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Abstract

We consider the problem of recovering a single person’s
3D human mesh from in-the-wild crowded scenes. While
much progress has been in 3D human mesh estimation, ex-
isting methods struggle when test input has crowded scenes.
The first reason for the failure is a domain gap between
training and testing data. A motion capture dataset, which
provides accurate 3D labels for training, lacks crowd data
and impedes a network from learning crowded scene-robust
image features of a target person. The second reason is a
feature processing that spatially averages the feature map of
a localized bounding box containing multiple people. Aver-
aging the whole feature map makes a target person’s feature
indistinguishable from others. We present 3DCrowdNet that
firstly explicitly targets in-the-wild crowded scenes and es-
timates a robust 3D human mesh by addressing the above
issues. First, we leverage 2D human pose estimation that
does not require a motion capture dataset with 3D labels
for training and does not suffer from the domain gap. Sec-
ond, we propose a joint-based regressor that distinguishes a
target person’s feature from others. Our joint-based regres-
sor preserves the spatial activation of a target by sampling
features from the target’s joint locations and regresses hu-
man model parameters. As a result, 3DCrowdNet learns
target-focused features and effectively excludes the irrele-
vant features of nearby persons. We conduct experiments on
various benchmarks and prove the robustness of 3DCrowd-
Net to the in-the-wild crowded scenes both quantitatively
and qualitatively. Codes are available here 1.

1. Introduction
Extensive research has been committed to reconstructing

an accurate 3D human mesh, which represent both the pose
and shape of a human, from a single image. However, 3D

1https : / / github . com / hongsukchoi / 3DCrowdNet _
RELEASE
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Figure 1. 3DCrowdNet resolves (a) a domain gap issue in estimat-
ing a 3D human mesh from in-the-wild crowded scenes. Due to
the large domain gap between motion capture data and in-the-wild
crowd data, (b) existing state-of-the-art methods such as SPIN [19]
produce inaccurate results, while 3DCrowdNet gives an accurate
3D human mesh despite severe inter-person occlusion. We conceal
a person’s face in this paper to abide by the ethical policy.

human mesh estimation from in-the-wild crowded scenes
has been barely studied, despite their common presence.
Consequently, most of the previous works show results on
scenes without inter-person occlusion and provide inaccu-
rate results on crowded scenes. The inter-person occlusion
is the essential challenge of in-the-wild crowded scenes,
and many practical applications including abnormal behav-
ior detection [8] and person re-identification [35] encounter
such situations. This paper investigates the limitation of the
current literature and proposes a novel method for robust 3D
human mesh estimation from in-the-wild crowded scenes.
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The currently dominant training strategy for human
mesh recovery is mixed-batch training. It composes a mini-
batch with one-half data from a motion capture (MoCap)
3D dataset [13, 26] and the other from an in-the-wild 2D
dataset [22]. To use the 2D dataset for supervision, 3D
joints regressed from a predicted mesh are projected onto
the image plane, and the distance with 2D annotations is
computed. This way of mixing 3D and 2D data is well
known to improve accuracy and generalization [17, 19] by
implicitly inducing a neural network to benefit from accu-
rate 3D annotations of the 3D data and diverse image ap-
pearances in the 2D data. The dominant approach of recent
works [5, 9, 19] is a model-based approach using a global
feature vector, which obtains the feature vector with a deep
convolutional neural network (CNN) and regresses the hu-
man model parameters (e.g. SMPL [24]) from it. First, they
crop an image using a bounding box of a target person de-
tected from off-the-shelf human detectors [10]. Then they
process the target’s cropped image with a deep CNN and
perform a global average pooling to obtain the global fea-
ture vector. The global feature vector is fed to a Multi-Layer
Perceptron (MLP)-based regressor that regresses the mesh
parameters. The 3D meshes are obtained by forwarding the
parameters to the human model layers.

While the recent works have shown reasonable results on
standard benchmarks [13,46] based on the two wheels of the
current literature, in-the-wild crowded scenes remain insur-
mountable due to the following two reasons. First, a large
domain gap between training data from MoCap datasets and
testing data from in-the-wild crowded scenes hinders a deep
CNN from extracting proper image features of a target per-
son. The domain gap arises from the presence of a human
crowd, which entails diverse inter-person occlusion, inter-
acting body poses, and indistinguishable cloth appearances
(Figure 1a). The mixed-batch training alone is insufficient
to overcome the domain gap, and existing methods struggle
to acquire robust image features from in-the-wild crowded
scenes, and produce inaccurate meshes (Figure 1b). Intu-
itively, this tells us that external guidance robust to the do-
main gap is required for a crowded scene-robust image fea-
ture, in addition to the mixed-batch training.

Next, the global average pooling on a deep CNN fea-
ture collapses the spatial information that distinguishes a
target person’s feature from others. In-the-wild crowded
scenes often involve overlapping people and inaccurate hu-
man bounding boxes. Thus, a bounding box of a target in-
evitably includes non-target people. A deep CNN feature
retains features of these non-target people, and the global
average pooling makes a target person’s feature indistin-
guishable from others. This confuses a regressor and makes
it difficult to capture an accurate 3D pose of a target person.
For instance, the regressor may miss human parts occluded
by another person or predict a different person’s pose.

In this regard, we present 3DCrowdNet, a novel network
that learns to estimate a single person’s robust 3D human
mesh from in-the-wild crowded scenes. This study is one
of the earliest works that explicitly tackle 3D human mesh
estimation of a target person in a crowd. 3DCrowdNet ad-
dresses the two issues of previous works in two folds. First,
we resolve the domain gap by explicitly guiding a deep
CNN to extract a crowded scene-robust image feature using
an off-the-shelf 2D pose estimator. Unlike methods target-
ing 3D geometry, the 2D pose estimator does not require
depth supervision and is not trained on a MoCap dataset.
Instead, it is trained only on in-the-wild datasets [21, 41]
that have images containing human crowds and suffers less
from a domain gap regarding the inference on crowded
scenes. Consequently, the 2D pose estimator’s outputs pro-
vide strong evidence of a target person and help 3DCrowd-
Net pay attention to a target’s feature despite the challenges
in in-the-wild crowded scenes.

Second, we propose a joint-based regressor that does not
blow away the spatial activation of a target person in a fea-
ture map with the global average pooling. The joint-based
regressor first predicts the spatial locations of joints. Then,
it samples image features from a deep CNN feature map
with the locations. In particular, we keep the sampling area
small to exclude features of non-target people. The target
person’s feature is distinguished from others, and human
model parameters are regressed from the sampled image
features. The joint-based regressor differs from the previous
regressors that evenly aggregate people’s features regardless
of the target. Figure 2 depicts the overview of 3DCrowdNet.

Note that 3DCrowdNet substantially differs from prior
works [6, 25] that directly lift 2D estimation outputs to 3D-
(a) we focus on producing and leveraging image features of
a target person in human crowds, and (b) such image fea-
tures help 3DCrowdNet to resolve the depth and shape am-
biguity of a target person, from which the 2D estimation
outputs inherently suffer. Thus, we argue that this work
takes a step towards accurate 3D human mesh estimation
from in-the-wild crowded scenes by distinguishing image
features of a target person in densely interacting crowds,
which is highly challenging but important. The experiments
show that 3DCrowdNet significantly outperforms the pre-
vious 3D human mesh estimation methods on in-the-wild
crowded scenes. Also, it achieves state-of-the-art accuracy
in multiple 3D benchmarks [16, 28, 46]. Extensive qualita-
tive results are presented in the main manuscript and sup-
plementary material. Our contributions can be summarized
as follows:

• We present 3DCrowdNet, the first approach to 3D hu-
man mesh recovery from in-the-wild crowded scenes.
It effectively processes image features of a target per-
son in a crowd, which is essential for accurate 3D pose
and shape reconstruction.
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• It extracts crowded scene-robust image features by re-
solving the domain gap with a 2D pose estimator.

• It distinguishes a target person’s image features from
others using a joint-based regressor.

• 3DCrowdNet significantly outperforms previous meth-
ods on in-the-wild crowded scenes both quantitatively
and qualitatively, and achieves state-of-the-art 3D pose
and shape accuracy on multiple 3D benchmarks.

2. Related works
2D human pose estimation from crowded scenes. Early
works of 2D human pose estimation did not explicitly tar-
get crowded scenes. However, their methods are related
to diverse challenges of in-the-wild crowded scenes, such
as overlapping human bounding boxes, human detection
error, and inter-person occlusion. There are two major
approaches, namely bottom-up and top-down approaches.
Bottom-up methods [2, 36, 40] first detect all joints of the
people, and group them to each person. Top-down meth-
ods [3,10,37] first detect all human bounding boxes, and ap-
ply a single-person 2D pose estimation method to each per-
son. Top-down methods generally achieve higher accuracy
on traditional 2D pose benchmarks such as MSCOCO [22],
but underperform on crowded scene benchmarks [21, 52]
than bottom-up methods due to the human detection issues.

Recently, a few works explicitly addressed crowded
scenes 2D pose estimation and reported good accuracy on
crowded scene benchmarks. [21] combined top-down and
bottom-up approaches using joint-candidate single person
pose estimation and global maximum joints association. [4]
proposed to learn scale-aware representations using high-
resolution feature pyramids. [15] made a grouping process
of the bottom-up approach differentiable using a graph neu-
ral network. [41] refined invisible joints’ prediction using
an image-guided progressive graph convolutional network.
3D human geometry estimation from crowded scenes.
Several methods [29, 47, 53] have shown reasonable results
on multi-person 3D benchmarks [16, 26]. However, their
focus was on absolute depth estimation of each person, and
few works have addressed the inter-person occlusion to es-
timate robust 3D geometry, such as 3D human pose (i.e. 3D
joint coordinates) and meshes, from in-the-wild crowded
scenes. XNect [27] proposed an occlusion-robust method
that can be applied to crowded scenes. However, it did not
focus on resolving the domain gap. It integrated 2D/3D
branches into a single system and trained it on a MoCap
dataset [28], which barely contains inter-person occlusions.
Also, it requires a particular joint (i.e. neck) must be visible
for human detection. On the contrary, our key idea is lever-
aging external 2D pose estimators that are not trained on
MoCap data, to alleviate the domain gap between MoCap
training data and in-the-wild crowd testing data. In addition,

3DCrowdNet reconstructs full 3D human pose and shape
from diverse partially invisible people in crowded scenes.

ROMP [45] introduced a bottom-up method for multi-
person 3D mesh recovery that can be applied to crowded
scenes. It estimates a body center heatmap and a mesh pa-
rameter map, and samples each person’s mesh parameters
from the parameter map using center locations regressed
from the heatmap. While the method provides better results
on crowded scenes than previous methods, it could still suf-
fer from the domain gap between MoCap training data and
testing data from in-the-wild crowded scenes. Also, solely
relying on the body center estimation to distinguish a tar-
get from others could be unstable in cases of occlusion on
the body center. On the other hand, 3DCrowdNet explicitly
tackles the domain gap issue with crowded-scene robust 2D
poses. Also, we utilize cues from multiple 2D joint loca-
tions of the target and refine image features sampled from
the locations to handle diverse inter-person occlusion, in-
cluding occlusion on the body center.
2D geometry to 3D human mesh estimation. [6, 42, 43,
51] proposed methods that only take 2D geometry without
images, such as 2D joint locations, for SMPL parameter
regression. While the methods can benefit from 2D esti-
mators robust to in-the-wild crowded scenes, they have two
limitations. First, they cannot correct inaccurate 2D input
compared to the actual person in images. Instead, they pro-
duce the most plausible outputs for the given 2D input, not
the 3D pose and shape that best describes the person in im-
ages. Second, they do not benefit from image features with
rich depth and 3D shape cues of a target person. The cues
include subtle light reflection and shadows. 2D geometry
hardly contains such cues and could lead to inaccurate 3D
human mesh estimation. On the contrary, 3DCrowdNet re-
constructs accurate 3D human meshes from possibly inac-
curate 2D poses utilizing image features. Also, we focus
on extracting the crowded scene-robust image feature of a
target person using the 2D pose, rather than directly lifting
2D to 3D as the prior works.

3. 3DCrowdNet

3.1. 3DCrowdNet architecture

As shown in Figure 2, our architecture comprises a fea-
ture extractor followed by a joint-based regressor. The fea-
ture extractor is based on ResNet-50 [11], and the joint-
based regressor is based on [23, 33]. Our network’s output
is SMPL [24] parameters, and a single person’s 3D mesh is
obtained by feeding the parameters to the SMPL layer.
Feature extractor. The feature extractor takes a 2D pose
and an image as input. The 2D pose is 2D joint coordinates
P2D ∈ RJ×2 predicted by bottom-up off-the-shelf 2D pose
estimators [2, 4]. J denotes the number of human joints,
and it can vary among different 2D pose estimators. During
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Figure 2. Overview of 3DCrowdNet. It resolves the domain gap by explicitly guiding a deep CNN to extract a crowded scene-robust feature
using an off-the-shelf 2D pose estimator. Then, it distinguishes a target person from others by preserving the target’s spatial activation with
a joint-based regressor and regresses SMPL [24] parameters. The parameters are fed to the SMPL layer to get a 3D mesh. For simplicity,
we show image feature sampling on only two joints. The numbers in network layers indicate the output channel dimension. The number
in the max pooling layer indicates a stride size. The graph convolutional blocks’ channel dimension is defined per joint.

training, we add realistic errors on the ground truth (GT)
2D pose following [6, 30] to mimic erroneous 2D pose out-
puts in test time, and the noisy 2D pose is used as our input
P2D. We provide the 2D pose P2D as a heatmap represen-
tation H2D ∈ RJs×64×64 to the feature extractor by making
a Gaussian blob on the 2D joint coordinates. Js = 30 indi-
cates the number of joints in a superset of joint sets defined
by multiple datasets. We assign don’t-care values to the
undefined joints and joint predictions with low confidence
in inference time, by multiplying zero to the correspond-
ing joint’s heatmap. Modeling don’t-care values based on
the superset of joints and heatmaps enables 3DCrowdNet to
perform inference from various human joint sets with a sin-
gle network and handle diverse input such as 2D poses with
missing joints due to truncation and occlusion.

The feature extractor uses the 2D pose heatmap H2D of
a target person as guidance and pays attention to the spatial
region of a target in a crowd. First, it obtains an early-stage
image feature of ResNet F ∈ RC×64×64 from a cropped im-
age I ∈ R3×256×256. C = 64 is the channel dimension, and
I is acquired by cropping and resizing a bounding box area,
derived from the 2D pose P2D. Second, it concatenates F
and H2D along the channel dimension. The concatenated
feature is processed by a 3-by-3 convolution block, which
keeps the feature’s height and width but changes the chan-
nel dimension to C. Finally, the feature with C channels is
fed back to the remaining part of ResNet, where the output
is a crowded scene-robust image feature F′ ∈ RC′×8×8.
C ′ = 2048 is the channel dimension.
Joint-based regressor. The joint-based regressor first re-
covers 3D joint coordinates P3D ∈ RJc×3 from F′. Jc = 15

denotes the number of joints in the intersection of joint sets
defined by multiple datasets. (x,y) values of P3D are de-
fined in a 2D pixel space, and z value of P3D represents root
joint-relative depth. A 1-by-1 convolutional layer outputs a
3D heatmap H3D ∈ RJc×D×8×8 from F′ after predicting a
JcD dimensional 2D feature map and reshaping it to the 3D
heatmap. D = 8 decides a descritizated size of depth. P3D

is computed from H3D, using soft-argmax operation [44].
As the soft-argmax computes continuous coordinates from
a discretized grid, we observed that a heatmap with a low
resolution like H3D gives similar accuracy compared to up-
sampled ones, while requiring less computational costs.

Next, the joint-based regressor estimates global rotation
of a person θg ∈ R3, SMPL body rotation parameters
θ ∈ R21×3, SMPL shape parameters β ∈ R10, and cam-
era parameters k ∈ R3 for projection. First, image features
per joint are sampled from F′ using the (x,y) pixel posi-
tions of P3D. We use bilinear interpolation, since the (x,y)
pixel positions are not in discretized values. The predic-
tion confidence of P3D is sampled from H3D in the same
manner. Second, we concatenate the sampled image fea-
tures, P3D, and the prediction confidence of P3D, to attain
FM ∈ RJc×(C′+3+1). Last, we process FM using a graph
convolutional network (GCN), and predict θg , VPoser [39]
latent code z, β, and k from output features of GCN with
separate MLP layers. θ is decoded from z. The GCN shows
faster convergence during training than an MLP network,
and we think the reason lies behind the character of θ. θ
is parent joint-relative joint rotations, and the GCN can ex-
ploit the human kinematic prior different from an MLP. For
example, the GCN can implicitly learn the valid range of
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each parent joint-relative joint leveraging the relationship
between human joints.

For the graph convolutional network, we use the joint-
specific graph convolution [23] that learns separate weights
for each graph vertex. We define learnable weight
matrices {Wj ∈ RCout×Cin}Jc

j=1 for all joints of each
graph convolution layer, where Cin and Cout denotes in-
put and output channel dimensions, respectively. Then,
the output graph feature of joint j is derived as Fout

j =

σReLU(
∑

i∈N̂j
ãjiσBN(WiF

in
i )), where Fin

i is the input
graph feature of joint i. σReLU and σBN denotes ReLU ac-
tivation function and 1D batch normalization [12], respec-
tively. N̂j is defined as Nj ∪ {j}, where Nj denotes neigh-
bors of a vertex j. ãji is an entry of the normalized adja-
cency matrix Ã at (j, i), where Ã = D− 1

2 (A + I)D− 1
2 .

A ∈ {0, 1}Jc×Jc is the adjacency matrix constructed based
on the human skeleton hierarchy and fixed during the train-
ing and testing stages. The definition of the human skeleton
hierarchy is depicted in the supplementary material.

3.2. Network training

The feature extractor and joint-based regressor are in-
tegrated and trained end-to-end. We use both pseudo-GT
SMPL fits obtained by fitting frameworks [32, 39] and GT
annotations from training datasets for supervision follow-
ing [19]. Our overall objective is defined as follows:

L = Lpose + Lmesh, (1)

where Lpose computes the L1 distance between the predicted
P3D and the (pseudo) GT, and Lmesh denotes the loss func-
tion for predicted SMPL parameters. Lmesh is defined as

Lmesh = Lparam + Lpose′ , (2)

where Lparam computes the L1 distance between the pre-
dicted θg , θ, and β, and the pseudo-GT parameters; Lpose′

indicates the L1 distance loss of joints regressed from pre-
dicted meshes. To supervise with 2D annotations [1, 22],
predicted joints are projected by camera parameters k.

3.3. Implementation detail

PyTorch [38] is used for implementation. We initial-
ize the weights of ResNet [11] with the pre-trained weights
from [48]. It shows faster convergence during training. We
use Adam optimizer [18] with a mini-batch size of 64. The
initial learning rate is 10−4. The model is trained for 6
epochs, and the learning rate is reduced by a factor of 10
after the 3th and 5th epochs. We use four NVIDIA RTX
2080 Ti GPUs for training, and it takes about 9 hours on
average. We will release the codes for more details.

3DPW-Crowd MuPoTS CMU-Panoptic 3DPW

Figure 3. We curate 3DPW-Crowd, a subset of 3DPW, which has
much higher bounding box IoU and CrowdIndex [21] than other
3D benchmarks. CrowdIndex measures other people’s joints’ ratio
over each person’s joints in a bounding box.

4. Experiment
4.1. Datasets

Training sets. We use Human3.6M [13], MuCo-
3DHP [28], MSCOCO [22], MPII [1], and CrowdPose [21]
for training. Only the training sets of the datasets are used,
following the standard split protocols.
Testing sets. We report accuracy on MuPoTS [28], CMU-
Panoptic [16], 3DPW [46], and 3DPW-Crowd. MuPoTS
is a multi-person test benchmark captured from indoor
and outdoor environments, starring 3 to 4 people. CMU-
Panoptic is a large-scale multi-person dataset captured from
the Panoptic studio. Following [14, 50], we pick four se-
quences presenting 3 to 7 people socializing each other for
the evaluation. 3DPW is a widely-used 3D benchmark cap-
tured from an in-the-wild environment, and we use the test
set of 3DPW following the official split protocol. 3DPW-
Crowd is a subset of 3DPW and is used to evaluate the a
method’s robustness to in-the-wild crowded scenes. Refer
to more details below about its necessity.

4.2. Evaluation protocols

Evaluation on crowded scenes: 3DPW-Crowd and
CrowdPose. As CrowdPose [21] addressed, the principal
obstacle of pose estimation from crowded scenes is not the
number of people, but the inter-person occlusion in a crowd.
Thus, MuPoTS [28] and CMU-Panoptic [16] have limita-
tions for the evaluation on in-the-wild crowded scenes, not
only because they are not in-the-wild data, but also because
they show limited interaction.

To overcome the limitations, we propose 3DPW-Crowd
to numerically measure a method’s robustness on in-the-
wild crowded scenes. It contains hugging and dancing se-
quences that have considerably higher average intersection
over union (IoU) of bounding boxes and CrowdIndex [21]
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Figure 4. Comparison between the baseline that takes only im-
age features and 3DCrowdNet. The baseline gives stronger atten-
tion to an occluding person (female) instead of an occluded person
(male), and produces a wrong 3D mesh. 3DCrowdNet pays atten-
tion to the target male and recovers an accurate 3D mesh.

input feature MPJPE↓ PA-MPJPE↓
image feature wo. guide 109.6 63.3

crowded scene-robust image feature 85.8 55.8

Table 1. Ablation on the input image features.

among 3D benchmarks as shown in Figure 3. We name
the subset as 3DPW-Crowd, since it reveals the challenges
of in-the-wild crowded scenes, such as overlapping bound-
ing boxes and severe inter-person occlusion. More details
about 3DPW-Crowd are in the supplementary material. We
also provide extensive qualitative comparison between dif-
ferent methods on the test set of CrowdPose [21] in this
manuscript and supplementary material.
Evaluation metrics. We report 3D pose and 3D shape eval-
uation metrics. For the 3D pose evaluation, we use mean
per-joint position error (MPJPE), Procrustes-aligned mean
per-joint position error (PA-MPJPE), and 3DPCK proposed
in [26]. Following SPIN [19], we use the 3D joint coor-
dinates regressed from a 3D mesh as predictions. For the
3D shape evaluation, we use mean per-vertex position error
(MPVPE). All errors are measured after aligning root joints
of GT and estimated human body meshes.

4.3. Ablation study

We carry out the ablation study on 3DPW-Crowd.We use
HigherHRNet [4]’s 2D pose outputs in Table 2, 3, and 4.
Crowded scene-robust image feature. Table 1 shows

parameter regressor type MPJPE↓ PA-MPJPE↓
SPIN-style regressor 89.0 59.5

joint-based regressor (Ours) 85.8 55.8
Table 2. Ablation of the regressor types.

sampling area MPJPE↓ PA-MPJPE↓
whole feature map 89.1 57.8

5-by-5 grid around point 88.2 57.6
point (Ours) 85.8 55.8

Table 3. Ablation on the sampling area of image features.

the effectiveness of the crowded scene-robust image fea-
ture.The baseline network in the first row crops an image
using a GT bounding box and extracts image features with-
out any guidance as in previous methods. The significant
error drop in the table proves that the 2D pose can pro-
duce crowded scene-robust image features, and the image
features are critical to estimate an accurate mesh from the
in-the-wild crowded scenes. We further validate our state-
ment that the 2D pose can produce crowded scene-robust
image features in Figure 4. 3DCrowdNet activates the oc-
cluded target male’s spatial region, unlike the baseline net-
work, and successfully distinguishes him from the other. As
a result, 3DCrowdNet estimates an accurate mesh of the oc-
cluded target male, while the baseline predicts a mesh of
the occluding female. We conclude that for the 3D mesh
estimation on in-the-wild crowded scenes, the domain dif-
ference of MoCap train data is the bottleneck, and our idea
to exploit the robustness of 2D pose estimators, which do
not use MoCap train data, is valid.
Joint-based regressor. Table 2 shows that the joint-based
regressor outperforms the SPIN [19]-style regressor, the
dominant model-based approach in the current literature,
on 3DPW-Crowd. The results prove that preserving the
spatial activation of a target person in a deep CNN feature
map is essential. SPIN-style regressor shows lower accu-
racy, since it makes a target person’s feature indistinguish-
able from others by collapsing the spatial information with
a global average pooling. We further validate our argument
in Table 3. Originally, our joint-based regressor samples
deep image features from (x,y) positions of the predicted
3D pose. When we enlarge the sampling area, the errors in-
crease. Especially, when the joint-based regressor uses fea-
tures sampled from the whole feature map, which are the
same feature of the SPIN-style regressor, MPJPE becomes
similar to that of the SPIN-style regressor. It indicates that
most of the accuracy gain in Table 2 is not from a better net-
work architecture, such as GCN, but from the preservation
of the target person’s spatial activation. Keeping an appro-
priate sampling area to less involve non-target people’s im-
age features is important to estimate a robust human mesh
from in-the-wild crowded scenes.

We also verify the effectiveness of estimating a 3D pose
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estimation target MPJPE↓ PA-MPJPE↓
2D pose 88.3 56.4

3D pose (Ours) 85.8 55.8

Table 4. Ablation on the intermediate estimation target of the joint-
based regressor during training and testing.

method MPJPE↓ PA-MPJPE↓ MPVPE↓
SPIN [19] 121.2 69.9 144.1

Pose2Mesh [6] 124.8 79.8 149.5
I2L-MeshNet [31] 115.7 73.5 162.0

ROMP [45]∗ 104.8 63.9 127.8
3DCrowdNet (Ours) 86.8 56.1 109.7

3DCrowdNet (Ours)∗ 85.8 55.8 108.5

Table 5. Comparison on 3DPW-Crowd between 3DCrowdNet and
previous methods. We evaluate other methods with their codes and
pre-trained models. ∗ means using CrowdPose [21] for training.

instead of a 2D pose in Table 4. The clear accuracy im-
provement proves that the depth information can be reliably
estimated from a 2D pose and image features, and it is ben-
eficial for the accuracy of the final mesh estimation.

4.4. Comparison with state-of-the-art methods

Unless indicated, our 3DCrowdNet is not trained on a
CrowdPose [21] train set in Table 5, 6, and 7. Also, we
use less or similar training data than other methods, and the
details are in the supplementary material.
3DPW-Crowd. We compare our 3DCrowdNet with [6, 19,
31, 45] in Table 5. They are recent state-of-the-art 3D hu-
man mesh estimation methods on 3DPW, and publicly re-
leased the codes for evaluation. We make several observa-
tions. First, our approach outperforms SPIN [19], which
takes only the image feature as input and performs a global
average pooling on the deep CNN feature map. The result
is coherent with the results in Table 1 and 2 of our abla-
tion studies. Next, 3DCrowdNet outperforms ROMP [45],
a bottom-up method for multi-person 3D mesh estimation.
While ROMP achieves higher accuracy than other methods,
we think it still suffers from the domain gap issue. For ex-
ample, it needs to learn how to distinguish body centers
of people under diverse inter-person occlusion, but MoCap
datasets they used rarely contain such data. On the other
hand, 3DCrowdNet explicitly resolves the domain gap us-
ing 2D pose input and produces accurate 3D meshes.

Last, 3DCrowdNet defeats Pose2Mesh [6], a method that
can also benefit from crowded-scene robust 2D poses. We
used the same 2D pose predictions of [4] for Pose2Mesh
and 3DCrowdNet. The result validates 3DCrowdNet’s two
strengths over Pose2Mesh. First, 3DCrowdNet recovers a
3D mesh that best describes a target person, using rich depth
and shape cues in images. On the contrary, Pose2Mesh pro-
duces the most plausible 3D mesh for a given 2D pose, and
the accuracy depends on it. Figure 6 shows that 3DCrowd-

method
3DPCK↑

All Matched
SMPLify-X [39] / OpenPose [2] 62.8 68.0

HMR [17] / OpenPose [2] 66.0 70.9
HMR [17] / Mask R-CNN [10] 65.6 68.6

Jiang et al. [14] 69.1 72.2
3DCrowdNet (Ours) / OpenPose [2] 70.2 70.9

3DCrowdNet (Ours) / HigherHRNet [4] 72.7 73.3

Table 6. Comparison on MuPoTS [28] between 3DCrowdNet and
previous methods. The numbers denote 3DPCK for all annotations
(All) and annotations matched to a prediction (Matched), and are
brought from [14]. The method names beside [2,4,10] indicate the
source of bounding boxes and 2D pose input.

method Haggl. Mafia Ultim. Pizza Mean
Zanfir et al. [49] 140.0 165.9 150.7 156.0 153.4
Zanfir et al. [50] 141.4 152.3 145.0 162.5 150.3
Jiang et al. [14] 129.6 133.5 153.0 156.7 143.2

ROMP [45] 111.8 129.0 148.5 149.1 134.6
3DCrowdNet (Ours) 109.60 135.9 129.8 135.6 127.6

Table 7. Comparison on CMU-Panoptic [16]. The numbers denote
MPJPE. We follow the evaluation protocol of Jiang et al. [14].

Net recovers accurate 3D meshes, even when a 2D pose is
inaccurate. Second, 3DCrowdNet can handle missing joints
of 2D pose predictions due to occlusion and truncation ow-
ing to don’t-care modeling based on the 2D pose’s heatmap
introduced in Section 3.1. Pose2Mesh takes the 2D pose as
coordinates and cannot cope with the missing joints, com-
mon in in-the-wild crowded scenes. Please also refer to the
qualitative comparison in the supplementary material.
MuPoTS. Table 6 compares our 3DCrowdNet with meth-
ods that recover a 3D mesh. It outperforms all the previous
methods. Note that the second and fifth rows prove that
3DCrowdNet’s high accuracy on the crowded scenes is not
simply attributed to better localization derived from bottom-
up 2D poses. While 3DCrowdNet and HMR use the same
2D poses of OpenPose [2], HMR utilizes the 2D pose only
to get a bounding box, and 3DCrowdNet additionally uses
the 2D pose to guide a feature extractor to extract crowded
scene-robust image features. Leveraging more information
in given input is natural, and leads to better accuracy.
CMU-Panoptic. Table 7 shows that our 3DCrowdNet sig-
nificantly outperforms previous 3D human pose and shape
estimation methods on CMU-Panoptic. The result demon-
strates that the proposed 3DCrowdNet can perform compet-
itively on crowded scenes with daily social activities. Note
that no data from CMU-Panoptic are used for training.
3DPW. Table 8 shows that 3DCrowdNet achieves state-of-
the art accuracy in general in-the-wild scenes. The result
validates that 3DCrowdNet is robust to diverse challenges
of in-the-wild scenes, although our method is designed to
target crowded scenes. The second row of Figure 5 supports
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3DCrowdNet(Ours) SPINinput image 3DCrowdNet(Ours) ROMPinput image

Figure 5. Qualitative comparison on a CrowdPose [21] test set with SPIN [19] and ROMP [45]. We highlighted their representative failure
cases with red circles. The order of 3D meshes is manually assigned.

input image 2D pose front view diff. view input image 2D pose front view diff. view

Figure 6. Visualization of a 3D mesh from different viewpoints. 3DCrowdNet effectively resolves the depth ambiguity using the cues of
2D pose input and image features.

method MPJPE↓ PA-MPJPE↓ MPVPE↓
HMR [17] 130 76.7 -

GraphCMR [20] - 70.2 -
SPIN [19] 96.9 59.2 116.4

I2L-MeshNet [31] 93.2 57.7 110.1
Pose2Mesh [6] 89.5 56.3 105.3
Song et al. [43] - 55.9 -
Fang et al. [7] 85.1 54.8 -

TUCH [34] 84.9 55.5 -
ROMP [45] 91.3 54.9 108.3

3DCrowdNet (Ours) 81.7 51.5 98.3

Table 8. Comparison on 3DPW [46] between 3DCrowdNet and
state-of-the-art methods of 3D human mesh estimation from a sin-
gle image. We compare methods that do not use 3DPW train set
during training for the fair comparison.

our statement, which shows 3DCrowdNet’s robustness to
truncation and occlusion in in-the-wild images.

We provide the qualitative comparison with SPIN [19]
and ROMP [45] in Figure 5. Apparently, 3DCrowdNet pro-
duces much more robust 3D meshes on in-the-wild crowded
scenes. SPIN predicts a swapped leg pose (top), fails to dis-
tinguish different people in the overlapping bounding boxes
(middle), and misses the right leg’s pose due to inter-person
occlusion (bottom). ROMP produces an inaccurate pose for
a person under occlusion with similar appearances (top),

misses a target whose body center (i.e. torso) is invisi-
ble (middle), and estimate an inaccurate global rotation of
a target due to occlusion by a nearby person with similar
appearance (bottom). Please also refer to more extensive
qualitative comparison with [6, 19, 31, 45] and failure cases
of 3DCrowdNet in the supplementary material.

5. Conclusion
We present 3DCrowdNet, the first single image-based

3D human mesh estimation system that explicitly targets
in-the-wild crowded scenes. It extracts crowded-scene ro-
bust image features of a target person, and effectively dis-
tinguishes the target from others. We guide a deep CNN
to pay attention to the target using a 2D pose, which is
robust to the domain gap between MoCap training data
and crowd testing data. The joint-based regressor pre-
serves the spatial activation of the target, and effectively
excludes non-target people’s image features. We show that
3DCrowdNet highly outperforms previous methods on in-
the-wild crowded scenes both quantitatively and qualita-
tively. 3DCrowdNet could be a baseline for future image-
based methods that target crowded scenes owing to the sim-
ple yet effective implementation.
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