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Figure 1. Existing work on 3D human reconstruction from a color image focuses mainly on pose. We present SHAPY, a model that
focuses on body shape and learns to predict dense 3D shape from a color image, using crowd-sourced linguistic shape attributes. Even
with this weak supervision, SHAPY outperforms the state of the art (SOTA) [52] on in-the-wild images with varied clothing.

Abstract
While methods that regress 3D human meshes from im-

ages have progressed rapidly, the estimated body shapes of-
ten do not capture the true human shape. This is problem-
atic since, for many applications, accurate body shape is as
important as pose. The key reason that body shape accuracy
lags pose accuracy is the lack of data. While humans can la-
bel 2D joints, and these constrain 3D pose, it is not so easy
to “label” 3D body shape. Since paired data with images
and 3D body shape are rare, we exploit two sources of infor-
mation: (1) we collect internet images of diverse “fashion”
models together with a small set of anthropometric mea-
surements; (2) we collect linguistic shape attributes for a
wide range of 3D body meshes and the model images. Taken
together, these datasets provide sufficient constraints to in-
fer dense 3D shape. We exploit the anthropometric mea-
surements and linguistic shape attributes in several novel
ways to train a neural network, called SHAPY, that re-
gresses 3D human pose and shape from an RGB image.

We evaluate SHAPY on public benchmarks, but note that
they either lack significant body shape variation, ground-
truth shape, or clothing variation. Thus, we collect a new
dataset for evaluating 3D human shape estimation, called
HBW, containing photos of “Human Bodies in the Wild”
for which we have ground-truth 3D body scans. On this
new benchmark, SHAPY significantly outperforms state-of-
the-art methods on the task of 3D body shape estimation.
This is the first demonstration that 3D body shape regres-
sion from images can be trained from easy-to-obtain an-
thropometric measurements and linguistic shape attributes.
Our model and data are available at: shapy.is.tue.mpg.de

1. Introduction

The field of 3D human pose and shape (HPS) estimation
is progressing rapidly and methods now regress accurate 3D
pose from a single image [7, 26, 28, 30–33, 43, 65, 67]. Un-

2718



fortunately, less attention has been paid to body shape and
many methods produce body shapes that clearly do not rep-
resent the person in the image (Fig. 1, top right). There are
several reasons behind this. Current evaluation datasets fo-
cus on pose and not shape. Training datasets of images with
3D ground-truth shape are lacking. Additionally, humans
appear in images wearing clothing that obscures the body,
making the problem challenging. Finally, the fundamental
scale ambiguity in 2D images, makes 3D shape difficult to
estimate. For many applications, however, realistic body
shape is critical. These include AR/VR, apparel design, vir-
tual try-on, and fitness. To democratize avatars, it is impor-
tant to represent and estimate all possible 3D body shapes;
we make a step in that direction.

Note that commercial solutions to this problem require
users to wear tight fitting clothing and capture multiple
images or a video sequence using constrained poses. In
contrast, we tackle the unconstrained problem of 3D body
shape estimation in the wild from a single RGB image of a
person in an arbitrary pose and standard clothing.

Most current approaches to HPS estimation learn to
regress a parametric 3D body model like SMPL [37] from
images using 2D joint locations as training data. Such joint
locations are easy for human annotators to label in images.
Supervising the training with joints, however, is not suffi-
cient to learn shape since an infinite number of body shapes
can share the same joints. For example, consider someone
who puts on weight. Their body shape changes but their
joints stay the same. Several recent methods employ addi-
tional 2D cues, such as the silhouette, to provide additional
shape cues [51,52]. Silhouettes, however, are influenced by
clothing and do not provide explicit 3D supervision. Syn-
thetic approaches [35], on the other hand, drape SMPL 3D
bodies in virtual clothing and render them in images. While
this provides ground-truth 3D shape, realistic synthesis of
clothed humans is challenging, resulting in a domain gap.

To address these issues, we present SHAPY, a new deep
neural network that accurately regresses 3D body shape and
pose from a single RGB image. To train SHAPY, we first
need to address the lack of paired training data with real im-
ages and ground-truth shape. Without access to such data,
we need alternatives that are easier to acquire, analogous to
2D joints used in pose estimation. To do so, we introduce
two novel datasets and corresponding training methods.

First, in lieu of full 3D body scans, we use images of peo-
ple with diverse body shapes for which we have anthropo-
metric measurements such as height as well as chest, waist,
and hip circumference. While many 3D human shapes can
share the same measurements, they do constrain the space
of possible shapes. Additionally, these are important mea-
surements for applications in clothing and health. Accurate
anthropometric measurements like these are difficult for in-
dividuals to take themselves but they are often captured for

Figure 2. Model-agency websites contain multiple images of mod-
els together with anthropometric measurements. A wide range of
body shapes are represented; example from pexels.com.

Figure 3. We crowd-source scores for linguistic body-shape
attributes [57] and compute anthropometric measurements for
CAESAR [47] body meshes. We also crowd-source linguistic
shape attribute scores for model images, like those in Fig. 2

different applications. Specifically, modeling agencies pro-
vide such information about their models; accuracy is a re-
quirement for modeling clothing. Thus, we collect a diverse
set of such model images (with varied ethnicity, clothing,
and body shape) with associated measurements; see Fig. 2.

Since sparse anthropometric measurements do not fully
constrain body shape, we exploit a novel approach and also
use linguistic shape attributes. Prior work has shown that
people can rate images of others according to shape at-
tributes such as “short/tall”, “long legs” or “pear shaped”
[57]; see Fig. 3. Using the average scores from several
raters, Streuber et al. [57] (BodyTalk) regress metrically ac-
curate 3D body shape. This approach gives us a way to eas-
ily label images of people and use these labels to constrain
3D shape. To our knowledge, this sort of linguistic shape
attribute data has not previously been exploited to train a
neural network to infer 3D body shape from images.

We exploit these new datasets to train SHAPY with three
novel losses, which can be exploited by any 3D human
body reconstruction method: (1) We define functions of the
SMPL body mesh that return a sparse set of anthropomet-
ric measurements. When measurements are available for an
image we use a loss that penalizes mesh measurements that
differ from the ground-truth (GT). (2) We learn a “Shape to
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Attribute” (S2A) function that maps 3D bodies to linguis-
tic attribute scores. During training, we map meshes to at-
tribute scores and penalize differences from the GT scores.
(3) We similarly learn a function that maps “Attributes to
Shape” (A2S). We then penalize body shape parameters
that deviate from the prediction.

We study each term in detail to arrive at the final method.
Evaluation is challenging because existing benchmarks with
GT shape either contain too few subjects [61] or have lim-
ited clothing complexity and only pseudo-GT shape [51].
We fill this gap with a new dataset, named “Human Bodies
in the Wild” (HBW), that contains a ground-truth 3D body
scan and several in-the-wild photos of 35 subjects, for a to-
tal of 2543 photos. Evaluation on this shows that SHAPY
estimates much more accurate 3D shape.
Models, data and code are available at shapy.is.tue.mpg.de.

2. Related Work
3D human pose and shape (HPS): Methods that re-

construct 3D human bodies from one or more RGB im-
ages can be split into two broad categories: (1) parametric
methods that predict parameters of a statistical 3D body
model, such as SCAPE [3], SMPL [37], SMPL-X [43],
Adam [26], GHUM [65], and (2) non-parametric methods
that predict a free-form representation of the human body
[24, 50, 59, 64]. Parametric approaches lack details w.r.t.

non-parametric ones, e.g., clothing or hair. However, para-
metric models disentangle the effects of identity and pose
on the overall shape. Therefore, their parameters provide
control for re-shaping and re-posing. Moreover, pose can
be factored out to bring meshes in a canonical pose; this is
important for evaluating estimates of an individual’s shape.
Finally, since topology is fixed, meshes can be compared
easily. For these reasons, we use a SMPL-X body model.

Parametric methods follow two main paradigms, and are
based on optimization or regression. Optimization-based
methods [5, 7, 16, 43] search for model configurations that
best explain image evidence, usually 2D landmarks [8],
subject to model priors that usually encourage parameters to
be close to the mean of the model space. Numerous meth-
ods penalize the discrepancy between the projected and
ground-truth silhouettes [22, 34] to estimate shape. How-
ever, this needs special care to handle clothing [4]; without
this, erroneous solutions emerge that “inflate” body shape to
explain the “clothed” silhouette. Regression-based meth-
ods [9, 14, 25, 27, 30, 33, 35, 40, 66] are currently based on
deep neural networks that directly regress model parameters
from image pixels. Their training sets are a mixture of data
captured in laboratory settings [23, 56], with model param-
eters estimated from MoCap markers [39], and in-the-wild
image collections, such as COCO [36], that contain 2D key-
point annotations. Optimization and regression can be com-
bined, for example via in-the-network model fitting [33,40].

Estimating 3D body shape: State-of-the-art methods
are effective for estimating 3D pose, but struggle with es-
timating body shape under clothing. There are several rea-
sons for this. First, 2D keypoints alone are not sufficient
to fully constrain 3D body shape. Second, shape priors ad-
dress the lack of constraints, but bias solutions towards “av-
erage” shapes [7,33,40,43]. Third, datasets with in-the-wild
images have noisy 3D bodies, recovered by fitting a model
to 2D keypoints [7, 43]. Fourth, datasets captured in labo-
ratory settings have a small number of subjects, who do not
represent the full spectrum of body shapes. Thus, there is
a scarcity of images with known, accurate, 3D body shape.
Existing methods deal with this in two ways.

First, rendering synthetic images is attractive since it
gives automatic and precise ground-truth annotation. This
involves shaping, posing, dressing and texturing a 3D body
model [20,51,53,60,62], then lighting it and rendering it in
a scene. Doing this realistically and with natural clothing is
expensive, hence, current datasets suffer from a domain gap.
Alternative methods use artist-curated 3D scans [42,49,50],
which are realistic but limited in variety.

Second, 2D shape cues for in-the-wild images, (body-
part segmentation masks [12,41,48], silhouettes [1,22,44])
are attractive, as these can be manually annotated or auto-
matically detected [15, 18]. However, fitting to such cues
often gives unrealistic body shapes, by inflating the body to
“explain” the clothing “baked” into silhouettes and masks.

Most related to our work is the work of Sengupta et al.
[51–53] who estimate body shape using a probabilistic
learning approach, trained on edge-filtered synthetic im-
ages. They evaluate on the SSP-3D dataset of real images
with pseudo-GT 3D bodies, estimated by fitting SMPL to
multiple video frames. SSP-3D is biased to people with
tight-fitting clothing. Their silhouette-based method works
well on SSP-3D but does not generalize to people in normal
clothing, tending to over-estimate body shape; see Fig. 1.

In contrast to previous work, SHAPY is trained with
in-the-wild images paired with linguistic shape attributes,
which are annotations that can be easily crowd-sourced for
weak shape supervision. We also go beyond SSP-3D to pro-
vide HBW, a new dataset with in-the-wild images, varied
clothing, and precise GT from 3D scans.

Shape, measurements and attributes: Body shapes
can be generated from anthropometric measurements [2,
54, 55]. Tsoli et al. [58] register a body model to multiple
high-resolution body scans to extract body measurements.
The “Virtual Caliper” [46] allows users to build metrically
accurate avatars of themselves using measurements or VR
game controllers. ViBE [21] collects images, measurements
(bust, waist, hip circumference, height) and the dress-size
of models from clothing websites to train a clothing rec-
ommendation network. We draw inspiration from these ap-
proaches for data collection and supervision.
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Figure 4. Shape representations and data collection. Our goal
is 3D body shape estimation from in-the-wild images. Collect-
ing data for direct supervision is difficult and does not scale. We
explore two alternatives. Linguistic Shape Attributes: We an-
notate attributes (“A”) for CAESAR meshes, for which we have
accurate shape (“S”) parameters, and learn the “A2S” and “S2A”
models, to map between these representations. Attribute annota-
tions for images can be easily crowd-sourced, making these scal-
able. Anthropometric Measurements: We collect images with
sparse body measurements from model-agency websites. A vir-
tual measurement module [46] computes the measurements from
3D meshes. Training: We combine these sources to learn a regres-
sor with weak supervision that infers 3D shape from an image.

Streuber et al. [57] learn BodyTalk, a model that gener-
ates 3D body shapes from linguistic attributes. For this, they
select attributes that describe human shape and ask annota-
tors to rate how much each attribute applies to a body. They
fit a linear model that maps attribute ratings to SMPL shape
parameters. Inspired by this, we collect attribute ratings for
CAESAR meshes [47] and in-the-wild data as proxy shape
supervision to train a HPS regressor. Unlike BodyTalk,
SHAPY automatically infers shape from images.

Anthropometry from images: Single-View metrology
[10] estimates the height of a person in an image, using
horizontal and vertical vanishing points and the height of
a reference object. Günel et al. [17] introduce the IMDB-
23K dataset by gathering publicly available celebrity im-
ages and their height information. Zhu et al. [68] use this
dataset to learn to predict the height of people in images.
Dey et al. [11] estimate the height of users in a photo collec-
tion by computing height differences between people in an
image, creating a graph that links people across photos, and
solving a maximum likelihood estimation problem. Bieler
et al. [6] use gravity as a prior to convert pixel measure-
ments extracted from a video to metric height. These meth-
ods do not address body shape.

3. Representations & Data for Body Shape
We use linguistic shape attributes and anthropometric

measurements as a connecting component between in-the-
wild images and ground-truth body shapes; see Fig. 4. To
that end, we annotate linguistic shape attributes for 3D
meshes and in-the-wild images, the latter from fashion-
model agencies, labeled via Amazon Mechanical Turk.

Figure 5. Histogram of height and chest/waist/hips circumference
for data from model-agency websites (Sec. 3.2) and CAESAR.
Model-agency data is diverse, yet not as much as CAESAR data.

3.1. SMPL-X Body Model

We use SMPL-X [43], a differentiable model that maps
shape, β, pose, θ, and expression, ψ, parameters to a 3D
mesh, M , with N = 10, 475 vertices, V . The shape vector
β ∈ RB (B ≤ 300) has coefficients of a low-dimensional
PCA space. The vertices are posed with linear blend skin-
ning with a learned rigged skeleton, X ∈ R55×3.

3.2. Model-Agency Images

Model agencies typically provide multiple color im-
ages of each model, in various poses, outfits, hairstyles,
scenes, and with a varying camera framing, together
with anthropometric measurements and clothing
size. We collect training data from multiple model-
agency websites, focusing on under-represented body
types, namely: curve-models.com, cocainemodels.com,
nemesismodels.com, jayjay-models.de, kultmodels.com,
modelwerk.de, models1.co.uk. showcast.de, the-models.de,
and ullamodels.com. In addition to photos, we store gender
and four anthropometric measurements, i.e. height, chest,
waist and hip circumference, when available. To avoid
having the same subject in both the training and test set, we
match model identities across websites to identify models
that work for several agencies. For details, see Sup. Mat.

After identity filtering, we have 94, 620 images of 4, 419
models along with their anthropometric measurements.
However, the distributions of these measurements, shown
in Fig. 5, reveal a bias for “fashion model” body shapes,
while other body types are under-represented in compari-
son to CAESAR [47]. To enhance diversity in body-shapes
and avoid strong biases and log tails, we compute the quan-
tized 2D-distribution for height and weight and sample up
to 3 models per bin. This results in N = 1, 185 models (714
females, 471 males) and 20, 635 images.

3.3. Linguistic Shape Attributes

Human body shape can be described by linguistic
shape attributes [19]. We draw inspiration from Streuber
et al. [57] who collect scores for 30 linguistic attributes for
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Male & Female Male only Female only
short long neck skinny arms pear shaped
big long legs average petite
tall long torso rectangular slim waist

muscular short arms delicate build large breasts
broad shoulders soft body skinny legs

masculine feminine

Table 1. Linguistic shape attributes for human bodies. Some at-
tributes apply to both genders, but others are gender specific.

256 3D body meshes, generated by sampling SMPL’s shape
space, to train a linear “attribute to shape” regressor. In con-
trast, we train a model that takes as input an image, instead
of attributes, and outputs an accurate 3D shape (and pose).

We crowd-source linguistic attribute scores for a variety
of body shapes, using images from the following sources:
Rendered CAESAR images: We use CAESAR [47] bod-
ies to learn mappings between linguistic shape attributes,
anthropometric measurements, and SMPL-X shape param-
eters, β. Specifically, we register a “gendered” SMPL-X
model with 100 shape components to 1, 700 male and 2, 102
female 3D scans, pose all meshes in an A-pose, and render
synthetic images with the same virtual camera.
Model-agency photos: Each annotator is shown 3 body im-
ages per subject, sampled from the image pool of Sec. 3.2.

Annotation: To keep annotation tractable, we use
A = 15 linguistic shape attributes per gender (subset of
BodyTalk’s [57] attributes); see Tab. 1. Each image is an-
notated by K = 15 annotators on Amazon Mechanical
Turk. Their task is to “indicate how strongly [they] agree
or disagree that the [listed] words describe the shape of the
[depicted] person’s body”; for an example, see Sup. Mat.
Annotations range on a discrete 5-level Likert scale from 1
(strongly disagree) to 5 (strongly agree). We get a rating
matrix A ∈ {1, 2, 3, 4, 5}N×A×K , where N is the number
of subjects. In the following, aijk denotes an element of A.

4. Mapping Shape Representations
In Sec. 3 we introduce three body-shape representations:

(1) SMPL-X’s PCA shape space (Sec. 3.1), (2) anthropo-
metric measurements (Sec. 3.2), and (3) linguistic shape at-
tribute scores (Sec. 3.3). Here we learn mappings between
these, so that in Sec. 5 we can define new losses for training
body shape regressors using multiple data sources.

4.1. Virtual Measurements (VM)

We obtain anthropometric measurements from a 3D
body mesh in a T-pose, namely height, H(β), weight,
W (β), and chest, waist and hip circumferences, Cc(β),
Cw(β), and Ch(β), respectively, by following Wuhrer
et al. [63] and the “Virtual Caliper” [46]. For details on
how we compute these measurements, see Sup. Mat.

4.2. Attributes and 3D Shape

Attributes to Shape (A2S): We predict SMPL-X shape
coefficients from linguistic attribute scores with a second-
degree polynomial regression model. For each shape βi,
i = 1 . . . N , we create a feature vector, xA2S

i , by averaging
for each of the A attributes the corresponding K scores:

xA2S
i = [āi,1, . . . , āi,A], āi,j =

1

K

K∑
k=1

aijk, (1)

where i is the shape index (list of “fashion” or CAESAR
bodies), j is the attribute index, and k the annotation index.
We then define the full feature matrix for all N shapes as:

XA2S = [ϕ(xA2S
1 ), . . . , ϕ(xA2S

N )]⊤, (2)

where ϕ(xA2S
i ) maps xi to 2nd order polynomial features.

The target matrix Y = [β1, . . . ,βN ]⊤ contains the shape
parameters βi = [βi,1, . . . ,βi,B ]

⊤. We compute the poly-
nomial model’s coefficientsW via least-squares fitting:

Y = XW + ϵ. (3)

Empirically, the polynomial model performs better than
several models that we evaluated; for details, see Sup. Mat.

Shape to Attributes (S2A): We predict linguistic at-
tribute scores, A, from SMPL-X shape parameters, β.
Again, we fit a second-degree polynomial regression model.
S2A has “swapped” inputs and outputs w.r.t. A2S:

xS2A
i = [βi,1, . . . ,βi,B ], (4)

yi = [āi,1, . . . , āi,A]
⊤. (5)

Attributes & Measurements to Shape (AHWC2S):
Given a sparse set of anthropometric measurements, we pre-
dict SMPL-X shape parameters, β. The input vector is:

xHWC2S
i = [hi, wi, cci , cwi , chi ], (6)

where cc, cw, ch is the chest, waist, and hip circumfer-
ence, respectively, h and w are the height and weight, and
HWC2S means Height + Weight + Circumference to Shape.
The regression target is the SMPL-X shape parameters, yi.

When both Attributes and measurements are available,
we combine them for the AHWC2S model with input:

xAHWC2S
i = [āi,1, . . . , āi,A, hi, wi, cci , cwi

, chi
]. (7)

In practice, depending on which measurements are avail-
able, we train and use different regressors. Following the
naming convention of AHWC2S, these models are: AH2S,
AHW2S, AC2S, and AHC2S, as well as their equivalents
without attribute input H2S, HW2S, C2S, and HC2S. For an
evaluation of the contribution of linguistic shape attributes
on top of each anthropometric measurement, see Sup. Mat.

Training Data: To train the A2S and S2A mappings we
use CAESAR data, for which we have SMPL-X shape pa-
rameters, anthropometric measurements, and linguistic at-
tribute scores. We train separate gender-specific models.
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Figure 6. SHAPY first estimates shape, β̂, and pose, θ̂. Shape is
used by: (1) our virtual anthropometric measurement (VM) mod-
ule to compute height, Ĥ , and circumferences, Ĉ, and (2) our
S2A module to infer linguistic attribute scores, Â. There are sev-
eral SHAPY variations, e.g., SHAPY-H uses only VM to infer Ĥ ,
while SHAPY-HA uses VM to infer Ĥ and S2A to infer Â.

5. 3D Shape Regression from an Image
We present SHAPY, a network that predicts SMPL-X

parameters from an RGB image with more accurate body
shape than existing methods. To improve the realism and
accuracy of shape, we explore training losses based on
all shape representations discussed above, i.e., SMPL-X
meshes (Sec. 3.1), linguistic attribute scores (Sec. 3.3) and
anthropometric measurements (Sec. 4.1). In the following,
symbols with/-out a hat are regressed/ground-truth values.

We convert shape β̂ to height and circumferences values
{Ĥ, Ĉc, Ĉw, Ĉh} = {H(β̂), Cc(β̂), Cw(β̂), Ch(β̂)}, by ap-
plying our virtual measurement tool (Sec. 4.1) to the mesh
M(β̂) in the canonical T-pose. We also convert shape β̂ to
linguistic attribute scores, with Â = S2A(β̂).

We train various SHAPY versions with the following
“SHAPY losses”, using either linguistic shape attributes, or
anthropometric measurements, or both:

Lattr = ||A− Â||22, (8)

Lheight = ||H − Ĥ||22, (9)

Lcirc =
∑

i∈{c,w,h}
||Ci − Ĉi||22 (10)

These are optionally added to a base loss, Lbase, defined
below in “training details”. The architecture of SHAPY,
with all optional components, is shown in Fig. 6. A suffix
of color-coded letters describes which of the above losses
are used when training a model. For example, SHAPY-AH
denotes a model trained with the attribute and height losses,
i.e.: LSHAPY-AH2S = Lbase + Lattr + Lheight.
Training Details: We initialize SHAPY with the
ExPose [9] network weights and use curated fits [9], H3.6M
[23], the SPIN [33] training data, and our model-agency
dataset (Sec. 3.2) for training. In each batch, 50% of the
images are sampled from the model-agency images, for
which we ensure a gender balance. The “SHAPY losses”
of Eqs. (8) to (10) are applied only on the model-agency
images. We use these on top of a standard base loss:

Lbase = Lpose + Lshape, (11)

where L2D
joints and L3D

joints are 2D and 3D joint losses:

Lpose = L2D
joints + L3D

joints + Lθ, (12)

Lshape = Lβ + Lprior
β , (13)

Lθ and Lβ are losses on pose and shape parameters, and
Lprior
β is PIXIE’s [13] “gendered” shape prior. All losses

are L2, unless otherwise explicitly specified. Losses on
SMPL-X parameters are applied only on the pose data
[9, 23, 33]. For more implementation details, see Sup. Mat.

6. Experiments
6.1. Evaluation Datasets

3D Poses in the Wild (3DPW) [61]: We use this to evaluate
pose accuracy. This is widely used, but has only 5 test sub-
jects, i.e., limited shape variation. For results, see Sup. Mat.
Sports Shape and Pose 3D (SSP-3D) [51]: We use this
to evaluate 3D body shape accuracy from images. It has
62 tightly-clothed subjects in 311 in-the-wild images from
Sports-1M [29], with pseudo ground-truth SMPL meshes
that we convert to SMPL-X for evaluation.
Model Measurements Test Set (MMTS): We use this to
evaluate anthropometric measurement accuracy, as a proxy
for body shape accuracy. To create MMTS, we withhold
2699/1514 images of 143/95 female/male identities from
our model-agency data, described in Sec. 3.2
CAESAR Meshes Test Set (CMTS): We use CAESAR to
measure the accuracy of SMPL-X body shapes and linguis-
tic shape attributes for the models of Sec. 4. Specifically,
we compute: (1) errors for SMPL-X meshes estimated from
linguistic shape attributes and/or anthropometric measure-
ments by A2S and its variations, and (2) errors for linguistic
shape attributes estimated from SMPL-X meshes by S2A.
To create an unseen mesh test set, we withhold 339 male
and 410 female CAESAR meshes from the crowd-sourced
CAESAR linguistic shape attributes, described in Sec. 3.3.
Human Bodies in the Wild (HBW): The field is
missing a dataset with varied bodies, varied clothing,
in-the-wild images, and accurate 3D shape ground truth.
We fill this gap by collecting a novel dataset, called
“Human Bodies in the Wild” (HBW), with three steps:
(1) We collect accurate 3D body scans for 35 subjects (20
female, 15 male), and register a “gendered” SMPL-X model
to these to recover 3D SMPL-X ground-truth bodies [45].
(2) We take photos of each subject in “photo-lab” settings,
i.e., in front of a white background with controlled light-
ing, and in various everyday outfits and “fashion” poses.
(3) Subjects upload full-body photos of themselves taken in
the wild. For each subject we take up to 111 photos in lab
settings, and collect up to 126 in-the-wild photos. In total,
HBW has 2543 photos, 1,318 in the lab setting and 1,225
in the wild. We split the data into a validation and a test
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Figure 7. “Human Bodies in the Wild” (HBW) color images, taken
in the lab and in the wild, and the SMPL-X ground-truth shape.

set (val/test) with 10/25 subjects (6/14 female 4/11 male)
and 781/1,762 images (432/983 female 349/779 male), re-
spectively. Figure 7 shows a few HBW subjects, photos and
their SMPL-X ground-truth shapes. All subjects gave prior
written informed consent to participate in this study and to
release the data. The study was reviewed by the ethics board
of the University of Tübingen, without objections.

6.2. Evaluation Metrics

We use standard accuracy metrics for 3D body pose, but
also introduce metrics specific to 3D body shape.
Anthropometric Measurements: We report the mean ab-
solute error in mm between ground-truth and estimated
measurements, computed as described in Sec. 4.1. When
weight is available, we report the mean absolute error in kg.
MPJPE and V2V metrics: We report in Sup. Mat. the
mean per-joint point error (MPJPE) and mean vertex-to-
vertex error (V2V), when SMPL-X meshes are available.
The prefix “PA” denotes metrics after Procrustes alignment.
Mean point-to-point error (P2P20K): SMPL-X has
a highly non-uniform vertex distribution across the
body, which negatively biases the mean vertex-to-vertex
(V2V) error, when comparing estimated and ground-truth
SMPL-X meshes. To account for this, we evenly sam-
ple 20K points on SMPL-X’s surface, and report the mean
point-to-point (P2P20K) error. For details, see Sup. Mat.

6.3. Shape-Representation Mappings

We evaluate the models A2S and S2A, which map be-
tween the various body shape representations (Sec. 4).
A2S and its variations: How well can we infer 3D body
shape from just linguistic shape attributes, anthropometric
measurements, or both of these together? In Tab. 2, we
report reconstruction and measurement errors using many
combinations of attributes (A), height (H), weight (W), and
circumferences (C). Evaluation on CMTS data shows that
attributes improve the overall shape prediction across the
board. For example, height+attributes (AH2S) has a lower
point-to-point error than height alone. The best perform-
ing model, AHWC, uses everything, with P2P20K-errors of
5.8± 2.0 mm (males) and 6.2± 2.4 mm (females).

Method P2P20K Height Weight Chest Waist Hips
- (mm) (mm) (kg) (mm) (mm) (mm)

M
al

e
su

bj
ec

ts

A2S 11.1 ± 5.2 29 ± 21 5 ± 4 30 ± 22 32 ± 24 28 ± 21

H2S 12.1 ± 6.1 5 ± 4 11 ± 11 81 ± 66 102 ± 87 40 ± 33

AH2S 6.8 ± 2.3 4 ± 3 3 ± 3 27 ± 21 29 ± 23 24 ± 18

HW2S 8.1 ± 2.7 5 ± 4 1 ± 1 24 ± 17 26 ± 20 21 ± 18

AHW2S 6.3 ± 2.1 4 ± 3 1 ± 1 19 ± 15 19 ± 14 20 ± 16

C2S 19.7 ± 11.1 59 ± 47 9 ± 8 55 ± 41 63 ± 49 37 ± 28

AC2S 9.6 ± 4.4 25 ± 19 3 ± 3 23 ± 19 21 ± 17 18 ± 14

HC2S 7.7 ± 2.6 5 ± 4 2 ± 2 28 ± 23 18 ± 15 13 ± 11

AHC2S 6.0 ± 2.0 4 ± 3 2 ± 2 21 ± 17 17 ± 14 13 ± 10

HWC2S 7.3 ± 2.6 5 ± 4 1 ± 1 20 ± 15 14 ± 12 13 ± 11

AHWC2S 5.8 ± 2.0 4 ± 3 1 ± 1 16 ± 13 13 ± 10 13 ± 10

Table 2. Results of A2S variants on CMTS for male subjects, using
the male SMPL-X model. For females, see Sup. Mat.

Method Model Height Chest Waist Hips P2P20K

SMPLR [38] SMPL 182 267 309 305 69
STRAPS [51] SMPL 135 167 145 102 47
SPIN [33] SMPL 59 92 78 101 29
TUCH [40] SMPL 58 89 75 57 26
Sengupta et al. [52] SMPL 82 133 107 63 32
ExPose [9] SMPL-X 85 99 92 94 35
SHAPY (ours) SMPL-X 51 65 69 57 21

Table 3. Evaluation on the HBW test set in mm. We compute the
measurement and point-to-point (P2P20K) error between predicted
and ground-truth SMPL-X meshes.

S2A: How well can we infer linguistic shape attributes from
3D shape? S2A’s accuracy on inferring the attribute Likert
score is 75%/69% for males/females; details in Sup. Mat.

6.4. 3D Shape from an Image

We evaluate all of our model’s variations (see Sec. 5)
on the HBW validation set and find, perhaps surprisingly,
that SHAPY-A outperforms other variants. We refer to
this below (and Fig. 1) simply as “SHAPY” and report
its performance in Tab. 3 for HBW, Tab. 4 for MMTS,
and Tab. 5 for SSP-3D. For images with natural and var-
ied clothing (HBW, MMTS), SHAPY significantly outper-
forms all other methods (Tabs. 3 and 4) using only weak
3D shape supervision (Attributes). On these images, Sen-
gupta et al.’s method [52] struggles with the natural cloth-
ing. In contrast, their method is more accurate than SHAPY
on SSP-3D (Tab. 5), which has tight “sports” clothing, in
terms of PVE-T-SC, a scale-normalized metric used on this
dataset. These results show that silhouettes are good for
tight/minimal clothing and that SHAPY struggles with high
BMI shapes due to the lack of such shapes in our training
data; see Fig. 5. Note that, as HBW has true ground-truth
3D shape, it does not need SSP-3D’s scaling for evaluation.

A key observation is that training with linguistic shape
attributes alone is sufficient, i.e., without anthropometric
measurements. Importantly, this opens up the possibility
for significantly larger data collections. For a study of how
different measurements or attributes impact accuracy, see
Sup. Mat. Figure 8 shows SHAPY’s qualitative results.

2724



Figure 8. Qualitative results from HBW. From left to right: RGB, ground-truth shape, SHAPY and Sengupta et al. [52]. For example, in
the upper- and lower- right images, SHAPY is less affected by pose variation and loose clothing.

Mean absolute error (mm) ↓
Method Model Height Chest Waist Hips

Sengupta et al. [52] SMPL 84 186 263 142
TUCH [40] SMPL 82 92 129 91
SPIN [33] SMPL 72 91 129 101
STRAPS [51] SMPL 207 278 326 145
ExPose [9] SMPL-X 107 107 136 92
SHAPY (ours) SMPL-X 71 64 98 74

Table 4. Evaluation on MMTS. We report the mean absolute error
between ground-truth and estimated measurements.

7. Conclusion

SHAPY is trained to regress more accurate human body
shape from images than previous methods, without explicit
3D shape supervision. To achieve this, we present two dif-
ferent ways to collect proxy annotations for 3D body shape
for in-the-wild images. First, we collect sparse anthropo-
metric measurements from online model-agency data. Sec-
ond, we annotate images with linguistic shape attributes
using crowd-sourcing. We learn mappings between body
shape, measurements, and attributes, enabling us to super-
vise a regressor using any combination of these. To evaluate
SHAPY, we introduce a new shape estimation benchmark,
the “Human Bodies in the Wild” (HBW) dataset. HBW
has images of people in natural clothing and natural settings
together with ground-truth 3D shape from a body scanner.
HBW is more challenging than existing shape benchmarks
like SSP-3D, and SHAPY significantly outperforms exist-
ing methods on this benchmark. We believe this work will
open new directions, since the idea of leveraging linguistic
annotations to improve 3D shape has many applications.

Method Model PVE-T-SC mIOU

HMR [27] SMPL 22.9 0.69
SPIN [33] SMPL 22.2 0.70
STRAPS [51] SMPL 15.9 0.80
Sengupta et al. [52] SMPL 13.6 -
SHAPY (ours) SMPL-X 19.2 -

Table 5. Evaluation on the SSP-3D test set [51]. We report the
scaled mean vertex-to-vertex error in T-pose [51], and mIOU.

Limitations: Our model-agency training dataset (Sec. 3.2)
is not representative of the entire human population and this
limits SHAPY’s ability to predict larger body shapes. To
address this, we need to find images of more diverse bodies
together with anthropometric measurements and linguistic
shape attributes describing them.

Social impact: Knowing the 3D shape of a person has ad-
vantages, for example, in the clothing industry to avoid un-
necessary returns. If used without consent, 3D shape esti-
mation may invade individuals’ privacy. As with all other
3D pose and shape estimation methods, surveillance and
deep-fake creation is another important risk. Consequently,
SHAPY’s license prohibits such uses.
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