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3 Department of Mechanical Engineering, KAIST
Can - grasp 11- seq 3 / GT 11

Can - grasp 15- seq 2

Mustard - grasp 0 - sequence 3

1

2

3

4

1
2

3

4

Mustard - grasp 5 - sequence 11

1
2

3

4

Mustard - grasp 5 - sequence 11

Im
ag

e-
ba

se
d 

es
tim

at
es

M
oC

ap
 in

pu
t

1

2

3 4

1

2

3

4

1

2
3

4

Figure 1. Dynamic Grasp Synthesis: Our method learns diverse grasps from static grasp labels (shown in insets), originating from existing
datasets, grasp synthesis or image-based estimates. Our approach can then synthesize diverse dynamic sequences with the objects in-hand.
We decompose the task into: stable grasping 1 - 2 , followed by the synthesis of a 3D global motion to move the object into a 6D target
pose 3 - 4 . The hand-pose is continuously adjusted to ensure a stable grasp, leading to physically plausible and human-like sequences.

Abstract

We introduce the dynamic grasp synthesis task: given an
object with a known 6D pose and a grasp reference, our
goal is to generate motions that move the object to a target
6D pose. This is challenging, because it requires reasoning
about the complex articulation of the human hand and the
intricate physical interaction with the object. We propose a
novel method that frames this problem in the reinforcement
learning framework and leverages a physics simulation,
both to learn and to evaluate such dynamic interactions.
A hierarchical approach decomposes the task into low-level
grasping and high-level motion synthesis. It can be used
to generate novel hand sequences that approach, grasp,
and move an object to a desired location, while retaining
human-likeness. We show that our approach leads to stable
grasps and generates a wide range of motions. Further-
more, even imperfect labels can be corrected by our method
to generate dynamic interaction sequences. Video and code
are available at: https://eth-ait.github.io/d-grasp/.

1. Introduction
A key problem in computer vision is to understand how

humans interact with their surroundings. Because hands
are our primary means of manipulation with the physical
world, there has been an intense interest in hand-object pose
estimation [5, 13–15, 19, 38, 39] and the synthesis of static
grasps for a given object [19, 21, 24, 38]. However, human
grasping is not limited to a single time instance, but involves
a continuous interaction with objects in order to move them.
It requires maintaining a stable grasp throughout the inter-
action, introducing intricate dynamics to the task. This in-
volves reasoning about the complex physical interactions
between the dexterous hand and the manipulated object,
including collisions, friction, and dynamics. A generative
model that can synthesize realistic and physically plausi-
ble object manipulation sequences would have many down-
stream applications in AR/VR, robotics and HCI.
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We propose the new task of dynamic grasp synthesis.
Given an object with a known 6D pose and a static grasp
reference, our goal is to generate a grasping motion and
to move the object to a target 6D pose in a natural and
physically-plausible way. This new setting adds several
challenges. First, the object geometry and the spatial con-
figuration of the object and the hand need to be considered
in continuous interaction. Second, contacts between the
hand and object are crucial in maintaining stability of the
grasps, where even a small error in hand pose may lead to
an object slipping. Moreover, contact is typically unobserv-
able in images [10] and measuring the stability of a grasp is
very challenging in a static setting. Finally, synthesizing se-
quences of hand motion requires the generation of smooth
and plausible trajectories. While prior work investigates the
control of dexterous hands by learning from full demonstra-
tion trajectories [11, 32], we address the generation of hand
motion from only a single-frame grasp reference. This is a
more challenging setting, because the generation of human-
like hand-object interaction trajectories without dense su-
pervision is not straightforward.

Taking a step towards this goal, we propose D-Grasp,
which generates physically plausible grasping motions with
only a single grasp reference as input (Fig. 1). Concretely,
we formulate the dynamic grasp synthesis task as a re-
inforcement learning (RL) problem and propose a policy
learning approach that leverages a physics simulation. Our
RL-based approach considers the underlying physical phe-
nomena and compensates data scarcity via exploration in
the physics simulation. This ensures physical plausibility,
e.g., there is no hand-object interpenetration and the fingers
exert enough force on the object to hold it without slipping.

Specifically, we introduce a hierarchical framework that
consists of a low-level grasping policy and a high-level mo-
tion synthesis module. The grasping policy’s purpose is
to establish and maintain a stable grasp, whereas the mo-
tion synthesis module generates a motion to move the ob-
ject to a user-specified target position. To guide the low-
level grasping policy, we require a single grasp label corre-
sponding to a static hand pose, which can be obtained either
from a hand-grasping dataset [5,13], a state-of-the-art grasp
synthesis method [19] or via an image-based pose estima-
tor [12]. Crucially, we propose a reward function that is
parameterized by the grasp label to incentivize the fingers
to reach contact points on the object, leading to human-like
grasps. Our high-level motion synthesis module generates
motions that move the hand and object to the final target
pose. Importantly, the low-level policy continually controls
the grasp to not drop the object.

In our experiments, we first demonstrate that samples
from motion capture, static grasp synthesis or image-based
pose estimates often do not lead to stable grasps when eval-
uated in a physics simulation (Fig. 4). We then present how

our method can learn to produce physically plausible and
stable grasps when guided by such labels. Next, we set out
to generate motions with the object in-hand to reach a wide
range of target poses. We provide an extensive ablation, re-
vealing the importance of the hierarchical approach and the
reward formulation for dynamic grasp synthesis.

Our contributions can be summarized as follows: i) We
introduce the new task of dynamic grasp synthesis. ii)
We propose D-Grasp, an RL-based method to synthesize
physically-plausible and natural hand-object interactions.
iii) We show that our method can generate grasp motions
with static grasp references, which can originate from mo-
tion capture, static grasp synthesis or image-based pose es-
timation . We will release our code for research purposes.

2. Related Work
Human Grasp Prediction Recently, hand-object inter-

action has received much research attention. This growth is
accelerated by the introduction of datasets that contain both
hand and object annotations [1, 2, 5, 8, 13, 23, 38]. Leverag-
ing this data, a large number of methods attempt to estimate
grasp parameters, such as the hand and object pose, directly
from RGB images [4, 9, 14, 15, 22, 25, 39, 40]. Some pre-
dict the mesh of the hand and the object directly [15], or
assume a known object and predict its 6DoF in addition to
the hand [4, 14, 25, 40]. Others predict 3D keypoints and
6 DoF pose of the object [9, 39] or produce an implicit
surface representation of the grasping hands [22]. To im-
prove the prediction accuracy of the grasp, many of these
works incorporate additional contact losses [15, 22] or pro-
pose a contact-aware refinement step [4, 40]. More directly
related are methods that attempt to generate static grasps
given an object and sometimes also information about the
hand [1, 2, 19, 21, 22, 38, 44]. Generally, these approaches
either predict a contact map on the object [1, 2, 19] or syn-
thesize the joint-angle configuration of the grasping hand
[21, 22, 38, 44]. [19] propose a hybrid method, where pre-
dicted contact maps on objects are used to refine an initial
grasp prediction. Some methods have combined these two
directions, for example by leveraging contact information to
post-process noisy hand pose predictions [12]. [43] generate
local grasp motions, given the global motion of the hand and
object. Similarly, [41] synthesize hand grasps given full-
body and object motions. In summary, all of these works
focus on generating static grasps and are purely data-driven.
In our work, however, we take into consideration the dy-
namic nature of human-object interaction and consider the
physical plausibility of dynamic grasp-based hand-object
interactions by leveraging a physics-driven simulation.

Dexterous Hand Control Different approaches have
been used for controlling dexterous hands. Learning-based
methods most often resort to an anchored hand for in-hand
manipulation tasks [6,17, 30], which removes the complex-
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Figure 2. Method Overview: Taking a single, static grasp label D and a target object 6D pose Tg as input (leftmost), D-Grasp produces
sequences of dynamic hand-object interactions (rightmost). To do so, we propose a hierarchical framework that consists of a low-level
grasping policy πg(·) and a high-level motion synthesis module. In the grasping phase, only the grasping policy is active and finds a stable
grasp on the object. In the subsequent motion synthesis phase, both the grasping policy and the motion synthesis module act concurrently.
The actions a consist of joint targets. These are combined and passed to a PD-controller that computes the required torques τ to control a
MANO-based hand model in a physics simulation. The physics simulation updates the state s which serves as input to a reward formulation
(Section 3.2.2) that forms our supervision signal and incentivizes the hand to approach and grasp the object and to move it to the target
6D pose. We introduce two feature extraction layers (φ(·) an ψ(·)) that utilize the environment state s and grasp label D to find a suitable
representation for the grasping policy and the motion synthesis module.

ity of generating collision-free trajectories, or rely on ex-
pert demonstrations [7, 11, 16, 31, 32], which can be costly
to obtain. [32] collect expert trajectories via teleoperation,
which they leverage in an RL setup to learn complex manip-
ulation tasks. [11] obtain noisy expert demonstrations from
videos and use residual RL to correct the inputs for hand-
object interaction tasks. In contrast, we only require a sin-
gle frame grasp label per sequence. Similar to our work, [7]
use a parameterized reward function from single data labels
for human-robot interactions, but assume a fixed hand to
interact with. [20] propose a modular human manipulation
framework, but focus on learning power-grasps for picking
up objects. [28] intrinsically motivate a policy to grasp in
the affordance region of objects. However, since the policy
is only incentivized to grasp in a certain region, the fingers
often end up in unnatural configurations. In their follow-up
work [27], the authors address this issue by formulating a
reward based on hand-object interaction videos. However,
the focus is on a single ”consensus” grasp reference per ob-
ject. In our work, we propose a method that learns natural
object interactions and generates a wider variety of grasps
by explicitly conditioning on the desired contact points and
hand pose.

Physics-aware Inference Several recent works have in-
troduced physical awareness to improve purely data-driven
approaches [10,26,29,33,36,37,42]. [29] use a physics sim-
ulation to validate the plausibility of a generative model for
objects via a stability measure. [10] learn to reason about
contacts and forces in hand-object interaction videos by
leveraging a physics simulation for supervision. To improve

the task of human-pose reconstruction from videos, dif-
ferent methods have added physics-based modules to cor-
rect the output of a human-pose estimation model. This
is achieved either in a post-processing optimization frame-
work [33,37], with an approxmation of physics [36], or via a
reinforcement learning policy that directly corrects the pose
estimate [42]. [26] regulate a data-driven policy for ego-
centric pose estimation with a physics-based policy. They
include full-body interactions with larger objects, such as
pushing a box. In contrast to these works, we introduce
the novel task of dynamic hand-object interactions, which
involves more fine-grained control of the dexterous human
hand and has to adhere to the dynamics and displacement
of the object of interest. The task also introduces additional
complexities due to the increased amount of collision detec-
tion queries required for accurately modeling the contacts.
To the best of our knowledge, ours is the first method that
studies this task and constitutes an important first step into
an important direction for human-object interaction.

3. Method

We propose D-Grasp, an RL-based approach that lever-
ages a physics simulation for the dynamic grasp synthe-
sis task (Fig. 2). Our model requires a static grasp label con-
sisting of the hand’s 6D global pose and local pose for the
fingers. We split the task into two distinct phases, namely
a grasping and a motion synthesis phase. In the grasp-
ing phase, the hand needs to approach an object and find a
physically-plausible and stable grasp. In the motion synthe-
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sis phase, the hand has to bring the object into the 6D target
pose while the grasping policy retains a stable grasp on the
object. Therefore, the grasping policy and motion synthe-
sis module act concurrently in this phase. To this end, we
follow a hierarchical framework that functionally separates
the grasping from the motion synthesis.

In the next section, we define the task setting and provide
background on RL and the physics simulation. Thereafter,
we present both the grasping and motion synthesis phases
of our method in Sections 3.2 and 3.3, respectively.

3.1. Task Setting

In the dynamic grasp synthesis task, we are given a 6D
global pose Th and 3D local pose qh of a hand, and an
object pose To, where the 6D poses consist of a rotation and
translation component T = [q|t]. Given a label of a static
grasp D = (qh,Th,To), the goal is to grasp the object and
move it into a 6D goal pose Tg . The grasp label consists of
the 6D global pose of the hand Th and object To, as well
as the target hand pose qh at the instance of the static grasp.

Simulation Setup To approximate a human-like hand in
the physics engine, we create a controllable hand model and
integrate information obtained from a statistical parametric
hand model (i.e., MANO [34]). We extract the skeleton of
the hand to get the relative joint positions and add joint ac-
tuators for the control of the hand. Finally, we restrict the
joints to be within reasonable limits. In our implementation,
we use a unified hand model corresponding to the mean
MANO shape. Objects are modeled via meshes from the
respective datasets [5, 13]. To further speed up the physics
simulation, we approximate simple objects with primitive
shapes via mesh alignment during training (e.g., a soup can
is approximated by a cylinder). For more complex shapes,
we use mesh decimation to reduce the number of vertices.
For further details, please refer to supp. material.

Reinforcement Learning We follow the standard formu-
lation of a Markov Decision Process (MDP). The MDP
is defined as a tuple M = {S,A, ,R, γ, T , ρ0, }, where
S and A are state and action spaces, respectively. R :
S × A → R is the reward function, γ ∈ [0, 1] a dis-
count factor, T : S × A → S the deterministic transi-
tion function of the environment and ρ0 = p(s0) the ini-
tial state distribution. We aim to find a probabilistic pol-
icy π(at|st) with at ∈ A and st ∈ S, maximizing the
expected return Eat∼π(·|st),s0∼ρ0

[∑T
i=0 γ

iR(st,at)
]

with
st+1 = T (st,at) at each timestep t.

State Space The state s = (qh, q̇h, f ,Th, Ṫh,To, Ṫo)
entails proprioceptive information about the hand pose in
the form of joint angles qh and joint angular velocities q̇h,

the forces between the hand and object f , the 6D pose of
the wrist Th and the global 6D pose of the object To with
their corresponding velocities Ṫh and Ṫo. States are ex-
pressed with respect to a fixed global coordinate frame. We
show experimentally that learning from the full state space
can impede learning over several different grasp labels (Sec-
tion 4.5). We therefore propose a representation that enables
learning of the task in Section 3.2.1.

Action Space We define an action space to control the
hand in the physics simulation. The fingers are controlled
via one actuator per joint for a total of 45 actuators, to which
we add 6 DoF to control the global pose. We employ PD-
controllers that take reference joint angles qref as input and
compute the torques that should be applied to the joints:

τ = kp(qref − q) + kdq̇ (1)
qref = qb + a. (2)

The policy π outputs actions a, which are residual actions
that change a bias term qb. For the finger joints, the bias
term is equivalent to the current joint configuration qb =
qh. We found this formulation to lead to smoother finger
motion and therefore more stable grasps compared to the
policy directly predicting qref. Note that for simplicity’s
sake, we use the notation qb for all joints, although the first
three DoF are translational joints.

3.2. Physically Plausible Grasping

Here we discuss the grasping phase. The goal is to
approach an object and find a physically plausible grasp.
A careful design of the model’s input representation is
key to learning a successful model for hand-object inter-
actions [43], which we show in our ablations (Section 4.5).
Therefore, we introduce a feature extraction layer that con-
verts the information from the physics simulation and grasp
label into a suitable representation for model learning.

3.2.1 Feature Extraction for Grasping

Rather than directly conditioning the policy on the state, we
apply a feature extraction layer φ(s,D) that takes the state
and grasp label as input. For consistency, we can reformu-
late the policy as πg(a|φ(s,D)) (Fig. 2). The function φ(·)
processes information from the grasp label, and applies co-
ordinate frame transformations to achieve invariance w.r.t.
global coordinates by transforming it to object-relative co-
ordinates. To this end, the feature extraction layer receives
the state s = (qh, q̇h, f ,Th, Ṫh,To, Ṫo) and grasp label
D = (qh,Th,To) as input. Its output is defined as:

φ(s,D) = (qh, q̇h, f , T̃h, T̃o,
˙̃
To,

˙̃
Th, x̃o, x̃z,G). (3)

The terms qh and q̇h are the local joint angles and veloc-
ities, whereas f represents contact force information. The
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remaining components are expressed in the wrist’s refer-
ence frame (denoted by ·̃ ): the object’s 6D pose T̃o and

its linear and angular velocities ˙̃
To, the hand’s 6D pose T̃h

(relative to the initial wrist pose) and its linear and angular

velocity ˙̃
Th, and the displacement of the object from its ini-

tial position x̃o. Furthermore, x̃z introduces awareness of
the vertical distance to the surface where the object rests.
Lastly, we include the goal components G = [g̃x|g̃q|gc],
which incentivize the model to reach contact points on the
object. We show that these goal components are crucial for
achieving stable grasps in Section 4.5. More specifically,
the term g̃x measures the 3D distance between the current
and the target 3D positions (Fig. 3), x and x, respectively.
Here, all joints and the fingertips are in the wrist’s coordi-
nate frame. Importantly, we compute object-relative target
positions from the label D in order to be invariant to the
object 6D pose during the grasping phase.

The term g̃q represents the angular distance between the
current rotations qh and target rotations qh for the joints
and the wrist. Finally, gc includes the target contact vector
gc, i.e., which finger joints should be in contact with the ob-
ject. A more detailed description about how we extract tar-
get contacts, the applied reference frame conversions, and
the coordinate representation for individual components of
the state or goal space is provided in supp. material.

3.2.2 Reward Function for Grasping

To incentivize the policy to learn the desired behavior, we
need to define a reward function. In our method, we formu-
late it as follows:

r = wxrx + wqrq + wcrc + wregrreg. (4)

It comprises a combination between position, angle, contact
and regularization terms, respectively. We weigh the reward
components with the factors wx, wq, wc, wreg.
The position reward rx measures the weighted sum of dis-
tances between the target x and the current 3D positions x
for every joint (including the wrist):

rx =

J∑
j=1

wx,j‖xj − xj‖2. (5)

Similarly, the pose reward rq measures the distance between
the current pose and the corresponding target pose in Euler
angles and corresponds to the L2-norm of the feature g̃q:

rq = ‖g̃q‖, (6)

The contact reward rc is extracted from the finger parts that
should be in contact with the object. Specifically, it is com-
puted as the sum of two terms. The first one represents the
fraction of target contacts that the agent has achieved. The

Current hand and object pose Target hand and object pose

Figure 3. Target Distance Component gx. It incentivizes the
policy to reach target points close to the grasp reference label D.
We extract the object-relative target 3D joint positions x from D
and compute the distance between x and the current 3D joint po-
sitions x relative to the object’s origin. We then convert gx into
wrist-relative coordinates g̃x.

second term rewards the amount of force exerted on desired
contact points, capped by a factor proportional to the ob-
ject’s weight mo through a factor λ:

rc =
g̃>c If>0

g̃>c g̃c
+min(g̃>c f , λmo). (7)

Finally, the reward rreg involves regularization terms on the
hand’s and object’s linear and angular velocities:

rreg = wreg,h‖
˙̃
Th‖2 + wreg,o‖

˙̃
To‖2. (8)

3.2.3 Wrist-Guidance Technique

To control the global pose during the grasping phase, we
introduce a simple but effective technique which we call
wrist-guidance. Intuitively, we bias the hand to approach
the object. To achieve this, we leverage the object-relative
target pose, of the hand on the object, obtained from the
grasp label D. We then use it as a bias term in the PD-
controller of the global 3DoF position. In other words, we
set the bias term of the first 3DoF (the translational joints)
to qb = xh (Section 3.1), where xh is the target position
which we extract from the label. We find that this technique
leads to better performance and faster convergence than us-
ing the previous joint positions as bias (Section 3.1), which
we show in ablations in Section 4.5.

3.3. Motion Synthesis

We now introduce the motion synthesis module, which
is responsible for moving the object from an initial 6D pose
into a target 6D pose. It controls only the movement of the
wrist, i.e., the first 6DoF of the controllable hand model. In
this phase, both the grasping policy described in Section 3.2
and the motion synthesis module are executed concurrently.
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Models Training set Test set
Success↑ SimDist [mm/s]↓ Interp. [cm3]↓ Success↑ SimDist [mm/s]↓ Interp. [cm3]↓

D
ex

Y
C

B

M
C

GT+PD 0.31 13.4± 9.2 4.59 0.35 13.1 ±9.1 4.41
GT+IK 0.39 11.8± 9.4 9.23 0.50 9.1± 8.5 9.74
Ours 0.70 5.8± 7.4 1.75 0.63 8.0± 8.1 1.77

SY
N Jiang et. al [19]+PD 0.25 12.4± 6.4 4.92 0.24 12.7± 6.5 4.94

Ours 0.75 3.9± 7.2 2.84 0.73 4.6± 6.7 2.81

H
O

3D SY
N Jiang et. al [19]+PD 0.31 10.0± 6.6 5.21 0.30 10.6± 6.8 5.40

Ours 0.73 4.4± 7.4 3.33 0.71 4.9± 6.6 3.40

IM
G Grady et. al [12]+PD 0.67 5.1± 6.1 14.94 0.60 6.5± 5.8 14.00

Ours 0.88 1.4± 3.4 2.67 0.81 1.9± 3.6 2.08

Table 1. Static grasp evaluation. We compare our model with grasp samples from the DexYCB dataset (MC), generated samples by a
grasp synthesis method on the DexYCB and HO3D object sets (SYN), and samples extracted from an image-based hand pose estimator
(IMG). We evaluate the baseline grasps in the simulation via PD-control (*+PD) directly or after de-noising via inverse kinematics (*+IK)
for the motion capture data. We observe that our method outperforms the baselines in all metrics and conditions. The results indicate that
static grasp references 1) will not lead to stable grasps when evaluated in a physics simulation and 2) suffer from interpenetration. Our
method improves the interpenetration and learn stable grasps in a dynamic setting.

While the grasping policy maintains a stable grasp, the mo-
tion synthesis module takes over the control of the 6D pose
of the hand. Similar to the grasping policy, we propose a
feature extraction layer that incentivizes the model to move
the hand to a target pose with the object in-hand.

To control the global hand motion, we estimate a 6D tar-
get pose for the hand: T̂h = ψ(s,Tg,D). In particular,
we estimate the global target hand pose T̂h by computing
the distance between the object’s current 6D pose To and
the target 6D pose To. We then translate and rotate the
hand according to the displacement using closed-loop con-
trol. Hence, the displacement is recomputed after every ac-
tion. For more details, please refer to supp. material.

4. Experiments
We conduct several experiments to analyse the perfor-

mance of our method. We first introduce the data and ex-
perimental details in Sections 4.1 and 4.2. Next, we show
that our method can learn stable grasps and correct imper-
fect labels in Section 4.3. Lastly, we evaluate the motion
synthesis task and provide ablations to highlight the impor-
tance of our method’s components in Sections 4.4 and 4.5.

4.1. Data

DexYCB We make use of the DexYCB dataset [5]. The
dataset consists of 1000 sequences of object grasping, with
10 different subjects and 20 YCB objects [3]. We filter out
all left handed sequences and create a random 75%/25%
train/test-split over all sequences and subjects. The data se-
quence contains 6D global poses for the hand and objects in
the camera frame and the local joint angles, hence providing
sequences of

{
(qh,Th,To)

}T
t=1

. The data also includes
meshes for the hand and objects, and the camera parame-

ters. We determine the grasp label based on the object’s dis-
placement with regards to its initial position. The time-step
with an object displacement greater than a pre-determined
threshold is chosen to be the target grasp D. Furthermore,
we use a recent state-of-the-art grasp synthesis method [19]
to generate grasp labels for all the objects in DexYCB and
create a 400/200 label train/test-split.

HO3D We use generated grasp labels from static grasp
synthesis [19] or from an image-based pose estimator after
offline optimization [12] for the HO3D objects. We create
a train/test-split that is proportional to the DexYCB split,
which results in a 200/100 label train/test-split.

4.2. Experimental Details

We train policies by using our implementation of the
PPO algorithm [35] and run simulations in RaiSim [18]. For
each sequence, we initialize the environment with an object
and a grasp label. The hand is initialized with a pose from
earlier steps at a pre-determined distance from the object.
First, we train the grasping policy with all training labels
and objects. Then we continue with the motion synthesis
component given the pretrained grasping policy.
We evaluate physical plausibility of a grasp in terms of sta-
bility and interpenetration on a set of unseen grasp labels
and unseen objects. We define a set of complementary met-
rics to quantify performance extensively.

4.2.1 Metrics

Success Rate: We define the success rate as the primary
measure of physical plausibility. It is measured as the per-
centage of sequences which maintain a stable grasp, i.e.,
where the object does not slip for a period of time.
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(d) GraspTTA (e) GraspTTA + IK (f) Ours
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Figure 4. Qualitative evaluation. (a)-(c): static grasp labels often
do not lead to stable grasps when evaluated in a physics simulation
(a-b), which can be successfully corrected by our method (c). For
an animated demonstration, please see the video in supp. material.
(d)-(f): showcases artifacts such as interpenetration when using a
state-of-the-art grasp synthesis method [19] (d-e). Our method (f)
can correct such cases and generate physically-plausible grasps.
(g)-(j): using images (g) to estimate an initial grasp (h). Phys-
ically implausible poses occur even with corrections via offline
optimization (i), which can be corrected by our method (j).

Interpenetration: We calculate the amount of hand vol-
ume that penetrates the object. We compute it using the
vertices of the MANO mesh [34] and the high-resolution
object meshes.
Simulated Distance: Similar to the metric proposed in
[19], we compute the mean displacement of the object. In-
stead of measuring the absolute displacement, we report the
mean displacement in mm per second.
Contact Ratio: For the ablation study, we measure the ra-
tio between the target contacts defined via the grasp label D
and the contacts achieved in the physics simulation.
MPE: The mean position error between the object’s posi-
tion and target 3D position (for motion synthesis).
Geodesic: The angular distance between the object’s cur-
rent and target orientation (for motion synthesis).

4.2.2 Baselines

*+PD: Similar to [19], we place the object into the hand via
the grasp label. We then attempt to maintain the grasp using

Models Success ↑ SimDist [mm/s] ↓ Interpenetration [cm3]↓
GT+PD 0.30 13.7± 9.2 4.41
GT+IK 0.38 11.7± 9.4 9.08
Ours 0.56 9.0± 10.4 1.74

Table 2. Generalization. We evaluate generalization to unseen
objects and compare our model with the baselines. We create six
different test sets of three objects each, which we leave out during
training. We report the average performance over all test sets.

PD-control in the physics simulation.
*+IK: We employ an offline optimization to correct for im-
perfections (i.e., minor distances or penetrations) in the la-
bel. The improved samples are passed to the PD-control.
Flat-RL: We employ an RL baseline that does not separate
the grasping from the motion synthesis phase, but trains the
full dynamic grasp synthesis task end-to-end.
Ours+static grasp: In this variant, we use our grasping
policy for the grasping phase. During motion synthesis, we
use PD-control to maintain the pose while the grasping pol-
icy is frozen and not actively interacting with the object.

4.3. Grasping Objects

In this experiment, we show that our method can learn to
achieve stable grasps and that static grasp reference data is
inherently bound to fail in a dynamic setting. We first train
with labels from DexYCB [5] and further demonstrate that
our approach also works with, and improves upon, labels
obtained from state-of-the-art grasp synthesis method [19],
on both the DexYCB and HO3D object sets. Lastly, we
present results using an image-based hand pose estimator
on HO3D images and labels from ContactOpt [12].

We present quantitative evaluations in Tab. 1 and qual-
itative results in Fig. 4. Compared to the baselines, our
method is able to achieve significantly better performance
on all the metrics. Importantly, the grasping policy can im-
prove the success rate, while minimizing interpenetration
(an important metric in the grasp synthesis literature). We
note that our method achieves 0 interpenetration loss when
evaluated in the physics simulation. In Tab. 1, however, we
report interpenetration on the original MANO hand model
and detailed object meshes. For computational efficiency
during training, the hand model and the object meshes are
simplified in the physics simulation (Section 3.1), limiting
the performance of our model when evaluated in the orig-
inal setting with regards to interpenetration. We found no
improvement with IK for the generated (SYN) or image-
based (IMG) experiments and hence omit it from the results.
The improved performance in the image setup compared
to other settings is due to the high-quality grasp references
from [12], which already optimizes for contact. In general,
there is a performance drop when moving to unseen test la-
bels. We also find that our approach may struggle with thin
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Models MPE [mm] ↓ Geodesic [rad.] ↓
Flat-RL 0.55 1.66
Ours+static grasp 0.45 1.46
Ours+learned policy 0.30 0.92
Ours 0.08 0.52

Table 3. Evaluation of motion synthesis. We compare our model
with a standard RL baseline (Flat-RL) and different variants of
our method. We observe that our hierarchical framework outper-
forms Flat-RL. Furthermore, an active grasping policy during mo-
tion synthesis is key to solving the task, as indicated by the perfor-
mance drop for Ours+static grasp.

objects which are difficult to grasp on a surface. For a de-
tailed analysis and failure cases, we refer to supp. material.

Generalization to Unseen Objects To evaluate the gen-
eralization performance on unseen objects, we train and test
our model on six separate train/test splits with varying com-
plexity. Each test set consists of three objects from the
DexYCB dataset. The remaining objects are used for train-
ing a policy. We average the results over all test sets and
report the results in Tab. 2. While there is room for im-
provement in overall success rate, our method outperforms
the baseline in all metrics. We provide a more detailed anal-
ysis in supp. material.

4.4. Motion Synthesis

We now demonstrate our method’s ability to synthesize
motions with the grasped object in hand. The goal of this
task is to grasp an object and generate a trajectory that
brings the object to a target 6D pose. We use a subset of
representative YCB objects and create a test set with 100
randomly sampled, out-of-distribution poses Tg . We com-
pare against a standard RL baseline (Flat-RL) and a vari-
ant of our method that only maintains the pose instead of
actively grasping the object (Ours+static grasp). We also
compare against a learning-based motion synthesis policy
(Ours+learned policy). As shown in Tab. 3, the hierarchi-
cal separation in our method is crucial for solving the task.
Moreover, the decrease in performance when the hand pose
is simply maintained (Ours+static grasp) solidifies the con-
tribution of our approach. This implies that active control of
the hand throughout the sequence is mandatory to maintain
a stable grasp. Lastly, our method outperforms the learning-
based variant (Ours+learned policy) of our motion synthesis
module by a large margin on both metrics.

4.5. Ablations

In this experiment, we analyze different components of
our method and show that they are crucial for achieving sta-
ble grasps. To this end, we ablate our method with differ-
ent feature spaces and reward functions. We select a sub-
set of representative objects and evaluate on our train-split

Models Success ↑ SimDist [mm/s] ↓ Contact Ratio ↑
w/o ContactRew 0.0 24.18± 1.58 0.02
w/o GoalSpace 0.28 14.21± 10.50 0.18
w/o FeatLayer 0.47 9.69± 10.26 0.21
w/o WristGuidance 0.58 7.88± 10.57 0.28
Ours 0.89 4.83± 1.71 0.43

Table 4. Ablations. We ablate our proposed components. All
components together comprises our method. We observe that each
component increases the performance significantly in all metrics.

of DexYCB (Section 4.1). To validate our feature extrac-
tion layer and in particular the goal space (Section 3.2.1),
we compare to a variant of our approach using the origi-
nal state space (w/o FeatLayer) and a variant without the
goal space (w/o GoalSpace). Furthermore, we evaluate our
method without the contact reward (w/o ContactRew) and
without the proposed wrist-guidance (w/o WristGuidance)
as proposed in Section 3.2.3. Tab. 4 shows that each com-
ponent yields considerable performance improvement. We
emphasize that the contact reward and a suitable feature rep-
resentation are key for achieving stable grasps.

5. Discussion and Conclusion
In this work we have made several contributions. First,

we have introduced the task of dynamic grasp synthesis for
human-object interactions. To take a meaningful step into
this direction, we leverage a physics simulation to gener-
ate sequences of hand-object interactions that are natural
and physically plausible. We propose an RL-based solution
that learns from a single external grasp label. We demon-
strate that our method can learn stable grasps and gener-
ate motions with the object-in hand without slipping. Fur-
thermore, we have provided evidence that our method can
achieve generalization to unseen objects. While this proof
of concept experiment indicates that our method works if a
static hand pose reference for the unseen object is available,
the method could be scaled to even larger train/test sets in
the future. Finally, dynamics components such as friction
of surfaces, inertia, or the center of mass are assumed to be
known a priori, which is often not the case in real world
settings. Adding a perceptual component to estimate these
properties is a promising direction for future work.
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