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Abstract

Contrastive learning relies on an assumption that posi-
tive pairs contain related views that share certain underly-
ing information about an instance, e.g., patches of an im-
age or co-occurring multimodal signals of a video. What
if this assumption is violated? The literature suggests that
contrastive learning produces suboptimal representations
in the presence of noisy views, e.g., false positive pairs
with no apparent shared information. In this work, we pro-
pose a new contrastive loss function that is robust against
noisy views. We provide rigorous theoretical justifications
by showing connections to robust symmetric losses for noisy
binary classification and by establishing a new contrastive
bound for mutual information maximization based on the
Wasserstein distance measure. The proposed loss is com-
pletely modality-agnostic and a simple drop-in replacement
for the InfoNCE loss, which makes it easy to apply to ex-
isting contrastive frameworks. We show that our approach
provides consistent improvements over the state-of-the-art
on image, video, and graph contrastive learning bench-
marks that exhibit a variety of real-world noise patterns.

1. Introduction

Contrastive learning [ 1, 2, 3] has become one of the most
prominent self-supervised approaches to learn representa-
tions of high-dimensional signals, producing impressive re-
sults with image [4, 5, 6, 7, 8, 9], text [10, 11, 12, 13], au-
dio [14, 15, 16], and video [17, 18, 19]. The central idea
is to learn representations that capture the underlying in-
formation shared between different “views” of data [3, 20].
For images, the views are typically constructed by applying
common data augmentation techniques, such as jittering,
cropping, resizing and rotation [6], and for video the views
are often chosen as adjacent frames [21] or co-occurring
multimodal signals, such as video and the corresponding
optical flow [22], audio [19] and transcribed speech [17].

Designing the right contrasting views has shown to be
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Figure 1. Noisy views can deteriorate contrastive learning. We
propose a new contrastive loss function (RINCE) that rescales the
sample importance in the gradient space based on an estimated
noise level. With a simple turn of a knob (¢ € (0, 1]), we can up-
weight or downweight sample pairs with low shared information.

a key ingredient of contrastive learning [6, 23]. This often
requires domain knowledge, intuition, trial-and-error (and
luck!). What would happen if the views are wrongly chosen
and do not provide meaningful shared information? Prior
work has reported deteriorating effects of such noisy views
in contrastive learning under various scenarios, e.g., un-
related image patches due to extreme augmentation [20],
irrelevant video-audio pairs due to overdubbing [24], and
misaligned video-caption pairs [17]. The major issue with
noisy views is that representations of different views are
forced to align with each other even if there is no meaning-
ful shared information. This often leads to suboptimal rep-
resentations that merely capture spurious correlations [25]
or make them collapse to a trivial solution [26]. Worse yet,
when we attempt to learn from large-scale unlabeled data
— i.e., the scenario where self-supervised learning is par-
ticularly expected to shine — the issue is only aggravated
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because of the increased noise in the real-world data [27],
hindering the ultimate success of contrastive learning.

Consequently, a few attempts have been made to design
contrastive approaches that are noise-tolerant. For example,
Morgado et al. [24] optimize a soft instance discrimination
loss to weaken the impact of noisy views. Miech et al. [17]
address the misalignment between video and captions by
aligning multiple neighboring segments of a video. How-
ever, existing approaches are often tied to specific modali-
ties or make assumptions that may not hold for general sce-
narios, e.g., MIL-NCE [17] is not designed to address the
issues of irrelevant audio-visual signals.

In this work, we develop a principled approach to make
contrastive learning robust against noisy views. We start
by making connections between contrastive learning and
the classical noisy binary classification in supervised learn-
ing [28, 29]. This allows us to explore the wealth of litera-
ture on learning with noisy labels [30, 31, 32]. In particular,
we focus on a family of robust loss functions that has the
symmetric property [29], which provides strong theoretical
guarantees against noisy labels in binary classification. We
then show a functional form of contrastive learning that can
satisfy the symmetry condition if given a proper symmetric
loss function, motivating the design of new contrastive loss
functions that provide similar theoretical guarantees.

This leads us to propose Robust InfoNCE (RINCE), a
contrastive loss function that satisfies the symmetry condi-
tion. RINCE can be understood as a generalized form of the
contrastive objective that is robust against noisy views. In-
tuitively, its symmetric property provides an implicit means
to reweight sample importance in the gradient space with-
out requiring an explicit form of noise estimator. It also
provides a simple “knob” (a real-valued scalar ¢ € (0, 1])
that controls the behavior of the loss function balancing the
exploration-exploitation trade-off (i.e., from being conser-
vative to playing adventures on potentially noisy samples).

We also provide a theoretical analysis of the proposed
RINCE objective and show that it extends the analyses by
Ghosh et al. [29] to the self-supervised contrastive learning
regime. Furthermore, we relate the proposed loss function
to dependency measurement. Analogous to InfoNCE loss,
which is a lower bound of mutual information between two
views [3], we show that RINCE is a lower bound of Wasser-
sein Dependency Measure (WDM) [33], even in the noisy
setting. By replacing the KL divergence in the mutual in-
formation estimator with the Wasserstein distance, WDM is
able to capture the geometry of the representation space via
the equipped metric space and provides robustness against
noisy views better than the KL divergence, both in theory
and practice. In particular, the features learned with RINCE
achieve better class-wise separation, which is proved to be
crucial to improve generalization [34].

Despite its rigorous theoretical background, implement-

ing RINCE requires only a few lines code and can be a sim-
ple drop-in replacement for the InfoNCE loss to make con-
trastive learning robust against noisy views. Since InfoNCE
sets the basis for many modern contrastive methods such as
SimCLR [6] and MoCo-v1/v2/v3 [5, 7, 35], our construc-
tion can be easily applied to many existing frameworks.
Finally, we provide strong empirical evidence demon-
strating the robustness of RINCE against noisy views un-
der various scenarios with different modalities and noise
types. We show that RINCE improves over the state-of-the-
art in image [36, 37], video [27, 38] and graph [39] self-
supervised learning benchmarks, demonstrating its general-
ity across different modalities. We also show that RINCE
exhibits strong robustness against different types of noise
such augmentation noise [20, 40], label noise [28, 41], and
noisy audio-visual correspondence [24]. The improvement
is consistently observed across different dataset scales and
training epochs, demonstrating the scalability and compu-
tational efficiency. In short, our main contributions are:

* We propose RINCE, a new contrastive learning objec-
tive that is robust against noisy views of data;

* We provide a theoretical analysis to relate the proposed
loss to symmetric losses and dependency measurement;

* We demonstrate our approach on real-world scenarios
of image, video, and graph contrastive learning.

2. Related Work

Contrastive Learning Contrastive approaches have be-
come prominent in unsupervised representation learning [ 1,
,42]. InfoNCE [3] and its variants [5, 6, 8, 9] achieve state-
of-the-art across different modalities [10, 14, 17, 18, 19].
Modern approaches improve upon InfoNCE from different
directions. One line of work focuses on modifying training
mechanisms, e.g., appending projection head [6], momen-
tum encoder with dynamic dictionary update [5, 7], siamese
networks with stop gradient trick [8, 43], and online clus-
ter assignment [44]. Another line of work refines the loss
function itself to make it more effective, e.g., upweight hard
negatives [ 12, 45], correct false negatives [1 1], and alleviate
feature suppression [46]. Along this second line of work,
we propose a new contrastive loss function robust against
noisy views. Some of prior work in this direction [17, 24]
was demonstrated on limited modalities only; we demon-
strate its generality on image [37], video [27, 38], and graph
[40, 47, 48] contrastive learning scenarios. Our approach is
orthogonal to the first line of work; we show that RINCE
can easily be applied to some of existing training mecha-
nisms such as SimCLR [6] and MoCo-v1/v2/v3 [5, 7, 35].

Robust Loss against Noisy Labels Learning with noisy
labels has been actively explored in recent years [28, 29,
One line of work
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attempts to develop robust loss functions that are noise-
tolerant [29, 30, 56, 57]. Ghosh et al. [29] prove that sym-
metric loss functions are robust against noisy labels, e.g.,
Mean Absolute Error (MAE) [30], while commonly used
Cross Entropy (CE) loss is not. Based on this idea, Zhang
and Sabuncu [56] propose the generalized cross entropy loss
to combine MAE and CE loss functions. A similar idea is
adopted in [57] by combining the reversed cross entropy
loss with CE loss. In the next section, we relate noisy views
to noisy labels by interpreting contrastive learning as binary
classification, and developed a robust symmetric contrastive
loss that enjoys the similar theoretical guarantees.

3. From Noisy Labels to Noisy Views

We start by connecting two seemingly different but re-
lated frameworks: supervised binary classification with
noisy labels and self-supervised contrastive learning with
noisy views. We then introduce a family of symmetric loss
functions that is noise-tolerant and show how we can trans-
form contrastive objectives to a symmetric form.

3.1. Symmetric Losses for Noisy Labels

Denoting the input space by X and the binary output
space by Y = {—1,1}, let S = {x;,y;}>, be the un-
observed clean dataset that is drawn i.i.d. from the data
distribution D. In the noisy setting, the learner obtains
a noisy dataset S, = {x;,9;}/~,, where §; = y; with
probability 1 — 7, and y; = —y; with probability 7,,.
Note that the noise rate n, is data point-dependent. For
a classifier f € F : X — R, the expected risk under
the noise-free scenario is R¢(f) = Ep[l(f(z),y)] where
¢ : R x )Y — Ris a binary classification loss function.
When the noise exists, the learner minimizes the noisy ex-
pected risk R/ (f) = Ep, [((f(z),7)].

Ghosh et al. [29] show that symmetric loss functions are
robust against noisy labels in binary classification. In partic-
ular, a loss function ¢ is symmetric if it sums to a constant:

s, 1)+ 4L(s,—1)=¢, VseR, (D

where s is the prediction score from f. Note that the sym-
metry condition should also hold with the gradients w.r.t. s.
They show that if the noise rate is 7, < Nmax < 0.5,Vz €
X and if the loss is symmetric and non-negative, the min-
imizer of the noisy risk f; = arginf,.r R"(f) approxi-
mately minimizes the clean risk:

R(f:;) S 6/(1 - 277111;1x)a

where € = inf ;e 7 R(f) is the optimal clean risk. This im-
plies that the noisy risk under symmetric loss is a good sur-
rogate of the clean risk. In Appendix A.2, we further relax
the non-negative constraint on the loss with a corollary.’

IThis is important for our proposed RINCE loss that involves an expo-
nential function £(s,y) = —ye®, which can produce negative values.

3.2. Towards Symmetric Contrastive Objectives

The results above suggest that we can achieve robust-
ness against noisy views if a contrastive objective can be
expressed in a form that satisfies the symmetry condition in
the binary classification framework. To this end, we first
relate contrastive learning to binary classification, and then
express it in a form where symmetry can be achieved.

Contrastive learning as binary classification. Given
two views X and V', we can interpret contrastive learning as
noisy binary classification operating over pairs of samples
(z,v) with a label 1 if it is sampled from the joint distribu-
tion, (x,v) ~ Pxy, and —1 if it comes from the product of
marginals, (z,v") ~ Px Py. In the presence of noisy views,
some negative pairs (z,v") ~ Px Py could be mislabeled
as positive, introducing noisy labels.

To see this more concretely, let us consider the InfoNCE
loss [3], one of the most widely adopted contrastive objec-

tives [4, 6, 11, 58]. It minimizes the following loss function:
(s
Linfonce(s) = —log —————
et 3 e
ef @ g(v)/t

= —log 2)

e/ @T9)/t 1 K ef@Tgwi/t’
where s = {sT,{s; }}£,}, s™ and s; are the scores of re-
lated (positive) and unrelated (negative) pairs and ¢ is the
temperature parameter introduced to avoid gradient satura-
tion. The expectation of the loss is taken over (z,v) ~ Pxy
and K independent samples v; ~ Py, where Pxy de-
notes the joint distribution over pairs of views such as trans-
formations of the same image or co-occurring multimodal
signals. Although InfoNCE has a functional form of the
(K + 1)-way softmax cross entropy loss, the model ulti-
mately learns to classify whether a pair (x,v) is positive
or negative by maximizing/minimizing the positive score
sT/negative scores s; . Therefore, InfoNCE under noisy
views can be seen as binary classification with noisy la-
bels. We acknowledge that similar interpretations have been
made in prior works under different contexts [4, 59, 60].

Symmetric form of contrastive learning. Now we turn
to a functional form of contrastive learning that can achieve
the symmetric property. Assume that we have a noise-
tolerant loss function ¢ that satisfies the symmetry condi-
tion of equation 1. We say a contrastive learning objective
is symmetric if it accepts the following form

K
L(s)= st 1) +AY Ls;,—1) 3)
Positive Pair i=1

K Negative Pairs

which consists of a collection of (K + 1) binary classifica-
tion losses; A > 0 is a density weighting term controlling
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n

# pos: exponent for positive example
2| # neg: sum of exponents for negative examples
3| # g, lam: hyperparameters of RINCE
info_nce_loss = -log(pos/ (pos+neq))
rince_loss = -pos**q/q + (lamx (pos+neq))**q/q

Figure 2. Pseudocode for RINCE. The implementation only re-
quires a small modification to the InfoNCE code.

the ratio between classes 1 (positive pairs) and —1 (nega-
tive pairs). Reducing A places more weight on the positive
score s, while setting \ to zero recovers the negative-pair-
free contrastive loss such as BYOL [8].

Contrastive objectives that satisfy the symmetric form
enjoy strong theoretical guarantees against noisy labels as
described in Ghosh et al. [29], as long as we plug in the
right contrastive loss function ¢ that satisfies the symme-
try condition. Unfortunately, the InfoNCE loss [3] does not
satisfy the symmetry condition in the gradients w.r.t. s/~
(we provide the full derivations in Appendix A.5). This mo-
tivates us to develop a new contrastive loss function that sat-
isfies the symmetry condition, described next.

4. Robust InfoNCE Loss

Based on the idea of robust symmetric classification loss,
we present the following Robust InfoNCE (RINCE) loss:

st st K s,
P A NI GRS SAPTLD)
RincE (8) = + ;
q q
where ¢, A € (0,1]. Figure 2 shows the pseudo-code of
RINCE,; it is simple to implement. When ¢ = 1, RINCE
becomes a contrastive loss that fully satisfies the symmetry

S

property in the form of equation 3 with £(s,y) = —ye*:

K

A, q= st o=

’CRII?ICé(S) =—(1-XNe® +A E esi .
i=1

Notice that the exponential loss —ye® satisfies the symmet-
ric condition defined in equation 1 with ¢ = 0. Therefore,
when ¢ — 1, we achieve robustness against noisy views in
the same manner as binary classification with noisy labels.
In the limit of ¢ — 0, RINCE becomes asymptotically
equivalent to InfoNCE, as the following lemma describes:

Lemma 1. For any \ > 0, it holds that
Jimy Laiticr(s) = Lintoncr(s) + log(A);

(}i_r)r%) %ﬂﬁiﬁCE(S) = %ElnfoNCE (s)-
We defer the proofs to Appendix A. Note that the con-
vergence also holds for the derivatives: optimizing RINCE
in the limit of ¢ — 0 is mathematically equivalent to op-
timizing InfoNCE. Therefore, by controlling ¢ € (0, 1] we
smoothly interpolate between the InfoNCE loss (¢ — 0)
and the RINCE loss in its fully symmetric form (¢ — 1).

(a) Loss Value

(b) Gradient Scale o

Figure 3. Loss Visualization. We visualize the (a) loss value
and the (b) gradient scale with respect to the positive score s for
different g while setting A = 0.5. The gradient scale of InfoNCE
(¢ — 0) is larger when the positive score is smaller (hard positive
pair). In contrast, for fully symmetric RINCE (q = 1), the gradient
is larger when positive score is large (easy positive pair).

4.1. Intuition behind RINCE

We now analyze the behavior of RINCE through the lens
of exploration-exploitation trade-off. In particular, we re-
veal an implicit easy/hard positive mining scheme by in-
specting the gradients of RINCE under different ¢ values,
and show that we achieve stronger robustness (more ex-
ploitation) with larger ¢ at the cost of potentially useful
clean hard positive samples (less exploration).

To simplify the analysis, we consider InfoNCE and
RINCE with a single negative pair (K = 1):

LinfoNcE(S) = — 10g(f38+/(€3+ +e));

A (e e )
Bt = 0y o e

.sT
—e?'s

We visualize the loss and the scale of the gradients with
respect to positive scores s in Figure 3. Although the loss
values are different for each g, they follow the same princi-
ple: The loss achieves its minimum when the positive score
s is maximized and the negative score s~ is minimized.

The interesting bit lies in the gradients. The InfoNCE
loss (¢ — 0) places more emphasis on hard positive pairs,
i.e., the pairs with low positive scores s™ (the left-most
part in the plot). In contrast, the fully symmetric RINCE
loss (¢ = 1) places more weights on easy positive pairs
(the right-most part). This reveals an implicit trade-off be-
tween exploration (convergence) and exploitation (robust-
ness). When ¢ — 0, the loss performs hard positive mining,
providing faster convergence in the noise-free setting. But
in the presence of noise, exploration is harmful; it wrongly
puts higher weights to false positive pairs because noisy
samples tend to induce larger losses [24, 55, 61, 62], and
this could hinder convergence. In contrast, when ¢ — 1,
we perform easy positive mining. This provides robustness
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especially against false positives; but this is done at the cost
of exploration with clean hard positives. An important as-
pect here is that RINCE does not require an explicit form of
noise estimator: the scores s and s—, and the relationship
between the two (which is what the loss function measures)
act as noise estimates. In practice, we set ¢ € [0.1,0.5] to
strike the balance between exploration and exploitation.

Note that both ¢ — 0 and ¢ — 1 naturally perform
hard negative mining; both their derivatives put exponen-
tially more weights on hard negative pairs. In Appendix C.1
we provide extended analysis of the gradients with respect
to both s* and s~ and show that RINCE performs easy pos-
itive mining and hard negative mining.

4.2. Theoretical Underpinnings

Next, we provide an information-theoretic explanation
on what makes RINCE robust against noisy views. In
particular, we show that RINCE is a contrastive lower-
bound of mutual information (MI) expressed in Wasserstein
dependency measure (WDM) [33], which provides supe-
rior robustness against sample noise compared to the Kull-
back-Leibler (KL) divergence thanks to strong geometric
properties of the Wasserstein metric. We further show that,
even in the presence of noise, RINCE is a lower bound of
clean WDM, indicating its robustness against noisy views.

Limitations of KL divergence in MI estimation. With-
out loss of generality, let f = g and consider f = f' o ¢,
where ¢ is a representation encoder and f is a projection
head [6]. Also, let P? = ¢4 P be the pushforward measure
of P with respect to ¢. It has been shown that InfoNCE is
a variational lower-bound of MI in the representation space
expressed with KL-divergence [20, 63]:

—E [ Linonce ()] +log(K) < I(¢(X), (V)
= Dx(P%y, PLPY).

Intuitively, maximizing MI can be interpreted as maximiz-
ing the discrepancy between positive and negative pairs.
However, prior works [33, 64] have identified theoretical
limitations of maximizing MI using the KL divergence: Be-
cause KL divergence is not a metric, it is sensitive to small
differences in data samples regardless of the geometry of
the underlying data distributions. Therefore, the encoder ¢
can capture limited information shared between X and V'
as long as the differences are sufficient to maximize the KL
divergence. Note that this can be especially detrimental in
the presence of noisy views, as the learner can quickly set-
tle on spurious correlations in false positive pairs due to the
absence of the actual shared information.

RINCE is a lower bound of WDM. We now establish
RINCE as a lower bound of WDM [33], which is proposed
as a replacement for the KL divergence in MI estimation.

WDM is based on the Wasserstein distance, a distance
metric between probability distributions defined via an op-
timal transport cost. Letting ;1 and v € Prob(R¢ x R%)
be two probability measures, we define the Wasserstein-1
distance with a Euclidean cost function as

W(/J/, V) - Weli_lr%ft v)

E oy (1% =X+ v - v]
(X' vh

where I1(1, ) denotes the set of measure couplings whose

marginals are i and v, respectively. By virtue of symmetry

when ¢ = 1,if A > 1/(K + 1), the Kantorovich-Rubinstein

duality [65] implies that (full theorem in Appendix A.3):

B [L3Ek(s)] < L+ Tw(6(X), (V)
= L-W(P},, PLPY), )

where Iy (¢(X), ¢(V)) is the WDM defined in [33] and L
is a constant that depends on ¢, A, and the Lispchitz constant
of the projection head f. Note that we are not aware of any
work that showed it is possible to establish a similar bound
with WDM for the InfoNCE loss.

This provides another explanation of what makes RINCE
robust against noisy views. Unlike InfoNCE which max-
imizes the KL divergence, optimizing RINCE is equiva-
lent to maximizing the WDM with a Lipschitz function.
Equipped with a proper metric, this allows RINCE to mea-
sure the divergence between two distributions Pfgv and
ng P{f without being overly sensitive to individual sample
noise, as long as the noise does not alter the geometry of
the distributions. This also allows the encoder ¢ to learn
more complete representations, as maximizing the Wasser-
stein distance requires the encoder to not only model the
density ratio between the two distributions but also the op-
timal cost of transporting one distribution to another.

RINCE is still a lower bound of WDM even with noise.
Finally, we show that RINCE still maximizes the noise-less
WDM under additive noise, corroborating the robustness of
RINCE. Let’s consider a simple mixture noise model:

Py = (1 —n)Pxy +nPxPy,

where 7 is the noise rate and the noisy joint distribution
P, is a weighted sum between the noise-less positive dis-
tribution Pxy and negative distribution Px Py. Note that
the marginals of P, are still Px and Py by construction.
The intuition behind mixture noise model is that when we
draw positive pairs from Py, we obtain false positives
from Px Py with probability 7. Via the symmetry of the
contrastive loss, we can extend bound (4) as follows (proof
in Appendix A.4):

—Epy [ﬁﬁiﬁa(s)] <@ =mn)-L-In(¢(X),6(V)).
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Figure 4. Noisy CIFAR-10. We show the top-1 accuracy of
RINCE with different values of ¢ across different noise rate 7.
Large g (¢ = 0.5,1) leads to better robustness, while smaller ¢
(q = 0.01) performs similar to InfoNCE (¢ — 0).
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Figure 5. t-SNE Visualization on CIFAR-10 with label noise.
Colors indicate classes. RINCE leads to better class-wise separa-
tion than the InfoNCE loss in both noise-less and noisy cases.

Comparing to the bound (4), the right hand side is
rewieghted with (1 — 7). This implies that minimizing
RINCE with noisy views still maximizes a lower bound of
noise-less WDM. Despite the simplicity of the analysis, it
intuitively relates dependency measures and the noisy views
with interpretable bounds. It would be an interesting future
direction to extend the analysis to more complicated noise
models, e.g., P¢, = (1 —n)Pxv + nQxv, where Q is an
unknown perturbation on positive distribution.

5. Experiments

We evaluate RINCE on various contrastive learning sce-
narios involving images (CIFAR-10 [36], ImageNet [37]),
videos (ACAV100M [27], Kinetics400 [38]) and graphs
(TUDataset [39]). Empirically, we find that RINCE is in-
sensitive to the choice of A; we simply set A = 0.01 for all
vision experiments and A = 0.025 for graph experiments.

5.1. Noisy CIFAR-10

We begin with controlled experiments on CIFAR-10 to
verify the robustness of RINCE against synthetic noise by
controlling the noise rate 77. We consider two noise types:

Method | AtoSimCLR[6] | Top1 Tops5
Supervised [67] | N/A | 765 -
SimSiam [43] No negative pairs 71.3 -
BYOL [8] No negative pairs 74.3 91.6
Barlow Twins [9] | Redundancy reduction | 73.2 91.0
SwAV [44] | Cluster discrimination | 75.3 -
SimCLR [6] None 69.3 89.0
+RINCE (Ours) | Symmetry controller ¢ | 70.0  89.8
MoCo [5] Momentum encoder 60.6 -
MoCo-v2 [7] Momentum encoder 71.1 90.1
MoCo-v3 [35] Momentum encoder 73.8 -
+RINCE (Ours) | Symmetry controller ¢ | 74.2  91.8

Table 1. Linear Evaluation on ImageNet. All the methods use
ResNet-50 [67] as backbone architecture with 24M parameters.

Label noise. We start with the case of supervised con-
trastive learning [4 1] where positive pairs are different im-
ages of the same label. This allows us to control noise in the
traditional sense, i.e., learning with noisy labels. Similar to
[56], we flip the true labels to semantically related ones,
e.g., CAT +» DOG with probability 7/2. This is commonly
referred to as class-dependent noise [55, 56, 57].

Augmentation noise. We consider the self-supervised
learning scenario and vary the crop size during data aug-
mentation similar to [20], i.e., after applying all the trans-
formations as in SimCLR [6], images are further cropped
into 1/5 of their original size with probability 7. This effec-
tively controls the noise rate as cropped patches will most
likely to be too small to contain any shared information.

Figure 4 shows the results of SimCLR trained with In-
foNCE and RINCE with different choices of ¢ and \. When
the augmentation noise is present, e.g., n = 0.4, the accu-
racy of InfoNCE drops from 91.14% to 87.33%. In con-
trast, the robustness of RINCE is enhanced by increasing g,
achieving 89.01% when ¢ = 1.0. InfoNCE also fails to ad-
dress label noise and suffers from significant performance
drop (93.38% — 87.11% when n = 0.8). In comparison,
RINCE retains the performance even when the noise rate
is large (91.59% for ¢ = 1.0). In both cases, reducing the
value of ¢ makes the performance of RINCE closer to In-
foNCE, verifying our analysis in Lemma 1.

Figure 5 shows t-SNE visualization [66] of representa-
tions learned with InfoNCE and RINCE (¢ = 1.0) under
different label noise. As the noise rate increases, represen-
tations of different classes start to tangle up for InfoNCE,
while RINCE still achieves decent class-wise separation.

5.2. Image Contrastive Learning

We verify our approach on the well-established Ima-
geNet benchmark [37]. We adopt the same training proto-
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Backbone T 1"CMPC  LVIDB UCK
Input Size

16x 1122 337 629

Method

3D-RotNet [68] R3D-18

ClipOrder [69] R3D-18 16x 1122 309 724
DPC [70] R3D-18 25x 1282 357 757
CBT [71] S3D 16x 1122 446 795

AVTS [72] | MC3-18 25 %2242 569  85.8

32x 1122 47.1 83.1
32x 2242 52.6 86.8
32x2242 55.0 85.6
32x 2242 59.9 86.9
32x2242 60.8 87.5

32 %2242 57.8 88.6
32x 2242 61.6 88.8

SeLaVi [73] | R(2+1)D-18
XDC [74] | RQ2+1)D-18
Robust-xID [24] | R(2+1)D-18
Cross-AVID [19] | R(2+1)D-18
AVID+CMA [19] | R(2+1)D-18

InfoNCE (Ours) | R(2+1)D-18
RINCE (Ours) | R(2+1)D-18

GDT [23]

30x 1122 62.3*  90.9"

R(2+1)D-18

*Based on an advanced hierarchical data augmentation during pretraining.

Table 2. Kinetics400-pretrained performance on UCF101 and
HMDBS51 (top-1 accuracy). Ours use the same data augmenta-
tion approach as Cross-AVID and AVID+CMA, while GDT uses
a hierarchical sampling process to obtain good performance.

col and hyperparameter settings of SimCLR [6] and MoCo-
v3 [35] and simply replace the InfoNCE with our RINCE
loss (¢ = 0.1 and ¢ = 0.6, respectively) as shown in Fig-
ure 2. Table 1 shows that RINCE improves InfoNCE (Sim-
CLR and MoCo-v3) by a non-trivial margin. We also in-
clude results from the SOTA baselines, where they improve
SimCLR by introducing dynamic dictionary plus momen-
tum encoder (MoCo-v1/v2/v3 [5, 7, 35]), removing nega-
tive pairs plus the stop-gradient trick (SimSiam [43], BYOL
[8]), or online cluster assignment (SWAV [44]). In compari-
son, our work is orthogonal to the recent developments, and
the existing tricks can be applied along with RINCE.

Figure 6 shows the positive pairs from SimCLR aug-
mentations and the corresponding positive scores st =
f(z)T g(v) output by trained RINCE model. Examples with
lower positive scores contain pairs that is less informative
to each other, while semantically meaningful pairs often
have higher scores. This implies that positive scores are
good noise detectors, and down-weighting the samples with
lower positive score brings robustness during training, veri-
fying our analysis in section 4.1.

5.3. Video Contrastive Learning

We examine our approach in the audio-visual learning
scenario using two video datasets: Kinetics400 [38] and
ACAV100M [27]. Here, we find that simple g-warmup im-
proves the stability of RINCE, i.e., g starts at 0.01 and lin-
early increases to 0.4 until the last epoch. We apply this
to all RINCE models in this section. As we show below,
RINCE outperforms SOTA noise-robust contrastive meth-
ods [19, 24] on Kinetics400, while also providing scalabil-
ity and computational efficiency compared to InfoNCE.

08<sT <09 st >095

sT <0.75

Figure 6. Positive pairs and their scores. The positive scores
st € [~1,1] are output by the trained RINCE model (tempera-
ture = 1). Pairs that have lower scores are visually noisy, while
informative pairs often have higher scores.

Kinetics400 For fair comparison to SOTA, we follow the
same experimental protocol and hyperparameter settings of
[19] and simply replace their InfoNCE loss functions with
RINCE as shown in Figure 2. We use the same network
architecture, i.e., 18-layer R(2+1)D video encoder [75], 9-
layer VGG-like audio encoder, and 3-layer MLP projection
head producing 128-dim embeddings. We use the ADAM
optimizer [76] for 400 epochs with 4,096 batch size, le-
4 learning rate and le-5 weight decay. The pretrained en-
coders are finetuned on UCF-101 [77] and HMDB-51 [78]
with clips composed of 32 frames of size 224 x 224. We
defer the full experimental details to Appendix B.

Table 2 shows RINCE outperforming most of the base-
lines, including Robust-xID [24] and AVID+CMA [19]
which are recent InfoNCE-based SOTA methods proposed
to address the noisy view issues in audio-visual contrastive
learning. Considering the only change required is the sim-
ple replacement of the InfoNCE with our RINCE loss, the
results clearly show the effectiveness of our approach. The
simplicity means we can easily apply RINCE to a variety
of InfoNCE-based approaches, such as GDT [23] that uses
advanced data augmentation to achieve SOTA results.

ACAV100M We conduct an in-depth analysis of RINCE
on ACAVI100M [27], a recent large-scale video dataset for
self-supervised learning. Compared to Kinetics400 which
is limited to human actions, ACAV100M contains videos
“in the wild” exhibiting a wide variety of audio-visual pat-
terns. The unconstrained nature of the dataset makes it a
good benchmark to investigate the robustness of RINCE to
various types of real-world noise, e.g., background music,
overdubbed audio, studio narrations, etc.

We focus on evaluating the (a) scalability and (b) conver-
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Figure 7. RINCE outperforms InfoNCE with fewer epochs
across different scales The results are based on ACAV100M-
pretrained models transferred to UCF-101.

gence rate of RINCE, thereby answering the question: Will
it retrain its edge over InfoNCE (a) even in the large-scale
regime and (b) with a longer training time? We follow the
same experimental setup as described above, but reduce the
batch size to 512 and report the results only on the first split
of UCF-101 to make our experiments tractable.

Figure 7 (a) shows the top-1 accuracy of RINCE and
InfoNCE across different data scales and training epochs.
RINCE outperforms InfoNCE by a large margin at every
data scale. In terms of the convergence rate, RINCE is com-
parable to or even outperforms fully-trained (200 epochs)
InfoNCE models with only 100 or fewer epochs. Figure 7
(b) gives a closer look at the convergence at S0K and 200K
scales. Interestingly, InfoNCE saturates and even degener-
ates after epoch 150, while RINCE keeps improving. This
verifies our analysis in section 4.1: InfoNCE can overfit
noisy samples due to its exploration property, while RINCE
downweights them and continue to obtain the learning sig-
nal from clean ones, achieving robustness against noise.

5.4. Graph Contrastive Learning

To see whether the modality-agnostic nature of RINCE
applies beyond image and video data, we examine our ap-
proach on TUDataset [39], a popular benchmark suite for
graph inference on molecules (BZR, NCI1), bioinformatics
(PROTEINS), and social network (RDT-B, IMDB-B). Un-
like vision datasets, data augmentation for graphs requires
careful engineering with domain knowledge, limiting the
applicability of InfoNCE-type contrastive objectives.

For fair comparison, we follow the protocol of [40] and
train graph isomorphism networks [79] with four types of
data augmentation: node dropout, edge perturbation, at-
tribute masking, and subgraph sampling. We train models
using ADAM [76] for 20 epochs with a learning rate 0.01
and report mean and standard deviation over 5 independent
trials. We set ¢ = 0.1 for all the experiments in this section.

Table 3 shows that RINCE outperforms SOTA InfoNCE-

Methods ‘ RDT-B NCI1 PROTEINS DD

node2vec [80] - 54.9+1.6 57.5+3.6 -

sub2vec [81] | 71.5+£04 52.8+1.5 53.0£5.6 -

graph2vec [82] | 75.8£1.0 73.2+1.8 73.3+2.1 -
InfoGraph [47] | 82.5+14 76.2+1.1 74.440.3 72.9+1.8
GraphCL [40] | 89.5£0.8 77.9+0.4 74.4+0.5 78.6+0.4
JOAO [83] | 85.3+£1.4 78.1+0.5 74.6+£0.4 77.3+0.5
JOAOV2 [83] | 86.4£1.5 78.4%0.5 74.1£1.1 77.4£1.2
InfoNCE* (Ours) | 89.9+0.4 78.2+0.8 74.440.5 78.6+0.8
RINCE (Ours) | 90.9+0.6 78.6+0.4 74.7+£0.8 78.7+0.4

*GraphCL [40] but uses the same data augmentation as RINCE.

Table 3. Self-supervised representation learning on TUDataset:
The baseline results are excerpted from the published papers.

BZR IMDB-B

—e— RINCE —e— RINCE
InfoNCE 72 InfoNCE

7
=N

Topl Accuracy
gz

3

0.1 0.2 03 04 0.5 0.6 0.1 02 03 04 0.5 0.6
Perturbation Rate Perturbation Rate

Figure 8. Performance v.s. Perturbation Rate: We increase
the perturbation rate of node dropping, edge perturbation, and at-
tribute masking from 10% to 60%. RINCE outperforms InfoNCE
in terms of accuracy and variance when perturbation enhances.

based contrastive methods, GraphCL and JOAO /JOAOV2,
setting the new records on all four datasets. GraphCL ap-
plies different augmentations for different datasets, while
JOAO/JOAOV2 require solving bi-level optimization to
choose optimal augmentation per dataset. In contrast, we
apply the same augmentation across all four datasets and
achieve competitive performance, demonstrating its gen-
erality and robustness. In Figure 8, we control pertur-
bation rate by applying three augmentation types (node
dropout, edge perturbation, attribute masking) to different
% of nodes/edges. We show results on two datasets most
sensitive to augmentation. Again, RINCE consistently out-
perform InfoNCE and has relatively smaller variances when
the noise rate increases.

6. Conclusion

We presented Robust InfoNCE (RINCE) as a simple
drop-in replacement for the InfoNCE loss in contrastive
learning. Despite its simplicity, it comes with strong the-
oretical justifications and guarantees against noisy views.
Empirically, we provided extensive results across image,
video, and graph contrastive learning scenarios demonstrat-
ing its robustness against a variety of realistic noise patterns.
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