
Data-Free Network Compression via Parametric Non-uniform Mixed Precision
Quantization

Vladimir Chikin
Huawei Noah’s Ark Lab

vladimir.chikin@huawei.com

Mikhail Antiukh
HSE University

mikhail.antiukh@gmail.com

Abstract

Deep Neural Networks (DNNs) usually have a large
number of parameters and consume a huge volume of
storage space, which limits the application of DNNs on
memory-constrained devices. Network quantization is an
appealing way to compress DNNs. However, most of exist-
ing quantization methods require the training dataset and
a fine-tuning procedure to preserve the quality of a full-
precision model. These are unavailable for the confiden-
tial scenarios due to personal privacy and security prob-
lems. Focusing on this issue, we propose a novel data-free
method for network compression called PNMQ, which em-
ploys the Parametric Non-uniform Mixed precision Quan-
tization to generate a quantized network. During the com-
pression stage, the optimal parametric non-uniform quan-
tization grid is calculated directly for each layer to mini-
mize the quantization error. User can directly specify the re-
quired compression ratio of a network, which is used by the
PNMQ algorithm to select bitwidths of layers. This method
does not require any model retraining or expensive cal-
culations, which allows efficient implementations for net-
work compression on edge devices. Extensive experiments
have been conducted on various computer vision tasks and
the results demonstrate that PNMQ achieves better perfor-
mance than other state-of-the-art methods of network com-
pression.

1. Introduction

DNNs have achieved impressive results in a large num-
ber of problems from image classification to various gener-
ation tasks, etc. But with an increasing number of problems
to be solved the models grow in size significantly, architec-
tures become more complex, the number of parameters is
estimated in hundreds of millions. Unfortunately, in the real
world, the use and storage of such models is difficult, espe-
cially on various peripheral and mobile devices for which
computing and memory resources are a bottleneck. Since
the demand for the use of neural networks in various mo-

bile processes and applications is growing, there is a great
need for matching neural models to the technical param-
eters of devices. Many researchers try to offer some ap-
proaches to solve this problem, such as making changes to
existing model structures or applying various compression
techniques to the original structure.

Popular approaches include techniques such as pruning,
quantization, encoding methods, knowledge distillation and
their various combinations. Now there are a lot of well-
known methods and ready-made frameworks that can sig-
nificantly reduce the model size, but to keep a high quality
of the compressed model, many of these methods require a
lot of training data and expensive calculations such as model
retraining, which is a significant drawback. Methods that do
not use expensive calculations for compression often pro-
duce a significant quality drop of the compressed models,
since the use of uniform quantization without model train-
ing leads to a low quality of approximation from quantiza-
tion for most of the weights.

In this paper, we propose a novel method of network
compression called PNMQ, which does not use expensive
calculations such as gradient descent training or clustering,
and at the same time allows us to achieve better results com-
pared to existing data-free and training-free compression
methods, and even to some methods that use data, model
training or other additional compression techniques. First
of all, we propose a parametric family of non-uniform quan-
tization grids that depends on a single scalar parameter and
is therefore easily optimized. The use of the proposed non-
uniform quantization grids significantly improves the qual-
ity of quantization approximation relative to the uniform
quantization. We provide an optimization pipeline, which
allows to tune these non-uniform grids for each model layer,
both without using data and using a small amount of data.
In addition, we demonstrate that different layers of models
require different bitwidths for a high degree of quantiza-
tion approximation, and propose a universal data-free algo-
rithm for selecting the sufficient bitwidths of layers based
on comparison of the quantization errors of different layers
and bitwidths. This algorithm automatically selects the op-

450

timal bitwidths for different layers to achieve the required
compression ratio that the user can specify directly, and this
is a very convenient feature of the proposed method. PNMQ
can be applied to any model, does not depend on the layer
types and does not require changing the network structure.
Moreover, PNMQ is compatible with most existing weight
compression techniques such as weights pruning, transfor-
mations or lossless coding.

2. Related works

One of the fairly popular technique for reducing the
number of model parameters is pruning [7, 14, 38, 40]. The
idea of pruning is to zero out individual insignificant neu-
rons in the neural network (unstructured pruning) or to re-
duce some subsets (kernels, channels) of the weight tensors
(structured pruning). Knowledge distillation means train-
ing a completely new smaller model, which is trained on
the outputs of the original model [1, 16]. This approach
can show good compression results but it requires expensive
training and implies a change in the structure of the origi-
nal model. Quantization is a powerful tool for compressing
models by using low-precision numbers. It can be uniform
[9,20,30,44] or non-uniform [5,6,18,27,46]. For uniform
quantization, special function Q that maps the model pa-
rameters to a finite uniformly distributed set is usually used.
A common example of a such function is the following:

Q(x) = ⌊x/s⌉, (1)

where x is a tensor with float values, and s is the quanti-
zation scale. By ⌊·⌉ we denote the round function by the
set of integers from the segment [−2n−1, 2n−1 − 1], where
n is the quantization bitwidth. With uniform quantization,
we pay equal attention to the values over the entire quan-
tization interval. In practice, however, model weights can
be distributed unevenly, and non-uniform quantization can
provide a better approximation of more important areas in
weight tensors.

Non-uniform quantization Weights clustering is one of
the ways of non-uniform quantization [3, 10, 23, 41, 49].
The main idea of weights clustering is to divide the weight
tensor into several clusters, the number of which is deter-
mined by the required bitwidth. We need to store full-
precision values of the cluster centers and integer labels
of clustered weight components. One of the most popu-
lar methods for weights clustering is the Lloyd-Max quan-
tizer [23,26,36,41]. Despite the popularity of weights clus-
tering approach, it has significant drawbacks – it requires
expensive clustering procedure and storing a big set of float
numbers, which negatively affects the compression ratio. In
our work, we propose a different approach to non-uniform
quantization, which solves the above-mentioned disadvan-
tages.

Compression-aware training Model training during
compression is a popular way to maintain the quality of
a model with a high compression ratio [4, 25, 34, 41–43].
There are many works about quantization and pruning-
aware training, in which the authors achieved sufficiently
high compression ratios with a final quality close to the
original. Compression-aware training methods have a few
drawbacks. They require a lot of data and long training,
which is often impossible in real problems. The problem
with data can be solved by special methods of generating
artificial data [11,17,39] for any compression approach, but
such methods also require expensive model training. In our
work, we have focused on compression approach without
training and showed that our techniques can compete and
even beat the methods with training.

Compression without training It is a more difficult and
demanding task as it has a higher execution speed and can
be effectively applied on mobile devices [15,22,47,48]. One
of the popular techniques is the application of special trans-
formations to the weight tensors [22,47] aimed at changing
the distribution of weights to increase the compression ra-
tio. Cross-layer equalization and quantization bias correc-
tion techniques from [29], which is one of our main direct
competitors, are effective methods for preserving quality of
the quantized model that do not require data and model
retraining. One of the popular and effective methods is
post-training quantization method AdaRound [28], which
allows to adaptively adjust the round function for different
weight components of model layers. Despite the fact that
this method does not involve model training, it uses data
and a gradient descent procedure to adjust a big set of its
own special parameters, which is a computationally com-
plex procedure. Batch normalization folding before model
quantization [19] is also a useful step, since in this case we
do not need to store the parameters of batch normalizations
in a compressed model.

Lossless compression The final step in compression pro-
cedure can be the application of efficient lossless coding
algorithms to the quantized model parameters. There are
many well-known coding methods, such as entropy coding
(Huffman) or universal coding (arithmetic) algorithms. A
popular approach is to use bzip2 encoder [2, 22]. Method
described in papers [31,45] demonstrates a compression al-
gorithm based on binary arithmetic coder CABAC, which
achieves one of the best results among the compression
methods without model training.

3. Method description
Our proposed compression method consists of several

steps. The overall pipeline of the algorithm is shown
in Fig. 1. PNMQ is based on a special type of non-uniform
quantization of the model weights, as well as on a special al-

451

Figure 1. After batch normalization folding and cross-layer equalization, we iterate over the bitwidths for each model layer and solve a
special optimization problem for obtaining values of non-uniform quantization parameters for each of them. Based on the achieved results
and the compression ratio specified by the user (SCR), the bitwidths allowed for different layers are estimated. The method uses those
bitwidths and the parameters calculated earlier for a non-uniform quantization of the model layers. Finally, we apply quantization bias
correction.

gorithm for selecting the bitwidths of different layers. Dur-
ing the compression procedure, special optimal paramet-
ric non-uniform quantization grid is tuned for each layer.
PNMQ supports two modes: Data-Free – in this case the
data are not used for compression, and Data-Aware – in
this case a small number of calibration samples are used
for compression. A distinctive and very convenient feature
of PNMQ is that the required compression ratio of model
is a parameter of the method that a user can specify di-
rectly. We call this parameter the Specified Compression
Ratio (SCR). SCR is used by the algorithm during the se-
lection of bitwidths of different layers, resulting in the fi-
nal compression ratio of the quantized model being almost
equal to the specified value.

In addition to a non-uniform mixed precision quantiza-
tion of the model weights, PNMQ uses preliminary batch
normalization folding [19], and also cross-layer equaliza-
tion and quantization bias correction techniques from [29].
No data are required for the use of these procedures. Fi-
nally, we propose applying lossless encoding to quantized
weights to further increase the compression ratio. In this pa-
per, we use traditional Huffman coding algorithm – a pop-
ular dictionary-based entropy coding algorithm, although
any encoding algorithm can be used in combination with
PNMQ.

3.1. Parametric non-uniform grids

In this paper, by grid we mean the set of points. Let W be
the weight tensor of a layer, n – the quantization bitwidth,
τ = 2n−1, and s is a quantization scale. We propose to use
the following non-uniform grid for quantization:

Gn
p = {xi : xi = −d

i∑
k=0

pk, i ∈ [0, τ − 1]}∪

∪{0} ∪ {yi : yi = d

i∑
k=0

pk, i ∈ [0, τ − 2]}

(2)

Parameter p ∈ [1, 2] defines this grid, and parameter d is
expressed in terms of p and τ :

d =
τ

1 + p+ p2 +· · ·+ pτ−1 (3)

This grid contains 2n elements, and due to this choice of d,
the maximum absolute value of the numbers from this grid
|xτ−1| is equal to τ . Using ⌊·⌉np , we denote the rounding
procedure for non-uniform grid Gn

p . We provide an effec-
tive way to implement rounding to such non-uniform grids
in Appendix A. The values of the components of the tensor
⌊W/s⌉np belong to a discrete set, but are not integers. To
store integer values, we use integer indices of these compo-
nents in the proposed non-uniform grid Gn

p . We denote the
tensor of these integer indices by Inp . In the case of n-bit
quantization, the set of values of these indices is a set of
numbers from 0 to 2n − 1, which in fact corresponds to the
use of n-bit arithmetic when storing compressed weights of
the model.

Figure 2. Example of the proposed parametric non-uniform grid
in comparison with a uniform grid for n = 4.

For p = 1, the proposed grid is uniform, and as p in-
creases, the distance between the adjacent numbers close to
zero decreases, and increases between the adjacent numbers
far from zero, see Fig. 2. The proposed technique of non-
uniform quantization allows us to approximate small mod-
ulo weight values in more detail, which, as a rule, make up
most of the weight tensors. Sometimes the distribution of

452

the weights of some layers has a very low entropy, and for
such layers the use of the proposed non-uniform quantiza-
tion especially improves the average accuracy of the quan-
tization approximation.

3.2. Setting the quantization parameters

For each model layer with weight tensor W and given
bitwidth n, we tune the proposed parametric non-uniform
quantization grid (parameter p) and the quantization scale
(parameter s) by solving a special optimization problem.
For data-free mode we propose to minimize the following
loss function:

LDF (W, s, p) =

∥∥∥∥W − s

⌊
W

s

⌉n

p

∥∥∥∥ −→ min
s,p

, (4)

and for data-aware mode we propose to minimize the fol-
lowing loss function:

LDA(W,X, s, p) =

∥∥∥∥WX − s

⌊
W

s

⌉n

p

X

∥∥∥∥ −→ min
s,p

, (5)

where X is some batch of data. For our data-aware method,
we use significantly less data than during source model
training. Parameter p is optimized on the segment [1, 2], and
parameter s is optimized on the segment [0, max |W |

τ]. We
optimize the proposed loss functions with respect to only
two parameters s and p. In this regard, to solve these opti-
mization problems and find the optimal values of parame-
ters s and p, we can use fast algorithms that use brute force
and do not use gradient descent. Due to this, the deployment
of PNMQ is possible on most mobile devices.

We have compared different types of norms that can be
used in the proposed loss functions. Based on the experi-
mental results, we propose to use L4 norm as the most ef-
fective. See Appendix B for a detailed comparison of vari-
ous norms.

3.3. Selection of the layer bitwidths

As a rule, in order to achieve good accuracy of quantiza-
tion approximation, different layers require different quanti-
zation bitwidths. We propose a method for selecting differ-
ent bitwidths for different layers, which takes this fact into
account. This method is based on the use of a special func-
tion to estimate the accuracy of quantization approximation,
same for different layers and bitwidths. This approach al-
lows us to obtain a significantly higher compression ratio
without reducing the quality compared to quantization of
the entire model to a fixed bitwidth.

The minimum and maximum possible bitwidth values
nmin and nmax are set by user. In our work, we use
nmin = 3 and nmax = 8 as default values. For each layer
and bitwidth value from segment [nmin, nmax], the method
solves the problem of minimizing the loss from Eq. (4)

or Eq. (5) and preserves the achieved minimum value Lopt

of this loss with the corresponding optimal parameters of
non-uniform quantization s and p, using which this loss
value is achieved. This is most time-consuming part of our
compression algorithm. All further calculations require ab-
solutely insignificant time.

The scheme of the proposed bitwidth selection proce-
dure is shown in Fig. 3. The method collects all values of
Lopt for different layers and bitwidths into a general list
and sorts it in ascending order. Next, the method iterates
through this list from the smallest to the largest Lopt value,
and for each current value of Lopt considers it as a thresh-
old value. For each threshold value, the method forms a
set of layer bitwidths according to the following rule: for
each layer, we select the minimum bitwidth, at which the
value of Lopt is less than the current threshold Lopt. Since
used loss functions from Eq. (4) and Eq. (5) are the norms
of the quantization error, the value of Lopt monotonically
decreases as the bitwidth value increases.

Figure 3. The scheme of the bitwidth selection procedure. Exam-
ple for SCR equal to 7.

Based on the obtained set of layer bitwidths, we can es-
timate the current Compression Ratio (CR) of the model us-
ing the following formula:

CR =
F · 32∑

i∈Q

pi · bi +B · 32 +M
, (6)

where F is the number of parameters in the full-precision
model, Q – a set of quantized model layers, pi – the size of
the i-th layer, bi – bitwidth of the i-th layer, B – the num-
ber of the full-precision parameters in the quantized model
(biases and quantization parameters) and M – the size of
metadata with the information about bitwidths of layers. In
practice, the value of M turns out to be absolutely insignif-
icant. As the current threshold value Lopt increases, the
compression ratio from Eq. (6) of the model monotonically

453

increases. When the SCR is reached, we stop and fix the
current threshold value Lopt and the corresponding set of
bitwidths for different layers. We use this set of bitwidths
and corresponding stored optimal parameters s and p to
quantize the model layers.

3.4. Decompression procedure

Decompression procedure is performed very quickly.
Having the bitwidth parameter n and the parameter of the
non-uniform quantization p for each layer, we can restore
the used non-uniform quantization grid Gn

p . Having the
scale factor s and the compressed model weights encoded
by integer indices Inp of the points of grid Gn

p , we can cal-
culate the approximate values of the initial weights of the
model – model weights after decompression:

W = s · ⌊W/s⌉np = s ·Gn
p

(
Inp

)
. (7)

4. Experiments
In this section, we evaluate the effectiveness of our com-

pression method. In this regard, we conducted experiments
with several different widely-used neural networks for im-
age classification, object recognition and image segmenta-
tion tasks. In all experiments, we quantize the weights of all
model layers using symmetric per-tensor quantization [21],
and also conduct batch normalization folding before quan-
tization. It is clear that the use of additional techniques such
as affine quantization or per-channel quantization [21] can
improve the final quality of the compressed model. How-
ever, these techniques involve storing additional float pa-
rameters, which entails a certain reduction of the compres-
sion ratio. See the results of additional experiments with
per-channel version of PNMQ in Appendix C.

Experimental setup In our experiments, we solve opti-
mization problems from Eq. (4) and Eq. (5) using a naive
brute force algorithm that selects optimal values of param-
eters s and p as a result of optimization on a uniform grid.
Any other optimization method can be used, in particular,
more efficient brute force algorithms. In all our experiments
with data-aware version of our method we used 32 random
samples for object recognition task and 160 random sam-
ples for image classification task from the training dataset.
Since the results of the data-aware method depend on the
used data, we provide the average quality metrics for sev-
eral runs with different random sets of samples from the
training set.

Metrics To evaluate compression methods, we use the
following widely-used performance metrics:

• Top-1 and Top-5 accuracy of the compressed model for
image classification tasks.

• Mean Average Precision (mAP) and mean Average Re-
call (mAR) of the compressed model for object detec-
tion (Bbox) and image segmentation (Mask) tasks.

• Compression ratio of the model after quantization,
which is determined by formula from Eq. (6).

• Compression ratio for quantized models after apply-
ing Huffman coding algorithm to the quantized part of
model, taking into account the codebook size. To cal-
culate this coefficient, one need to replace the size of
the quantized part of model with the size of the result-
ing Huffman code in formula from Eq. (6), and also
add the codebook size to the denominator.

Most of the works with which we compare our results
use a similar measurement scheme for the compression ra-
tio. With the exception of a few papers, in [47] the authors
calculate the compression as the ratio of the original size of
the weight tensors to the quantized one, without taking into
account the quantization parameters and other full-precision
parameters. On the contrary, the authors of [22] take into
account not only the quantization parameters, but also other
metadata of the model, such as information about the struc-
ture, layers, etc., which may insignificantly reduce the com-
pression ratio. Also, some works use other approaches in-
stead of the Huffman algorithm, for example bzip2 [22] and
CABAC [31, 45] coders.

4.1. Image classification

Ablation study Our proposed method consists of several
independent techniques, and in this section we examine im-
pact from them. For this, we conducted experiments with
ResNet-50 [13] and MobileNet-v2 [37] models on the Ima-
geNet dataset [8], see Tab. 1. As a baseline, we consider the
DFQ method for weights quantization only. After folding of
batch normalizations, we apply the cross-layer equalization,
quantize the weights of all layers, and then apply the quan-
tization bias correction. We do not apply bias absorbing
because it is aimed at efficient quantization of activations.
We perform the listed DFQ techniques in all experiments
in this section. Since our method allows tuning of quanti-
zation scales using a special loss optimization, we compare
our method with a version of DFQ, in which we apply a
similar procedure for scale tuning, and also with a version
of PNMQ, which uses uniform quantization (p = 1). In addi-
tion, we conducted experiments using Lloyd-Max quantizer
for non-uniform quantization of models to fixed bitwidth.
In our experiments, we used the implementation of Lloyd-
Max quantization method from scikit-learn library [33]. We
also implemented the combination of Lloyd-Max quantizer
with our bitwidth selection method – in this case, the non-
uniform grid tuning procedure is replaced by the weight
clustering procedure using Lloyd-Max algorithm. We call

454

Table 1. Compression of ResNet-50 and MobileNet-v2 models on ImageNet. Investigation of the impact of the used techniques.

Model Method SCR Top-1
acc.

Top-5
acc.

CR without
Huffman coding

CR with
Huffman coding

ResNet-50

Baseline DFQ all to 5 bit 32.08% 55.96% 6.36 15.17
DFQ with scale tuning all to 5 bit 46.60% 71.69% 6.36 11.67

DFQ + Lloyd-Max all to 5 bit 73.77% 91.74% 6.37 6.48
DFQ + Mix-Bit Lloyd-Max 6.36 75.56% 92.71% 6.43 6.59

Data-Free PNMQ with p = 1 6.36 74.17% 91.96% 6.37 11.4
Data-Free PNMQ 6.36 75.32% 92.68% 6.43 8.34

Data-Aware PNMQ 6.36 75.50% 92.74% 6.46 7.8

MobileNet-v2

Baseline DFQ all to 5 bit 55.31% 79.34% 6.23 8.81
DFQ with scale tuning all to 5 bit 64.14% 85.50% 6.23 7.98

DFQ + Lloyd-Max all to 5 bit 68.62% 88.25% 6.24 6.32
DFQ + Mix-Bit Lloyd-Max 6.23 70.93% 89.91% 6.56 6.68

Data-Free PNMQ with p = 1 6.23 69.73% 89.13% 6.32 7.83
Data-Free PNMQ 6.23 70.35% 89.71% 6.32 7.15

Data-Aware PNMQ 6.23 70.64% 89.74% 6.26 6.75

this approach Mix-Bit Lloyd-Max. That allows us to signif-
icantly improve the compression results relative to the tra-
ditional Lloyd-Max approach, however, the Mix-Bit Lloyd-
Max method takes a very long time to run.

We set the value of SCR equal to the compression ratio
in the case of baseline DFQ. As can be seen from Tab. 1,
in the case of our methods, the final compression ratio (CR)
of models is indeed almost equal to the given value of SCR.
In turn, the compression ratio increases after the subsequent
application of Huffman coding to quantized weights. From
the presented results it can be seen that, as a rule, the com-
pression ratio with the Huffman coding of the baseline uni-
form quantization is larger than in the case of our approach
with non-uniform quantization. This can be explained by
the fact that the non-uniform grid approximates area around
zero more actively and allocates more values to this area;
thus, quite fewer quantized values are zeroed out than dur-
ing uniform quantization. Since Huffman’s algorithm is en-
tropy coding, it encodes the most frequent value (zero) us-
ing the smallest number of bits. Thus, a uniform grid will
provide a greater degree of compression, since it converts a
larger number of values of the weight tensor to zero.

We can also observe that our data-free approach has a
better compression ratio than our data-aware method but
smaller accuracy despite the equal number of float and
quantized parameters. We explain this by the fact that the
selection of parameters s and p in the data-aware version
is performed by optimizing the loss function, which con-
tains more information about the original problem leading
to a higher quality. Similar observations were made in [28].
At the same time, this approach can better approximate the
area around zero, which can lead to a slightly worse com-

pression with the Huffman coding.

Comparison with the state-of-the-art In this section we
compare our methods with state-of-the-art methods for neu-
ral network compression. We conducted experiments with
ResNet-18, ResNet-50 [13] and MobileNet-v2 [37] mod-
els on the ImageNet dataset, see Tab. 2. We compare our
results with the results of experiments aimed exclusively
at the weight compression, without quantization of activa-
tions. Our direct competitors are the following methods:
DFQ [29], OSC [48], Transform coding [22] and Deep-
CABAC [31], which do not use data, pruning and tuning
of a large number of parameters by gradient descent. We
demonstrate that PNMQ show better results not only among
the main known methods of data-free compression and
compression without training, but also can be comparable
or even better than some compression-aware training meth-
ods and quantization methods with pruning, despite the fact
that these approaches are not our direct competitors since
they use more complex techniques that are poorly applica-
ble in real tasks and on mobile devices. Method [25] has
a slightly higher compression ratio, but lower accuracy of
compressed model than PNMQ on ResNet-18 model. This
approach uses a complex weight retraining during model bi-
narization procedure. We also have better result in terms of
compression ratio and accuracy than CLIP-Q method [43],
which uses model retraining and weights pruning. Also note
that the results of PNMQ are comparable with the results of
the method from [47], which uses special transformations
and pruning of the weight tensors, and with the results of
AdaRound method [28], which uses data and the gradient
descent procedure to tune a large number of parameters for
adaptive rounding.

455

Table 2. Comparison with the state-of-the-art: results of different weight compression methods on ImageNet.

Model Method Data
free Pruning

Gradient
descent

for tuning

Top-1
acc.

Top-5
acc. CR

CR with
additional

coding

ResNet-18

Full-precision model - - - 69.76% 89.08% 1 -
DFQ (our impl.) ✓ × × 68.81% 88.52% 4.56 7.98

Data-Free PNMQ ✓ × × 69.13% 88.65% 6.61 8.82
AdaRound [28] × × ✓ 68.71% - 7.97 -
Lin et al. [25] × × ✓ 68.30% - 8.36 -
row-KLT [47] × ✓ × 68.50% 88.40% 8.2 -
row-ELT [47] × ✓ × 68.60% 88.50% 8.2 -

Data-Aware PNMQ × × × 69.21% 88.76% 6.13 7.4

ResNet-50

Full-precision model - - - 76.13% 92.86% 1 -
DFQ (our impl.) ✓ × × 74.67% 92.18% 4.55 7.77

OCS [48] ✓ × × 66.2% - 7.94 -
Transform Coding [22] ✓ × × - 90.86% - 9.7
Transform Coding [22] ✓ × × - 91.86% - 8.1

DeepCABAC [31] ✓ × × 74.99% - - 4.44
Data-Free PNMQ ✓ × × 73.61% 91.92% 7.94 10.88
Data-Free PNMQ ✓ × × 75.32% 92.68% 6.43 8.34
AdaRound [28] × × ✓ 75.23% - 7.94 -
row-KLT [47] × ✓ × 74.80% 92.30% 7.8 -
row-ELT [47] × ✓ × 74.70% 92.40% 8.4 -

Data-Aware PNMQ × × × 73.95% 91.99% 7.95 9.9
Data-Aware PNMQ × × × 75.50% 92.74% 6.46 7.8

MobileNet-v2

Full-precision model - - - 71.88% 90.29% 1 -
DFQ (our impl.) ✓ × × 68.48% 88.36% 5.22 6.87

DeepCABAC [31] ✓ × × 71.48% - - 3.5
Data-Free PNMQ ✓ × × 70.35% 89.71% 6.32 7.15
Data-Free PNMQ ✓ × × 71.62% 90.25% 4.61 5.01
AdaRound [28] × × ✓ 69.78% - 7.72 -

CLIP-Q [43] × ✓ ✓ 70.30% - 6.14 -
Data-Aware PNMQ × × × 70.64% 89.74% 6.23 6.75
Data-Aware PNMQ × × × 71.68% 90.20% 4.64 4.91

4.2. Object recognition and image segmentation

We conducted experiments with Faster R-CNN [35]
for object recognition task and with Mask R-CNN [12]
for object segmentation task on the COCO-2017 dataset.
Full-precision models with ResNet-50 backbone trained
on COCO-2017 dataset [24] are taken from TorchVision
[32]. We provide quality metrics of the compressed mod-
els, see Tab. 3, and several examples of the output images
produced by the compressed models, see Fig. 4 and Ap-
pendix D. Our results show that the quality of models com-
pressed by DFQ is much worse than the quality of mod-
els compressed by PNMQ with a similar compression ratio.
For example, after compressing the models using 6-bit DFQ
method, the quality of compressed models significantly de-

creases, in particular, there are loss of objects, inaccurate
masks and other artifacts, see Fig. 4. After compressing
the models using PNMQ methods with SCR of 7.64, the
quality of compressed models is very close to the quality of
full-precision models.

5. Conclusion

In this paper we have proposed a novel method PNMQ
for networks compression. Our approach belongs to tech-
niques that do not require data and any kind of model re-
training, and provides excellent results not only by the stan-
dards of data-free methods but also among the approaches
that use data and complex calculations for compression.
Thus, in our work, we solve the problem of compressing

456

Table 3. Comparison of baseline DFQ method and our compression methods for Faster R-CNN and Mask R-CNN models on COCO-2017.

Method Bitwidth SCR Bbox
mAP

Bbox
mAR

Mask
mAP

Mask
mAR

CR without Huffman
coding

CR with Huffman
coding

Full-precision model 32 - 0.379 0.519 0.346 0.474 1 1

Baseline DFQ
4 - 0 0.001 0 0.001 7.64 20.48
5 - 0.249 0.371 0.233 0.350 6.18 14.02
6 - 0.350 0.486 0.322 0.449 5.18 9.77

Data-Free PNMQ
mix 9.5 0.332 0.468 0.32 0.446 9.53 14.11
mix 7.64 0.369 0.504 0.341 0.466 7.65 10.46
mix 6.18 0.377 0.516 0.345 0.473 6.18 7.97

Data-Aware PNMQ
mix 9.5 0.346 0.487 0.327 0.459 9.53 12.61
mix 7.64 0.371 0.509 0.343 0.469 7.66 9.62
mix 6.18 0.377 0.516 0.346 0.473 6.19 7.43

(a) Baseline DFQ to 6 bit (b) Data-Free PNMQ with SCR: 7.64 (c) Data-Aware PNMQ with SCR: 7.64 (d) Full-precision model

(e) Baseline DFQ to 5 bit (f) Data-Free PNMQ with SCR: 9.5 (g) Data-Aware PNMQ with SCR: 9.5 (h) Full-precision model

Figure 4. Comparison of baseline DFQ method and PNMQ methods for Faster R-CNN and Mask R-CNN models on COCO-2017.

models in real conditions when data and large computa-
tional resources may not be available for many reasons.
PNMQ is quite simple to implement and apply, since it does
not require any changes of the model and implies the opti-
mization of very simple functionals. It can be easily com-
patible with various other compression techniques, such as
pruning, special weight transformations, coding algorithms,

and also with advanced quantization techniques, such as
per-channel quantization or affine quantization, to further
increase the compression ratio and the quality of the com-
pressed models. We hope that our work will be able to in-
spire research community to further improve compression
techniques, including by combining different ideas with our
approach.

457

References
[1] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-

Mizil. Model compression. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 535–541, 2006. 2

[2] Zhuo Chen, Weisi Lin, Shiqi Wang, Lingyu Duan, and
Alex C Kot. Intermediate deep feature compression:
the next battlefield of intelligent sensing. arXiv preprint
arXiv:1809.06196, 2018. 2

[3] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. To-
wards the limit of network quantization. arXiv preprint
arXiv:1612.01543, 2016. 2

[4] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Uni-
versal deep neural network compression. IEEE Journal of
Selected Topics in Signal Processing, 14(4):715–726, 2020.
2

[5] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations, 2015. 2

[6] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural networks:
Training deep neural networks with weights and activations
constrained to +1 or -1, 2016. 2

[7] Elliot J Crowley, Jack Turner, Amos Storkey, and Michael
O’Boyle. A closer look at structured pruning for neural net-
work compression. arXiv preprint arXiv:1810.04622, 2018.
2

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5

[9] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,
Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-
tiable soft quantization: Bridging full-precision and low-bit
neural networks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4852–4861, 2019. 2

[10] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bour-
dev. Compressing deep convolutional networks using vector
quantization. arXiv preprint arXiv:1412.6115, 2014. 2

[11] Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel
Soudry. The knowledge within: Methods for data-free model
compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8494–
8502, 2020. 2

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 7

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 5, 6

[14] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and ac-
celeration on mobile devices. In Proceedings of the Euro-
pean conference on computer vision (ECCV), pages 784–
800, 2018. 2

[15] Yuhang He, Ziyu Pan, Lingxi Li, Yunxiao Shan, Dongpu
Cao, and Long Chen. Real-time vehicle detection from short-

range aerial image with compressed mobilenet. In 2019 In-
ternational Conference on Robotics and Automation (ICRA),
pages 8339–8345. IEEE, 2019. 2

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 2

[17] Maxwell Horton, Yanzi Jin, Ali Farhadi, and Mohammad
Rastegari. Layer-wise data-free cnn compression. arXiv
preprint arXiv:2011.09058, 2020. 2

[18] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Quantized neural networks:
Training neural networks with low precision weights and ac-
tivations, 2016. 2

[19] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018. 2, 3

[20] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew G. Howard, Hartwig Adam, and
Dmitry Kalenichenko. Quantization and training of neu-
ral networks for efficient integer-arithmetic-only inference.
CoRR, abs/1712.05877, 2017. 2

[21] Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper. arXiv
preprint arXiv:1806.08342, 2018. 5

[22] Thorsten Laude, Yannick Richter, and Jörn Ostermann. Neu-
ral network compression using transform coding and cluster-
ing. arXiv preprint arXiv:1805.07258, 2018. 2, 5, 6, 7

[23] Clément Levrard. Quantization/clustering: when and why
does k-means work? Journal de la société française de
statistique, 159(1):1–26, 2018. 2

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 7

[25] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accu-
rate binary convolutional neural network. arXiv preprint
arXiv:1711.11294, 2017. 2, 6, 7

[26] Stuart Lloyd. Least squares quantization in pcm. IEEE trans-
actions on information theory, 28(2):129–137, 1982. 2

[27] Daisuke Miyashita, Edward H Lee, and Boris Murmann.
Convolutional neural networks using logarithmic data rep-
resentation. arXiv preprint arXiv:1603.01025, 2016. 2

[28] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Chris-
tos Louizos, and Tijmen Blankevoort. Up or down? adap-
tive rounding for post-training quantization. In International
Conference on Machine Learning, pages 7197–7206. PMLR,
2020. 2, 6, 7

[29] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and
Max Welling. Data-free quantization through weight equal-
ization and bias correction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1325–
1334, 2019. 2, 3, 6

458

[30] Maxim Naumov, Utku Diril, Jongsoo Park, Benjamin Ray,
Jedrzej Jablonski, and Andrew Tulloch. On periodic func-
tions as regularizers for quantization of neural networks,
2018. 2

[31] David Neumann, Felix Sattler, Heiner Kirchhoffer, Simon
Wiedemann, Karsten Müller, Heiko Schwarz, Thomas Wie-
gand, Detlev Marpe, and Wojciech Samek. Deepcabac: Plug
& play compression of neural network weights and weight
updates. In 2020 IEEE International Conference on Image
Processing (ICIP), pages 21–25. IEEE, 2020. 2, 5, 6, 7

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 7

[33] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
et al. Scikit-learn: Machine learning in python. the Journal
of machine Learning research, 12:2825–2830, 2011. 5

[34] Brandon Reagan, Udit Gupta, Bob Adolf, Michael Mitzen-
macher, Alexander Rush, Gu-Yeon Wei, and David Brooks.
Weightless: Lossy weight encoding for deep neural net-
work compression. In International Conference on Machine
Learning, pages 4324–4333. PMLR, 2018. 2

[35] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28:91–99, 2015. 7

[36] Michael Sabin and Robert Gray. Global convergence and
empirical consistency of the generalized lloyd algorithm.
IEEE Transactions on information theory, 32(2):148–155,
1986. 2

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks, 2018. 5, 6

[38] Jialiang Tang, Mingjin Liu, Ning Jiang, Huan Cai, Wenxin
Yu, and Jinjia Zhou. Data-free network pruning for model
compression. In 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–5, 2021. 2

[39] Jialiang Tang, Mingjin Liu, Ning Jiang, Huan Cai, Wenxin
Yu, and Jinjia Zhou. Data-free network pruning for model
compression. In 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–5. IEEE, 2021. 2

[40] Enzo Tartaglione, Andrea Bragagnolo, Attilio Fiandrotti,
and Marco Grangetto. Loss-based sensitivity regulariza-
tion: towards deep sparse neural networks. arXiv preprint
arXiv:2011.09905, 2020. 2

[41] Enzo Tartaglione, Stéphane Lathuilière, Attilio Fiandrotti,
Marco Cagnazzo, and Marco Grangetto. Hemp: High-order
entropy minimization for neural network compression. Neu-
rocomputing, 461:244–253, 2021. 2

[42] Cheng-Hao Tu, Jia-Hong Lee, Yi-Ming Chan, and Chu-Song
Chen. Pruning depthwise separable convolutions for mo-
bilenet compression. In 2020 International Joint Conference
on Neural Networks (IJCNN), pages 1–8. IEEE, 2020. 2

[43] Frederick Tung and Greg Mori. Deep neural network
compression by in-parallel pruning-quantization. IEEE
transactions on pattern analysis and machine intelligence,
42(3):568–579, 2018. 2, 6, 7

[44] Stefan Uhlich, Lukas Mauch, Kazuki Yoshiyama, Fa-
bien Cardinaux, Javier Alonso Garcı́a, Stephen Tiedemann,
Thomas Kemp, and Akira Nakamura. Differentiable quan-
tization of deep neural networks. CoRR, abs/1905.11452,
2019. 2

[45] Simon Wiedemann, Heiner Kirchhoffer, Stefan Matlage,
Paul Haase, Arturo Marban, Talmaj Marinč, David Neu-
mann, Tung Nguyen, Heiko Schwarz, Thomas Wiegand,
et al. Deepcabac: A universal compression algorithm for
deep neural networks. IEEE Journal of Selected Topics in
Signal Processing, 14(4):700–714, 2020. 2, 5

[46] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and
Jian Cheng. Quantized convolutional neural networks for
mobile devices. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4820–
4828, 2016. 2

[47] Sean Young, Zhe Wang, David Taubman, and Bernd Girod.
Transform quantization for cnn compression. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2021. 2,
5, 6, 7

[48] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and
Zhiru Zhang. Improving neural network quantization with-
out retraining using outlier channel splitting. In International
conference on machine learning, pages 7543–7552. PMLR,
2019. 2, 6, 7

[49] Zihan Zhao, Yuncong Liu, Lu Chen, Qi Liu, Rao Ma, and
Kai Yu. An investigation on different underlying quantiza-
tion schemes for pre-trained language models. In CCF Inter-
national Conference on Natural Language Processing and
Chinese Computing, pages 359–371. Springer, 2020. 2

459

