dataset. We quantize models with traditional and balanced
Winograd convolutions to 4, 6 and 8 bits for the case of
the tile scale. In the case of balancing, parameters Ω are
initialized by the algorithm from Sec. 5 and then tuned as
trainable variables during training of the model with BQW
convolutions. We train all quantized models with Wino-
grad convolutions for 300 epochs using SGD with different
configurations of training parameters. In each case, we pro-
vide the best result achieved, since the best results for QW
and for BQW are achieved with different hyperparameters.
We observe that using channel balancing significantly im-
proves the quality of the quantized models with Winograd
convolutions and accelerates convergence during training,
see Tab. 3 and Fig. 4. Note that the results of QAT are worse
than the results of PTQ in the case of F(6, 3) Winograd algo-
rithm for the baseline QW, since in this case QAT does not
converge and stops at a configuration worse than the one
using which it was initialized. See details about training
configurations in Appendix B.

PTQ for image Super-Resolution In this section, we
provide the results of experiments for quantization of Ef-
ficient Sub-Pixel CNN (ESPCNN) [26] with global resid-
ual connection for the 3× image super-resolution task. The
full-precision model was trained on the Vimeo-90K dataset
and consists of 6 convolutions. We replace all direct 2D
convolutions except for the first one with Winograd con-
volutions, as the kernel size of the first convolution is 5.
We quantize filters and inputs of Winograd convolutions to
8 bits. We conducted experiments with F(4, 3) Winograd
algorithm for the task of static PTQ with tile scale, see re-

Figure 4. The test accuracy over epochs for F(6, 3) Winograd al-
gorithm. We use the SGD optimizer with momentum. The tradi-
tional quantized Winograd without balancing (QW) does not con-
verge at all. In contrast, the balanced quantized Winograd (BQW)
trains well. Pay attention, that BQW is stable to variation of hyper-
parameters (LR) – it converges well for any LR.

sults in Tab. 5. The obtained results show that the quality
of the model with BQW convolutions significantly exceeds
the quality of the model with QW convolutions and is close
to the quality of the full-precision model, see Fig. 3.

8. Conclusions
We propose a novel technique of balancing the channel

ranges of the Winograd-domain inputs and filters that sig-
nificantly increases the quality of the quantized Winograd
convolutions. The conducted experiments show that the
variance of data ranges decreases – data in different chan-
nels becomes homogeneous. This has a positive impact on
the quality of the quantized model as is confirmed by the ex-
periments. The price to pay to equalize the channel ranges
is small, see Appendix C. Moreover, in the case of static
scales, the overhead of balancing can be eliminated by fus-
ing the balancing coefficients into the quantization scales.
In addition, the strength of the suggested technique lies in
the compatibility with any existing quantization method and
any Winograd algorithm.
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