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Abstract

We explore the way to alleviate the label-hungry prob-
lem in a semi-supervised setting for 3D instance segmenta-
tion. To leverage the unlabeled data to boost model perfor-
mance, we present a novel Two-Way Inter-label Self-Training
framework named TWIST. It exploits inherent correlations
between semantic understanding and instance information
of a scene. Specifically, we consider two kinds of pseudo
labels for semantic- and instance-level supervision. Our
key design is to provide object-level information for denois-
ing pseudo labels and make use of their correlation for
two-way mutual enhancement, thereby iteratively promoting
the pseudo-label qualities. TWIST attains leading perfor-
mance on both ScanNet and S3DIS, compared to recent
3D pre-training approaches, and can cooperate with them
to further enhance performance, e.g., +4.4% AP50 on 1%-
label ScanNet data-efficient benchmark. Code is available
at https://github.com/dvlab-research/TWIST.

1. Introduction
Deep learning methods have achieved great success on

3D point cloud learning. They demand large-scale anno-
tated data. Compared to work on scanning, methods for
annotations consume substantially more manual effort. For
ScanNet [9], 20 people were hired for collecting the RGB-
D scans. However, it took 500 crowd-based workers, each
using around 22.3 minutes, to label one scan on average.

To alleviate this label-hungry problem, a direction is to
exploit semi-supervised learning (SSL). This setting needs
ground-truth labels only for a small fraction of the training
set. The target is to leverage a large volume of completely
unlabeled data to boost model performance. Contrary to
intensive research on image understanding [1, 14, 26, 27,
38, 39], less [20, 49] was carried out on this setting for 3D
instance segmentation, which is an important task for 3D
perception. Methods of [20, 49] utilize unlabeled data for
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Figure 1. Top: Pseudo semantic labels (green means correct and red
means incorrect results) produced on unlabeled point cloud by (a)
confidence thresholding, (b) our method without the re-correction
module, and (c) our full method. Bottom: Pseudo centroids (blue
dots) found by various methods. Orange dots mark the ground truth
(GT) and red boxes mark the blue dots far from GTs. Our TWIST
framework (c) effectively promotes the quality of both semantic
and offset-to-centroid pseudo labels.

model pre-training through a contrastive loss. They, however,
only explore SSL by means of consistency regularization.

In this paper, we address semi-supervised 3D instance
segmentation by designing a new self-training framework,
which is the first of this kind. We aim to generate high-
quality pseudo labels from unlabeled data to improve model
training. This goal is challenging to achieve. First, the task
requires both semantic- and instance-level understanding of
a 3D scene. These two goals may conflict with each other.
For example, we may want different instances of the same
class to have different instance IDs but the same semantic
ID. Therefore, it is non-trivial to generate high-quality (joint)
pseudo labels for supporting both prediction tasks.

Second, the way to promote consistency among pseudo
labels in the instance-level task has much room to explore.
For instance, pseudo semantic labels within the same in-
stance should be consistent. Otherwise, it could confuse how
points are separated into object instances. Third, an effective
pseudo-label evaluation and selection mechanism is in high
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demand. It cannot be achieved easily by common strategies,
such as simple confidence thresholding [3, 48].

To address these issues, we design the Two-Way Inter-
label Self-Training (TWIST) framework that collectively
considers two kinds of pseudo labels, i.e., pseudo seman-
tic labels for semantic-level supervision and pseudo offset
vectors for instance-level supervision. Importantly, TWIST
iteratively updates the two pseudo-label sets, while promot-
ing their consistency and quality. The key designs include a
novel proposal re-correction module to leverage object-level
predictions to denoise the pseudo labels and strategies to
enable inter-label mutual enhancement.

Specifically, TWIST does not generate pseudo labels in
the point level like point-wise confidence thresholding due
to its vulnerability to noise, as observed in Fig. 1(a). In-
stead, we utilize the model to predict instance proposals and
leverage this prior to update the pseudo labels in proposal
level, naturally preserving the intra-proposal consistency. To
further improve the pseudo-label quality, we develop the
proposal re-correction module to provide object-wise evalu-
ation along with pseudo-label denoising. This module can
be trained in a learnable fashion and takes input of diverse
proposal-level samples to mitigate the label-hungry issue.

Another notable characteristic of TWIST is to explic-
itly encourage mutual enhancement between two pseudo-
label sets. Here, we design two-way bidirectional inter-
label interactions, implemented by the semantic-guided in-
stance proposal generation module and the proposal-based
pseudo-label update module. Also, we design the proposal
re-correction module between them as a safeguard to assess
proposal quality and correct the labels of low-quality ones.
It encourages better model convergence. By these means,
we jointly enhance the two pseudo-label sets significantly,
as shown in Fig. 1(c).

We evaluate TWIST on two large-scale 3D datasets of
ScanNet v2 [9] and S3DIS [2]. TWIST outperforms both the
supervised-only baseline and state-of-the-art unsupervised
pre-training approaches [20, 49] by a large margin. Also,
it can cooperate with other 3D pre-training approaches [20,
49] for further performance gain of 0.8 to 4.4 points. This
property indicates that TWIST has complementary strength
for semi-supervised 3D instance segmentation. Our overall
contributions are as follows.

• We demonstrate the effectiveness of self-training for
semi-supervised 3D instance segmentation, using two
kinds of pseudo labels for effective model training.

• We present TWIST that enables generation of more
accurate pseudo labels with object-level denoise and
two-way inter-label enhancement.

• A new SOTA semi-supervised learning framework is
proposed for 3D instance segmentation. It is verified
on two large-scale datasets and shows complementary
strength with existing 3D pre-training approaches.

2. Related Work
3D Instance Segmentation. Given a point cloud, this task
aims to predict object instances, each with a semantic class.
3D instance segmentation approaches [4, 5, 11, 15, 18, 19, 22,
24, 25, 28, 29, 34, 44, 45, 53, 54] can be classified into top-
down and bottom-up methods. Top-down methods [4,19,53]
often adopt a detect-and-segment pipeline that first leverages
the geometry and/or color features to produce 3D proposals
and then refines the proposals by the mask predictions.

On the other hand, bottom-up methods [5,8,11,15,18,22,
24, 25, 28, 44, 45, 54] form object instances by clustering the
input points based on their embedded similarity. SPGN [44]
and ASIS [45] promote intra- and inter-instance similarity by
a discriminative loss. Later, methods of [11, 24, 25] consider
semantic prediction and geometric distribution in the clus-
tering. A natural prior is to only group points of consistent
semantic category into the same instance. Such pipelines
are further improved by various techniques, such as multi-
task learning [15], hierarchical aggregation [5], dynamic
kernel [18], and superpoint traversal [28]. In this paper, we
focus on label-efficient settings and develop our baseline
framework, following the bottom-up paradigm.
Label-efficient Learning in 3D. Labeling point cloud is
laborious and error-prone. Several recent approaches explore
label-efficient learning for point clouds. Instead of requiring
labels for every point in the training set, incomplete/indirect
labels, e.g., 2D image labels [40, 43, 47], sparse 3D point
labels [21, 30–32, 50, 55], region/scene tags [36, 37, 41, 46],
and labels from partial training set [6,10,23,40,42,56] were
used. Though the supervision becomes weak, the model
is designed to exploit accessible information for optimiz-
ing performance. These techniques have been verified in
diverse 3D tasks, e.g., single CAD-model classification and
part segmentation [12, 16, 33, 57], large-scale semantic seg-
mentation [6, 10, 21, 23, 30, 41, 46, 50, 55], and object detec-
tion [31, 32, 36, 37, 40, 42, 47, 56].

We focus on 3D instance segmentation, which requires
label-efficient learning. Here, we have ground-truth labels
only for a small portion of the training set and aim to adopt
large unlabeled data to boost model performance.

Beyond the SOTA semi-supervised methods for 3D se-
mantic segmentation [6, 10, 23], our model further produces
instance labels by clustering the points. It needs to efficiently
extract object localization knowledge from the unlabeled
data (in large quantity) and assimilate such knowledge with
that from the labeled data (in small quantity). Compared to
works on semi-supervised 3D object detection [40, 42, 56],
we focus on crowded indoor scenes that need point-level in-
stance separation. So far, there are only a few unsupervised
pre-training methods [20, 49] that can help on this task. This
is the first work with a novel self-training model.
Self-Training. Self-training is a popular technique for semi-
supervised learning and has been successfully applied to

1101



many 2D image understanding tasks [17, 48, 51, 58, 60, 61].
Pursuing this direction is desirable for 3D data to reduce
high annotation cost. Until now, only a few methods benefit
self-training on 3D tasks, e.g., 3D shape classification [59],
semantic segmentation [30], and object detection [37,52]. In
this paper, we demonstrate the effectiveness of self-training
on 3D instance segmentation. The key to the success of
our method is the object-level pseudo-label denoising and
inter-label mutual enhancement to promote the pseudo-label
quality in self-training.

3. Preliminaries on 3D Instance Segmentation
Given a point cloud P = {(pi, ci)}Ni=1, where each pi =

(xi, yi, zi) is a 3D coordinate and each ci is a RGB color,
the model produces a set of 3D object instance proposals
Ĝ = {ĝj}Mj=1, where each ĝj is a subset of points in P of
the same inferred semantic class. We use i as the point index
and j as the instance proposal index.
Revisiting Supervised Baseline Framework. For labeled
supervision, we directly use a bottom-up framework [20],
which adopts a neural model Φ with a shared Sparse U-
Net [13] and two separate MLP-based branches. One
branch is for predicting a set of per-point semantic classes
Ŝ = {ŝi ∈ {1, ...,K}}Ni=1 and the other is for predicting a
set of per-point offset vectors in 3D Ô = {ôi ∈ R3}Ni=1 for
shifting points on object surface towards the respective in-
stance centroids, where K is the number of semantic classes.
Ŝ is supervised by ground-truth semantic labels S under the
standard cross entropy loss and Ô is explicitly supervised by
the ground-truth point-to-centroid vector O via a regression
loss. We train the network by jointly optimizing Ŝ and Ô.

During test, both the semantic predictions and compact
point locality (pi+ôi) are incorporated for point-level cluster-
ing. Also, we use breadth-first search to explore neighboring
points of the same semantic category within an x-cm sphere
and cluster these points into an object instance.
Discussions. We choose such a supervised pipeline as
our baseline since it is simple and decent on evaluation
benchmarks [25]. A pivotal success factor is that accurate
semantic prediction provides a strong prior for filtering out
noisy inter-class points in the vicinity, thus purifying the
instance clustering results. We leverage this principle for
semi-supervised learning.

4. Our Method
In the semi-supervised setting, only a small fraction of

point cloud scenes have labels, while the remaining large set
is unlabeled. We use superscripts l and u to indicate labeled
and unlabeled quantities, respectively. P l denotes a labeled
point cloud and Pu denotes an unlabeled one. Also, we
denote (Ŝl,Ôl,Ĝl) and (Ŝu,Ôu,Ĝu) as the per-point semantic
classes, per-point offsets, and instance proposals predicted

on P l and Pu, respectively, and denote Sl and Ol as the
per-point ground-truth semantic labels and offset vectors of
P l, respectively.

Our goal is to exploit the unlabeled data in training to
boost 3D instance segmentation performance. To learn
knowledge effectively from the unlabeled data, we train
the network through the following self-training pipeline.

Step (i) is the initialization stage, in which we train model
Φ(., θr0), using the model described in Sec. 3 and with θr0
model weights at self-training round 0, on all labeled point
clouds. The objective on each P l is

Ll = Ls(S
l, Ŝl) + Lo(O

l, Ôl), (1)

where Ls is the cross entropy loss on semantic predictions
Ŝl, and Lo is the regression loss for supervising both the L1
distance and direction of the predicted offset vectors Ôl. For
a point cloud P l with N points, Lo is formulated as

Lo(O
l, Ôl) =

1

N

N∑
i

(||oli − ôli|| −
oli

||oli||2
· ôli
||ôli||2

). (2)

Step (ii) is the pseudo-label generation stage. At round t of
the self-training, we first use the learned model Φ(., θrt−1) to
predict semantic classes Ŝu and offset vectors Ôu for each
unlabeled point cloud Pu, and then refine them to produce
pseudo semantic labels S̃u and pseudo offset vectors Õu.

Step (iii) is the training stage for updating the network
model. Also, at round t of the self-training, we use pseudo
labels S̃u and Õu to refine model Φ(., θrt−1) into Φ(., θrt ).
For each point cloud pair (P l, Pu), the training objective is

LΦ = Ll + Lu, (3)
where Lu = Ls(S̃

u, Ŝu) + Lo(Õ
u, Ôu). (4)

The self-training iterates between steps (ii) and (iii) until
the performance converges. Importantly, pseudo semantic
labels S̃u provide class-level supervision and pseudo offset
vectors Õu provide instance-level supervision, enabling the
use of unlabeled data for updating the network model.

The key to the success of self-training is to produce accu-
rate pseudo labels in step (ii). This cannot be easily achieved
by simple point-wise confidence thresholding. Also, for 3D
instance segmentation, we consider pseudo-labels consis-
tency and explore their mutual correlation to promote their
quality; see the three components in our TWIST in Fig. 2.

First, the semantic-guided proposal generation module
(Sec. 4.1) clusters points of same semantic predictions into
candidate instance proposals Ĝu in each unlabeled point
cloud Pu. Since these proposals may not be accurate, we
design the proposal re-correction module (Sec. 4.2), which
is a learnable model, to locate more reliable instance propos-
als with object-level assessment/refinement. After that, the
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Figure 2. Overview of our TWIST framework. Given a pair of labeled and unlabeled point clouds (P l, Pu), the feature extraction network
Φ first predicts per-point semantic classes (Ŝl, Ŝu) and per-point offsets (Ôl, Ôu). At the training stage of each self-training round, Ŝl and
Ôl are forwarded by module A to generate instance proposals Ĝl, which is then fed into module B for evaluation/rectification. Here, (Ŝl,Ôl)
and (Ŝu,Ôu) are supervised by ground-truth labels (Sl, Ol) and pseudo labels (S̃u, Õu), respectively. Module B can also be trained (see
Sec. 4.2). At the pseudo-label generation stage, only the unlabeled point cloud is processed. We pass Ŝu and Ôu through modules A, B, and
C for object-level denoising and finally update pseudo labels (S̃u, Õu). The thick arrows in green and blue represent the two-way mutual
enhancement between pseudo labels S̃u and Õu, as discussed in Sec. 4.3.
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Figure 3. The re-correction module. Its input includes multiple
object-level features, each formed by a concatenation of 3D coordi-
nates of an instance proposal and associated backbone features. The
module returns a semantic class along with an instance certainty
score. Both can be supervised by ground-truth labels. We design
five augmentation strategies to diversify the input features.

proposal-based pseudo-label update module (Sec. 4.3) gen-
erates pseudo labels S̃u and Õu from the reliable instance
proposals and helps enforce the intra-proposal consistency.

These modules work together to explore mutual correla-
tion between the pseudo labels. They enhance pseudo-label
consistency and quality (analysis is in Sec. 4.3).

4.1. Semantic-guided Instance Proposal Generation

The semantic-guided instance proposal generation mod-
ule (module A in Fig. 2) produces instance proposals in input
point cloud P l or Pu by employing the clustering algorithm
described in Sec. 3 with semantic predictions as the guid-
ance. Note that we involve this step in both the end-to-end
network training (output Ĝl in P l) and pseudo-label genera-
tion (output Ĝu in Pu). The output proposals are fed to the
re-correction module for proposal-level evaluation.

4.2. Proposal Re-correction

The predicted semantic class of each instance proposal is
not accurate enough, since it is just a combination of the per-
point semantic predictions. To address the issue, we design
the proposal re-correction module, called Ψ, to assess how
well each point set in a proposal forms a single instance. We
then re-classify the proposal to re-correct the misclassified
labels. At the training stage of each round, this proposal
re-correction module receives Ĝl for its training, and at the
pseudo-label generation stage, it assesses a set of Ĝu for
updating the pseudo labels.

Input Data. Instead of taking the entire point cloud scene as
the input sample, we forward object-level features as input
to Ψ. So, we can considerably enlarge the set of trainable
samples, better predicting individual objects and making it
easier for object recognition from a global point of view.

For an instance proposal ĝj of Nj points, the re-correction
module concatenates the 3D point coordinates (RNj×3) and
the associated backbone features (RNj×F ), i.e., the out-
put of Sparse U-Net in model Φ, to form the input sample
k̂j ∈ RNj×(3+F ) to module Ψ. We select backbone features
instead of the original RGB features, since they effectively
capture the contextual information, which could be critical
for locating 3D objects, as ablated in Sec. 5.3.

Module Training. Fig. 3 shows the module training work-
flow. At the training stage, the re-correction module first
diversifies feature k̂lj by various object-wise data augmenta-
tion. We consider two classes of augmentations. Geometric
transformation includes rotation, translation, and point-wise
scaling. Geometric mutation consists of cropping and ex-
panding, which introduces stronger disturbance on changing
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the instance certainty score of k̂lj , i.e., ioul
j in Eq. (5). Specif-

ically, they first narrow down or enlarge the bounding box
of k̂lj by a random ratio and then select all points within the
updated box as new k̂lj . These operations remove part of k̂lj
or bring points from other objects to k̂lj .

Then, the re-correction module employs a small SparseC-
onv encoder [13] and two MLP heads to process k̂lj . They
predict a semantic class êlj and an instance certainty score
v̂lj for each instance proposal. v̂lj is scaled to (0,1) by Sig-
moid operation. Inspired by [5, 24], we calculate point-wise
IoUs between k̂lj and use the ground-truth instance, which
matches the best to supervise the instance certainty score as

LΨ
sc = − 1

M

M∑
j=1

[ioul
j · log(v̂lj) + (1− ioul

j) · log(1− v̂lj)],

(5)
where M is the number of instance proposals. For semantic
supervision, we use the cross-entropy loss on êlj only if its
ioul

j is larger than 0.5. The ground-truth value should be the
semantic class of the actual instance that k̂lj mostly matches.
The overall objective for training the re-correction module
is LΨ = LΨ

sem + LΨ
sc. It is optimized along with LΦ (see

Eq. (3)) at the training stage of each round.

4.3. Proposal-based Pseudo-label Update

At the pseudo-label generation stage of each self-training
round, for an unlabeled point cloud Pu, the re-correction
module produces a re-predicted semantic class êuj and an
instance certainty score v̂uj for each instance proposal ĝuj pre-
dicted from Pu. Instance proposals with a score higher than
0.5 are employed for proposal-level pseudo-label update.

For all points in ĝuj , i.e., pui ∈ ĝuj , we update their pseudo
semantic labels using the re-predicted semantic class êuj as

S̃u{pui ∈ ĝuj } = êuj . (6)

To update the pseudo offset vectors, we first produce the
pseudo instance center of each proposal ĝuj . Instead of di-
rectly selecting the centroid of ĝuj , we adopt the mean-shift
result by considering all points in ĝuj to make use of the
predicted offset vectors as

ãuj =
1

Nj

∑
pu
i ∈ ĝu

j

(pui + ôui ), (7)

where Nj is the number of points in ĝuj . Then, we can update
the set of pseudo offset vectors Õu by

Õu
{pu

i ∈ĝu
j }

= ãuj − pui . (8)

Through this mechanism, we update the two types of pseudo
labels in the instance-proposal level, thereby naturally pre-
serving the intra-proposal pseudo-label consistency. Hence,
even if êuj is wrong, points of ĝuj are still likely to be clustered
in a group under the shifting guidance from ãuj .

Worse 
Prediction

(a) (b)
Figure 4. Pseudo-label quality plots. We evaluate the pseudo
semantic labels by point-wise mean accuracy (denoted as Sem.
Acc.) and pseudo offset vector by vector difference (denoted as
Off. Error). (a) The pseudo-label accuracy increases consistently
with more self-training rounds. (b) Using less accurate semantic
predictions harms pseudo-label quality. Thus the accuracy of both
pseudo-label sets continues to decrease without the re-correction
module (green diamonds and blue pentagons). Our re-correction
module steers the situation back (green dots and blue squares).
Experiments are conducted on ScanNet v2 with 10% labels.

Mutual Enhancement Analysis. An intriguing merit
of TWIST is that the quality of the two pseudo-label sets can
be reciprocally improved through their two-way interaction.

First, a better S̃u encourages better semantic predictions,
and hence guides the network to acquire better instance
proposals (denoted by the thick green arrows in Fig. 2).
Within one proposal, points are more likely from the same
object and their mean-shift result (Eq. (7)) can be more
reliable, thus promoting the quality of Õu. In turn, with a
better Õu to train more accurate offset predictions, more and
better point clusters can lead to production of valid instance
proposals for updating the pseudo semantic labels (denoted
by the thick blue arrows in Fig. 2), where more S̃u can be
produced and assigned to high-quality point sets. Hence,
pseudo-label quality is jointly improved in the self-training
process, as shown in Fig. 4(a).

Further, the designed re-correction module can effectively
encourage their mutual effect to converge towards a positive
direction. As shown in Fig. 4(b), we reduce the quality
of pseudo labels on purpose by first corrupting 10% GT
labels’ semantic class for model training, and then using the
updated model’s prediction to generate pseudo labels. When
removing the re-correction module, both S̃u and Õu suffer
from accuracy reduction. Fortunately, they can still recover
and even converge to a better condition eventually, when
the re-correction module is enabled again. The re-correction
mechanism safeguards the model’s fault-tolerant capability,
facilitating the mutual promotion effect for both the semantic
and offset pseudo labels.

5. Experiments

5.1. Experimental Setup

Datasets. We conduct extensive experiments on two large-
scale indoor datasets of ScanNet v2 [9] and S3DIS [2]. Scan-
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1% 5% 10% 20%Dataset Method mAP AP50 AP25 mAP AP50 AP25 mAP AP50 AP25 mAP AP50 AP25

Sup-only 5.1 9.8 17.6 18.2 32.0 47.0 26.7 42.8 58.9 29.3 47.9 63.0
PointContrast [49] 7.2 12.5 20.3 19.4 35.4 48.5 27.0 43.9 59.5 30.2 49.5 63.6
CSC [20] 7.1 13.0 21.2 20.9 36.7 50.6 27.3 45.0 60.2 30.6 50.3 64.1
TWIST 9.6 (+4.5) 17.1 (+7.3) 26.2 (+8.6) 27.0 (+8.8) 44.1 (+12.1) 56.2 (+9.2) 30.6 (+3.9) 49.7 (+6.9) 63.0 (+4.1) 32.8 (+3.5) 52.9 (+5.0) 66.8 (+3.8)

ScanNet v2

TWIST + CSC [20] 11.5 (+6.4) 20.0 (+10.2) 31.1 (+13.5) 28.6 (+10.4) 45.9 (+13.9) 58.2 (+11.2) 32.8 (+6.1) 51.5 (+8.7) 65.1 (+6.2) 34.1 (+4.8) 53.7 (+5.8) 67.8 (+4.8)

Sup-only 9.0 12.7 20.7 21.5 30.4 42.8 25.2 36.8 48.3 29.9 41.2 54.5
PointContrast [49] 13.4 15.9 23.1 22.9 33.6 44.5 27.1 38.7 50.2 31.2 43.1 56.6
CSC [20] 14.6 16.7 23.2 24.9 34.2 44.9 29.7 41.0 52.1 33.5 44.7 57.8
TWIST 17.9 (+8.9) 22.5 (+9.8) 27.1 (+6.4) 27.1 (+5.6) 37.1 (+6.7) 48.6 (+5.8) 33.6 (+8.4) 45.6 (+8.8) 55.8 (+7.5) 36.7 (+6.8) 48.4 (+7.2) 59.7 (+5.2)

S3DIS

TWIST + CSC [20] 18.9 (+9.9) 24.8 (+12.1) 28.9 (+8.2) 29.3 (+7.8) 39.6 (+9.2) 49.9 (+7.1) 35.0 (+9.8) 46.9 (+10.1) 57.8 (+9.5) 37.9 (+8.0) 49.5 (+8.3) 61.6 (+7.1)

Table 1. Results on ScanNet v2 validation set and S3DIS Area-5 set with various ratios of labeled data. ‘Sup-only’ is the baseline model
trained with only labeled data. TWIST consistently attains the best result and can cooperate with CSC for even better performance.

Method 1% 5% 10% 20%
Sup-only 10.1 27.3 41.3 47.3
PointContrast [49] 11.7 29.8 43.2 48.8
CSC [20] 11.9 32.5 44.0 52.9
TWIST 14.2 (+4.1) 40.1 (+12.8) 46.6 (+5.3) 53.5 (+6.2)

TWIST + CSC [20] 18.6 (+8.5) 42.1 (+14.8) 48.1 (+6.8) 55.0 (+7.5)

Table 2. Results on the test set of ScanNet v2 data efficient
benchmark-limited reconstructions. AP50 = evaluation metric.

Net v2 consists of 1,613 real-world 3D scenes with point-
level semantic and instance annotations. The whole dataset
is split into training, validation, and testing sets, each with
1201, 312, and 100 scans, respectively. S3DIS has 272
scanned 3D layouts across 6 large areas. We follow the com-
mon split in previous work [20, 24] to adopt Area 5 as the
validation set and the other five areas as the training set.

SSL Training Set Partition. On ScanNet v2, we directly
adopt the setting of ScanNet data-efficient benchmark [20]
and split the training set into the labeled and unlabeled sets,
with {1%, 5%, 10%, 20%} labeled data, respectively. Fur-
ther, we follow these four labeling ratios to split S3DIS
training set by randomly sampling the 3D scenes.

Implementation Details. On both datasets, we train the
3D feature extraction network Φ and re-correction module
Ψ by the SGD optimizer, with learning rate set to 0.1 and
0.005, respectively. The learning rate is scheduled with the
polynomial decay of power 0.9. In each round (i.e., step (iii)
and step (ii) in Sec. 4), our model is trained on 4 NVIDIA
2080Ti GPUs for 10k steps with batch size 8 with 4 labeled
scenes and 4 unlabeled scenes.

We adopt standard point cloud data augmentation strate-
gies in [35] to process 3D scenes before feeding them to
Φ. The bounding box scaling ratios for geometric mutation
augmentations when training Ψ are within [0.7, 1.3]. For
all experiments, we adopt the same Sparse U-Net [20, 49]
implemented by MinkowskiEngine [7] as the backbone of
Φ and a much smaller decoder with fewer layers and stages,
as the backbone of Ψ, with a voxelization size of 2.0 cm.
The self-training converges in 3 or 4 rounds. More training

L.R. Method mAP AP50 AP25

TWIST 32.8 52.9 66.820% TWIST+CSC [20] 34.1 53.7 67.8
Our Baseline 36.8 57.2 71.8
GSPN [53] 19.3 37.8 53.4
MTML [25] 20.3 40.2 55.4
PointGroup [24] 34.8 56.9 71.3
3D-MPA [11] 35.3 59.1 72.4

100%

DyCo3D [18] 35.4 57.6 -

Table 3. Comparisons with approaches that are supervised by 100%
of labels on ScanNet validation set. ‘L.R.’ means the label ratio.

details on self-training initialization are illustrated in the
supplementary material.

5.2. Main Results

We evaluate our TWIST and other recent methods on
ScanNet v2 and S3DIS. Table 1 depicts quantitative results
on their validation sets, with 1%, 5%, 10% and 20% labeled
data for supervision. Table 2 presents online comparison re-
sults on the test set of ScanNet v2 data-efficient benchmark1.
The compared methods include (i) Sup-only baseline use
the baseline method in Sec. 3 on the labeled portion of data;
(ii) PointContrast [49]; (iii) CSC [20]; (iv) TWIST; and (v)
TWIST with CSC-pretrained model as initialization.

As shown in Table 1, TWIST significantly improves the
performance over the baselines by leveraging unlabeled data
for model training. In contrast to the two SOTA approaches
(ii)-(iii) that leverage the unsupervised pre-training, TWIST
generates high-quality pseudo labels as explicit supervisions
and surpasses them consistently on all metrics.

A noteworthy finding is that, TWIST with the CSC-pre-
trained weights as initialization in the first round (v) further
boosts the performance as shown in the gray rows of Tables 1
and 2, revealing their complementary strength to this task.
Specifically, their cooperative performance even doubles the
mAP on ScanNet validation set with 1% labels and achieves
34.1% mAP, given only 20% labels. The latter is only 2.7%
lower than the fully-supervised baseline and can be compa-

1http://kaldir.vc.in.tum.de/scannet_benchmark/data_efficient/
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Figure 5. Comparisons of visualization results with CSC (trained with only 5% of labeled scenes). Distinct instances have different colors.

rable to several recent competitive approaches also trained
with 100% labels, as shown in Table 3.

Fig. 5 shows the visual comparisons between TWIST and
CSC on the ScanNet v2 validation set. With only 5% labeled
data for training, TWIST generates clean instance predic-
tions and shows a high capability of separating spatially-
close objects, such as similar adjacent chairs.

5.3. Ablation Study

We also conduct ablation studies to evaluate the key de-
signs in TWIST. Unless otherwise specified, we evaluate on
the ScanNet v2 validation set with 5% training data labeled.

Effects of different components in TWIST. To analyze the
effect of the core components, we try different combinations
and summarize the ablation results in Table 4. We first set
the baseline as Group I. Based on it, the improvement is
mainly derived from the following three aspects.

• Pseudo labels. Groups II and III generate pseudo se-
mantic labels and pseudo offset vectors using the naive
thresholding strategy discussed in Sec. 4, improving
mAP by +2.7% and +1.5%, respectively. Their joint
effect (Group IV) brings further gain (+0.4% mAP).

• Proposal-based pseudo-label update. Group V ex-
ploits component C of TWIST (Fig. 2) to generate
proposal-level pseudo labels and preserve pseudo-label
consistency inside an instance proposal. Compared to
the naive strategy (Group IV) for pseudo-labeling, the
strategy enhances the performance by (+3.5% mAP).

• Re-correction module. This module contributes to
the object-level pseudo-label denoising in two aspects.
For instance proposals with instance certainty scores v̂j
lower than the threshold, we filter them out. Otherwise,
we rectify their semantic categories by re-prediction.
The generated pseudo labels thus become more reliable
(+2.2% mAP), as observed in the last two rows.

Effects of mutual enhancement. TWIST enables inter-label
mutual enhancement by semantic-guided proposal genera-
tion and proposal-based pseudo-label update (see Sec. 4.3).
So, we disable two-way enhancement by altering either of
the above modules and show ablation results in Table 5.

Group S̃u Õu (C) (B) mAP AP50 AP25

I 18.2 32.0 47.0
II ✓ 20.9 36.4 50.1
III ✓ 19.7 35.2 48.6
IV ✓ ✓ 21.3 36.8 50.2
V ✓ ✓ ✓ 24.8 41.2 53.6
VI ✓ ✓ ✓ ✓ 27.0 44.1 56.2

Table 4. Effects of different components of TWIST. S̃u and Õu

denote the pseudo semantic label and pseudo offset vector, respec-
tively. (C) denotes the proposal-based pseudo-label update and (B)
is the re-correction module (refer to modules B and C in Fig. 2).

sem-to-off off-to-sem mAP AP50 AP25 mIoU
✔□ ✘□ 22.5 39.4 51.7 49.4
✘□ ✔□ 21.7 38.7 50.5 52.0
✔□ ✔□ 27.0 44.1 56.2 54.9

Table 5. Effect of mutual enhancement in TWIST. We disable the
inter-label mutual enhancement by blocking either semantic-to-
offset or offset-to-semantic enhancement during self-training.

Group Feature Augmentation mAP AP50 AP25

I xyz+rgb - 22.3 38.0 51.8
II xyz+b.feats. - 25.6 42.3 54.5
III xyz+b.feats. trans. 25.9 42.7 55.0
IV xyz+b.feats. mut. 26.6 43.6 55.7
V xyz+b.feats. trans.+mut. 27.0 44.1 56.2

Table 6. Comparison with different input features and augmentation
strategies of the re-correction module, where ‘b.feats.’ denotes the
backbone feature; ‘trans.’ denotes the geometric transformation;
and ‘mut.’ denotes the geometric mutation.

To disable the offset-to-semantic enhancement, we simply
produce the pseudo semantic labels by point-wise confidence
thresholding, instead of adopting the proposal-based pseudo-
label update. For fair comparison, the generation strategy
of the pseudo offset vector (Eqs. (7) and (8)) remains un-
changed. As observed in rows 1 and 3, it yields inferior
semantic predictions (-5.5% mIoU) and dramatic drop on
instance segmentation accuracy (-4.5% mAP).

On the other hand, to block the semantic-to-offset en-
hancement, we change the clustering algorithm in the in-
stance proposal generation procedure to a class-agnostic
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Round 0 1 2 3 4 5
1% 9.8 14.1 15.6 16.5 17.0 17.1
5% 32.0 38.7 42.3 43.7 44.1 44.1

10% 42.8 45.8 48.3 49.5 49.7 49.7
20% 47.9 51.2 52.0 52.8 52.9 52.9

Table 7. Performance at each self-training round on ScanNet v2,
given {1%, 5%, 10%, 20%} ratios of labeled data. The round 0
denotes the “Sup-only” baseline method. AP50 = evaluation metric.

mechanism. As observed in Table 5 rows 2 and 3, despite
the descent performance of semantic segmentation, its effect
on guiding instance generation is disabled, thus resulting in
5.3% mAP decrease in instance segmentation.

Ablations for the re-correction module. To further explore
impact of the re-correction module, we conduct experiments
among the different settings shown in Table 6.

Regarding the input network features, we observe obvious
performance gain (+3.3% mAP) with the features extracted
from the backbone, i.e., the output of Sparse U-Net of model
Φ, in comparison with the RGB features. It can be attributed
to the captured contextual information in the network feature
derived by the feature aggregation operation, which allows
the re-correction module to leverage neighboring environ-
ment and boost 3D object recognition.

Besides, we compare the effect of different data augmen-
tation strategies. Comparing II and III, we find that simple
geometric transformation, such as rotation, contributes mi-
nor improvement. By including and removing some adjacent
points for geometric mutation, the instance proposals are
enhanced with more variants. Group IV validates the effec-
tiveness of our proposed geometric mutation strategy and
Group V further enhances the performance by combining it
with common augmentation.

Note that we only employ the re-correction module for
proposal evaluation/rectification at the pseudo-label gener-
ation stage. It can also be used at test time to rectify the
semantic class of instance proposals onsite. In another com-
parison, we add the re-correction module to both the baseline
(“Sup-only” in Table 1) and TWIST during the inference.
It brings +2.5% mAP over the baseline (still 6.3% mAP
lower than TWIST) but only +0.2% mAP over TWIST. This
result manifests that TWIST has been well optimized by
the pseudo labels that are consistent with the re-correction
module output. Thus, we do not need this module at test
time for computational efficiency.

Ablations on different self-training rounds. TWIST typi-
cally converges in 3-4 rounds. The quality of the two sets of
pseudo labels (Fig. 4(a)) and model performance (Table 7)
can both be gradually improved iteratively.

Separate semantic and instance improvement. Our
method benefits both 3D semantic and instance segmenta-
tion in the semi-supervised setting. In Table 8, we show im-

On Sem. On Ins.Split Method mIoU mAcc mAP AP50

CSC [20] 29.3 40.0 7.1 13.01% TWIST 31.0 (+1.7) 41.2 (+1.2) 9.0 (+1.9) 16.1 (+3.1)

CSC [20] 49.1 57.2 20.9 36.75% TWIST 54.9 (+5.8) 63.6 (+6.4) 24.0 (+3.1) 40.7 (+4.0)

CSC [20] 59.5 69.3 27.3 45.010% TWIST 61.1 (+1.6) 70.6 (+1.3) 29.2 (+1.9) 47.4 (+2.4)

CSC [20] 64.1 73.1 30.6 50.320% TWIST 66.5 (+2.4) 74.7 (+1.6) 31.8 (+1.2) 51.6 (+1.3)

Table 8. Performance improvement on both semantic segmentation
and instance segmentation tasks compared with CSC.

provement in each task and compare with SOTA pre-training
approach CSC [20]. Our approach outperforms CSC with
all data split settings (+1.6%∼+5.8% mIoU) on semantic
segmentation task, thanks to the pseudo semantic labels.

In the instance segmentation task, as our semantic branch
yields higher accuracy over CSC, for fair comparison on
the instance clustering quality, we discard our semantic re-
sults and directly replace it with the semantic predictions
from CSC. As presented in the gray regions, TWIST still
achieves better improvement with the help of pseudo offset
supervision for instance clustering.

6. Conclusion

We have presented TWIST, a new self-training-based
framework for semi-supervised 3D instance segmentation.
TWIST considers two kinds of pseudo labels for providing
semantic- and instance-level supervisions on unlabeled data
to effectively enhance the model training. Our three pro-
posed modules in TWIST work hand-in-hand to improve
the pseudo-label accuracy, through the object-level denoise
and the two-way inter-label mutual enhancement. With the
enhanced pseudo labels, TWIST outperforms existing 3D
pre-training approaches and demonstrates its complementary
strength, since TWIST can cooperate with the existing 3D
pre-training approaches to further boost performance.

Our approach does not generate pseudo labels for poor-
quality instance proposals. For some “hard” objects, their
instance proposals always have low quality, even when pre-
dicted by strong fully-supervised networks with 100% labels.
So, these objects may not receive pseudo supervisions in
self-training. In future work, we will recall the instance pro-
posals to the pseudo-labeling process and further facilitate
label-efficient 3D instance segmentation.
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