
Volumetric Bundle Adjustment for Online Photorealistic Scene Capture

Ronald Clark
Imperial College London

ronald.clark@imperial.ac.uk

Abstract

Efficient photorealistic scene capture is a challenging
task. Current online reconstruction systems can operate
very efficiently, but images generated from the models cap-
tured by these systems are often not photorealistic. Recent
approaches based on neural volume rendering can render
novel views at high fidelity, but they often require a long
time to train, making them impractical for applications that
require real-time scene capture. In this paper, we propose
a system that can reconstruct photorealistic models of com-
plex scenes in an efficient manner. Our system processes
images online, i.e. it can obtain a good quality estimate
of both the scene geometry and appearance at roughly the
same rate the video is captured. To achieve the efficiency,
we propose a hierarchical feature volume using VDB grids.
This representation is memory efficient and allows for fast
querying of the scene information. Secondly, we introduce a
novel optimization technique that improves the efficiency of
the bundle adjustment which allows our system to converge
to the target camera poses and scene geometry much faster.
Experiments on real-world scenes show that our method
outperforms existing systems in terms of efficiency and cap-
ture quality. To the best of our knowledge, this is the first
method that can achieve online photorealistic scene cap-
ture.

1. Introduction
Many applications require accurate online estimation

of the geometry and appearance of 3D scenes. In aug-
mented reality, for example, accurate geometry is necessary
for proper handling of occlusions and physics interactions,
while accurate appearance is necessary for rendering con-
vincing novel views.

There are two main paradigms for achieving this goal.
The first paradigm consists of visual simultaneous local-
ization and mapping (SLAM) systems which are able to
construct a dense model of a scene. These methods typ-
ically obtain depth maps either from a depth sensor, in
the case of RGB-D methods [13, 15], or by estimating
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Figure 1. Our method in operation. We present an approach
for online scene capture from a stream of monocular RGB im-
ages. The scene is represented using a neural volumetric dynamic
B+Tree (nVDB) which stores a hierarchy of spatial features. The
dynamic topology of the tree allows it to grow as the camera ex-
plores the scene. The camera and the volume parameters are opti-
mized online using a novel volumetric bundle adjustment method
(VBA). This allows our method to efficiently capture scene ap-
pearance and geometry. See the supplementary video for an online
demo.

depth keyframes from multiple RGB images, in the case
of monocular SLAM systems [11, 11, 14, 17]. These depth
measurements are then fused into a consistent model in the
form of a voxel grid representing a signed distance function
(SDF) to surfaces which encodes the geometry of the scene.
The colors from the RGB images are projected to the vol-
ume to model the appearance. These approaches are very
efficient and operate in real time1. However, their main dis-
advantage is that they make simplified assumptions about
scene appearance and can only reconstruct solid surfaces.

1For the purposes of this paper we define real time to mean the process-
ing time for the reconstruction is comparable to the time taken to capture
the image sequence. We define online to mean allowing for incremental
processing as images arrive from the sensor.
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Therefore they cannot capture photorealistic models of real-
world scenes which are needed for real-time applications.

The second paradigm which has recently become very
popular consists of neural volumetric rendering approaches
[9,10]. These methods model the scene as a volume and use
raymarching to render novel views. They estimate the vol-
ume parameters by directly optimizing photo-metric consis-
tency using stochastic gradient descent (SGD) or momen-
tum optimizers such as Adam [6]. The volume rendering,
combined with the direct optimization of photometric error,
allows these approaches to capture scenes in a photorealis-
tic manner. However, the main disadvantage of these ap-
proaches is that they require a long per-scene training time.
In the case of NeRF [10] this is up to a few days due to the
neural network scene parameterisation.

In this paper, we aim to achieve photorealistic scene cap-
ture with high efficiency to get closer to real-time perfor-
mance. This is accomplished though two novel compo-
nents. The first is a tree-based scene representation that
improves memory efficiency because information is only
stored near occupied areas. The tree is very efficient to
query which speeds up rendering and therefore also opti-
mization. The second component is our volumetric bun-
dle adjustment (VBA) approach that optimizes the pose and
volume parameters to achieve photo consistency. VBA is
based on a Levenberg-Marquadt type approach which en-
ables much faster convergence by utilizing the curvature
of the objective function. This allows it to traverse valleys
of the objective function more quickly. By combining the
nVDB scene representation and the VBA optimizer our sys-
tem achieves more accurate results than RGB-D systems.

To summarize, the main contribution of in this paper is a
system for online photorealistic reconstruction. Key to this
system are two novel components:

1. A neural volumetric dynamic B+Tree, called nVDB,
that can efficiently represent 3D scenes and can grow
as more areas of the scene are explored

2. An efficient method for optimizing the volume proper-
ties, called volumetric bundle adjustment (VBA), that
given a stream of input images can estimate the opti-
mal nVDB parameters

2. Related work

RGB-D SLAM systems: These methods [2,13,20] typi-
cally take in RGB-D images from a depth sensor such as the
Kinect or iPhone LiDAR sensor, estimate the camera pose
using dense image alignment and fuse these into a volumet-
ric representation of the scene. The volumetric representa-
tion typically consists of a dense voxel grid that stores ge-
ometry as the truncated signed distance value (TSDF) to the
nearest surface and per-voxel color values that represent the

scene appearance. These methods do not optimize the pho-
toconsistency of the texture and are limited to representing
solid Lambertian surfaces. Therefore, they cannot capture
photorealistic models of complex scenes. Colormap opti-
mization methods [7, 29] aim to produce more photorealis-
tic models by optimizing the camera poses along with non-
rigid corrections to the images to ensure that the textures on
the model are photometrically consistent. As in our method,
the parameters are jointly optimized to maximize photomet-
ric consistency using non-linear least squares. However, un-
like our method, they do not optimize the geometry.
Monocular reconstruction systems: There are many ap-
proaches [4, 11, 14, 18, 23] that have been designed to re-
construct scene geometry using only RGB images as input.
The main difference between these methods and the RGB-D
systems described above is that they have an extra step that
reconstructs depth keyframes from multiple RGB images.
This is typically done by constructing a photometric cost-
volume and extracting per-pixel depth values that minimize
this cost [14]. These methods suffer from photometric am-
biguities present in textureless areas, for example as they
rely on photometric information to compute the geometry.
Recent learning based methods [4,11,18,23] have helped to
make monocular reconstruction more robust, however, they
generally do not model complex appearance effects and thus
do not produce photorealistic models.
Neural volumetric rendering: Recent works [9, 10] have
shown that it is possible to use neural networks in com-
bination with volumetric rendering to capture and render
photorealistic novel views of a scene. NeRF [10] uses a
multi-layer perceptron (MLP) to model the volume prop-
erties at each point in space. Raymarching is then used to
render images from arbitrary viewpoints. These methods
are able to capture scenes with complex appearance as the
volume rendering allows for modeling non-solid surfaces
and the MLP can be conditioned on viewing angle to cap-
ture view-dependent effects. However, one of the main lim-
itations of using a neural network to represent the volume
is that it takes very long to render new frames. This makes
both training and rendering very slow. NSVF [8] moved the
representational capacity of the scene away from the neu-
ral network to a sparse voxel octree which can be queried
very efficiently. The features stored in the SVO are pro-
cessed by an MLP that outputs the volume rendering prop-
erties. However, the training of the NSVF model is still
slow as the model makes use of a large MLP (similar to that
of NeRF) and is trained using stochastic gradient descent.
In our method, we also use an efficient tree structure for
representing spatial feature of the scene. However, we use a
hierarchical tree structure that allows us to store multi-scale
features along with a smaller MLP. Furthermore, we pro-
pose a second-order optimizer that allows us to estimate the
volume parameters more efficiently.
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Figure 2. Example of a VDB grid [12]. This example shows a
2D scene consisting of a circle. VDB grids are based on B+Trees
and allow for a different branching factor at each level of the tree
and a variable number of children per node. This example shows
a tree with a 21 branching at L2 and L1 and a 24 branching factor
at L0.

View synthesis methods: Local view synthesis methods
[1,24,28] learn a general network to predict the volume ren-
dering parameters from one or a few images near the target
view. These methods require no optimization when cap-
turing new scenes, and thus can quickly synthesize novel
views. However, they only construct local representation
typically using 3-5 images near the target view and thus do
not build global representation of the scene. They are there-
fore best suited only for synthesizing novel views. In con-
trast, our method efficiently captures a global model of the
scene and can render photorealistic novel views.

3. Background: VDB Trees
In general, representing a scene using a dense voxel grid

is not memory efficient as many elements tend to be zero
thereby wasting a lot of memory. Tree-based representa-
tions are a good solution as they allow storing only occupied
voxels. Sparse voxel octree’s (SVO) are a popular choice
and have been used for RGB-D SLAM systems [22] and for
speeding up neural volume rendering [8, 19, 27]. However,
a major limitation of SVO’s is that, in order to maintain the
spatial resolution, the depth of the tree has to grow with the
extent of the scene. VDB trees [12] were designed to over-
come these limitations. VDB trees also represent voxels as
the leaf nodes of an acyclic graph, but unlike octrees, have
a variable branching factor at each level, which keeps the
tree shallow. The configuration of the VDB tree is specified
as [B1, ..., BD] where Bd denotes the log2 of the branching
factor at level Ld of the tree. Figure 2 shows a 2D example
of a [4, 1, 1] VDB tree. The leaf nodes (also called “blocks”)
split into 24 = 16 voxel elements and upper two layers split
into at most 21 nodes. The variable branching factor means
that not all these nodes at a particular level need to be active.

The data stored in the voxel elements is usually a scalar
value representing the signed distance to the closest surface
(for solid surface rendering) or a 4D opacity + colour value
for volume rendering. However, the VDB tree can store data

or features of arbitrary dimensionality. In addition, although
VDB trees typically store voxel data at the leaf-nodes, data
can be stored at any of the non-leaf (internal) nodes. Stor-
ing data at multiple levels of the tree allows one to create
a multi-scale representations of a scene. The structure of
the VDB tree makes it possible to efficiently access voxel
values of arbitrarily complex scenes at multiple scales in
constant, i.e. O(1), time.

4. Method

In this section, we present our approach for reconstruct-
ing a photorealistic representation of a scene in near real
time. Our system takes as input a sequence of images Ii,
a rough estimate of the depth Di at each frame and camera

poses: Ti =

[
Ri ti
0⊤ 1

]
∈ SE3, where i = 1, . . . ,M .

Our system efficiently constructs a dense volumetric rep-
resentation of the scene from which photorealistic novel
views can be rendered. The two key components of our ap-
proach are a new volumetric representation that combines a
dynamic sparse voxel grid with a novel bundle adjustment
method called volumetric bundle adjustment, that is able to
efficiently find the optimal parameters for the camera poses
and volumetric representation.

An overview of our approach is shown in Figure 3. The
base representation of the scene consists of a dynamic fea-
ture volume which learns spatial features representing the
scene appearance that are projected to the volumetric ren-
dering parameters using a shallow network (Section 4.1).
The scene is rendered using raymarching to produce a novel
view of the scene (Section 4.2). The rendered images are
compared to the observed images to form a nonlinear least
squares cost function which is optimized using a novel vol-
umetric bundle adjustment approach (Section 4.3).

4.1. Neural VDB representation

We construct a novel continuous 3D representation of a
scene that maps each point and viewing direction to a color
and opacity value, Fθ : (V (x),v) → (c, σ),∀x ∈ V .
These values are queried during the raymarching to ren-
der novel views of the scene from a particular viewpoint.
Our representation combines a VDB tree with a neural net-
work interpolator, which we call an nVDB tree. The base
of the nVDB is a VDB tree that stores NL

f dimensional fea-
tures at each level, L, along the tree hierarchy. We use the
nVDB tree to learn an explicit hierarchy of features that
represent the scene at each point in space. This is rep-
resented by the map V : x → f which takes a point x
and queries the VDB grid to produce one feature for each
level of the tree at that point in space. Similar to [8], the
sampling is done using trilinear interpolation χ(·) of the
8 neighbours of the voxel in which the point x lies, i.e.
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Figure 3. Overview of our method. We represent the scene as a neural dynamic volumetric B+Tree (nVDB) that stores spatial scene
features. These features encode the shape and appearance of the scene in a high-dimensional feature space. Raymarching is used to render
views of the volume specified by a camera pose. During rendering the features are sampled from the volume using trilinear interpolation
and a shallow MLP is used to project these features to color and occupancy values. The estimated pixel color is computed by integrating
the color values along the ray weighted by the occupancy and visibility. This is repeated for each pixel in the image. Once all the rays are
rendered, the residuals are computed as the difference between the estimated and ground truth images. The residuals are then minimized
using volumetric bundle adjustment (VBA), which efficiently refines the volume and camera pose parameters.

V (x) = χ
(
Ṽi (x

∗
1) , . . . , Ṽi (x

∗
8)
)

. The features f l sam-
pled at each level of the tree are then concatenated to form
a feature vector f of dimension

∑L
l=1 N

l
f . This concate-

nation of features at each level of the tree produces a multi-
scale feature representation that makes it easier to learn con-
sistent appearance across large entities in the scene. The
function Fθ, projects the features sampled from the VDB
grid to the color and opacity outputs. This projection is
modelled using a shallow fully-connected neural network.

4.2. Volume Rendering

We use volume rendering to synthesize views of the
scene from a particular viewpoint given by the camera pose,
Tj . For each pixel in the target image, we generate the cor-
responding ray with xo and direction v. The color of the
pixel corresponding to the ray is computed by raymarching
through the volume. The raymarching starts at the ray ori-
gin and steps along the ray, sampling the volume at each dis-
tances, zi, along the ray. The colors are accumulated along
the ray c̄t =

∑
k αk (1− exp (−σk)) ck weighted by the

visibility, αk = exp
(
−
∑k−1

j=1 σj

)
. The output of the ray-

marching is a single color value for the pixel. In addition,
we raymarch an estimated depth image. The depth are ac-
cumulated along the ray d̄t =

∑
k αk (1− exp (−σk)) zk

where αk is computed as above. This depth image is used
for the depth supervision, allowing us to utilize RGB-D data
from sensors such as the Kinect, ARKit or from a monocu-
lar depth prediction network.

4.3. Volumetric Bundle Adjustment

Bundle adjustment iteratively adjusts the camera poses
and the scene structure parameters by minimizing the pho-
tometric error between the rendered and captured images.
Traditionally, the scene structure parameters optimized in
bundle adjustment are sparse 3D points [21,25]. In our case,
the structure parameters correspond to the parameters of our
volumetric representation of the scene which consists of the
features stored in the volume and the shallow MLP network.
For purposes of optimization, we use a minimal representa-
tion of the camera parameters ξj = (log(Rj), tj) where log
is the logarithmic map. The aggregated structure parame-
ters consisting of the MLP parameters and voxel features as
described in Section 4.1 are denoted by θ. We denote the set
of all parameters by Θ = (ξ, θ). The least squares objective
function that we minimize takes the form:

min
Θ∈Rm

L(Θ) =
1

2

n∑
i=1

(c̄i − yi)
2
+

(
d̄i − di

)2
, (1)

where yi is the target color of that ray and di is the
target depth. We define r =

[
c̄i − yi, d̄i − di

]n
i=1

as
the residual vector formed by stacking the individual color
and depth residuals. We minimize this objective function
using the Gauss-Newton method. Defining the Jacobian
Ja as [Jar]ij = ∂[r]i/∂[a]j , we obtain the gradient of
this objective function as: gΘ = ∇ΘL(x; Θ) = JT

Θr.
The Gauss-Newton approximation of the Hessian takes the
form: ĤΘ ≈ JT

ΘJΘ. The parameter update is then com-
puted by solving the following linear system:(

ĤΘ + λI
)
δΘ = −gΘ. (2)
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This update takes into account both the gradient and curva-
ture of the objective function. As Ĥθ is very large, solving
this equation directly is only feasible for very few param-
eters. However, our problem has a unique structure that
can be exploited to allow for a more efficient solution. As
in [25], we split the Hessian and the gradient into compo-
nents that are governed by the camera variables ξ and the
structure variables θ:

HΘ =

[
Hξξ Hξθ

HT
ξθ Hθθ

]
, g =

[
gξ
gθ

]
. (3)

We now use the nonlinear variable projection method (see
[3] for an overview of its use in bundle adjustment) and
convert the original update into two separate, smaller prob-
lems. Firstly, we can solve the camera variables with
a reduced camera system [25]. The camera variables
are updated using the Levenberg-Marquadt update, δξ =
− (Hrcs + λI)

−1
grcs. The structure parameters are up-

dated using the standard Gauss-Newton iteration: δθ =
−J+

θ r. However, as the Jacobian of the structure parame-
ters is still rather large, we use an approximation JT

θ Jθ ≈
diag(JT

θ Jθ). This speeds up the computation significantly
as the diagonal elements can be efficiently computed. In
summary, our optimizer splits the problem as in VarPro
methods but uses a stochastic subset of terms for the re-
duced camera system and a diagonal approximation for the
volume variables to make the optimization tractable.

4.4. Volume Creation and Refinement

A major advantage of the VDB tree used in our method
is that the tree structure is inherently designed to be dy-
namic. This means, unlike standard voxel grids and SVOs,
the tree’s structure can be changed online without the need
to rebuild the tree itself. This major advantage in our appli-
cation, as it enables the feature volume to grow and refine
itself as the user explores more areas of the scene.

To create the initial tree structure, we use the initial cam-
era poses and depth map to allocate voxel bricks at all the lo-
cations where a surface is observed. However, as the camera
poses and depth maps are not required to be accurate, this
initial allocation is not necessarily representative of where
the final occupied voxels will lie. Therefore, we use a split-
ting rule to dynamically refine the tree during operation, as
specified below:

refine →

{
insert block at x, if σ(x) > τh,
remove block at x, if σ(x) < τl

(4)

For the experiments in this paper we always use τh = 0.9
and τl = 0.4 unless stated otherwise.

5. Experimental setup
Implementation details: We use a [6,4,3] VDB tree

which gives an available resolution of 81923 that stores fea-

tures of dimension NL
f = 8 for all levels L = 1, 2, 3. For

the network Fθ, we use a shallow, 2 layer MLP with 32
hidden units with an output of dimension of 4. We extract
keyframes from the RGB stream when the view overlap
with the closest keyframe drops below 40% or the trans-
lation from the previous keyframe exceeds 15cm for indoor
scenes and 40cm for outdoor scenes. We apply the volu-
metric bundle adjustment only to these keyframes. We run
all our experiments on a machine with an NVIDIA A6000
GPU and an AMD Ryzen 3990X CPU.

Initialization data: Our method requires as input RGB
images along with an estimate of the camera pose and depth
of the scene. The estimate of the camera pose can be ob-
tained using a SLAM system such as ORB-SLAM, or by
using a tracking system such as the one in ARKit on the
iPhone or ARCore on Android devices. For the experiments
in this paper we use the pose available in the dataset (eg. the
poses from ARKit in our ARKit dataset). For depth input,
we require only a rough estimate of the depth of each pixel.
For all the experiments in this paper we use an off-the-shelf
monocular depth prediction network, MiDAS [16], to get
the base depth map corresponding to the RGB images. As
this network only outputs relative depth, we use the initial
poses to solve for a scale factor for each depth image to
convert to consistent metric depths.

Comparisons: We compare our method against 3 types
of methods: RGB-D reconstruction systems, monocular re-
construction systems, recent neural volume rendering ap-
proaches. Specifically, in terms of RGB-D systems we
compare against KinectFusion [13], Colormap Optimiza-
tion [29] and PolyCamAI [20]. For monocular systems
we compare against MVDepthNet [23], ATLAS, [11] and
NeuralRecon [18] In terms of neural volume rendering ap-
proaches we compare against NeRF [10], NSVF [8], MVS-
NeRF [1] and IBRNet [24]. For fairness, we initialize the
sparse voxel octree in NSVF using the same monocular
depth prediction as in our method as described in the NSVF
paper [8].

Datasets: We conduct our experiments on two real-
world datasets. The DTU dataset [5] consists of 104 scenes
of table top objects. There are 64 views per scene captured
using a robot arm with associated camera poses. High qual-
ity depth images are captured using a structured light sensor.
ARKit scenes dataset. To test the real-world performance
of the proposed method in the target setting, we collect a
dataset using an iPhone 12. The dataset contains raw cam-
era poses along with RGB-D images obtained from ARKit
on the iPhone.

Evaluation metrics: We evaluate the visual image qual-
ity of rendered views using the commonly used PSNR met-
ric. We evaluate the quality of the estimated geometry by re-
porting the precision, recall and F-score of the global model
(see [11]).
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Figure 4. Comparison to three real-time RGB-D reconstruction systems. We show three RGB-D systems (a) KinectFusion [13] which
fuses depth readings into a dense voxel grid, (b) the colormap optimization approach of [29] which optimizes camera poses to improve
texture consistency, (c) PolyCamAI which is a commercial iPhone ARKit-based app and (d) our method. The inset shows the processing
time for each method, and the time taken to capture the video. Our method achieves the best quality scene reconstruction.

6. Results and discussion

Comparison to RGB-D systems. We compare the re-
construction quality of our method to three RGB-D recon-
struction systems. For these three systems, we use the
ground-truth depth images as input. For our system, we
take as input the less-accurate monocular depth prediction
from MiDAS [16]. See Figure 4 for a qualitative compar-
ison of the reconstruction. Among the four methods, our
method achieves the most photorealistic quality of the ren-
dering at the test pose. This is because our method han-
dles view dependent effects and jointly optimizes the color
and geometry for photometric consistency. In comparison,
KinectFusion [13] (first column) suffers from blurry tex-
tures and does not recover from inaccuracies in the depth
images used as input. Colormap Optimization [29] (second
column), which optimizes the camera poses to ensure pho-
tometric consistency,obtains sharper textures than Kinect-
Fusion. However, it fails to produce a good reconstruc-
tion when the initial geometry is bad such as in the sec-
ond scene. The PolyCamAI LiDAR app [20] (third column)

achieves better texture quality than KinectFusion and Col-
ormap Optimization. However, this method tends to give
overly smoothed geometry and it does not account for view
dependent effects, causing artifacts on the reflective and
specular surfaces, such as the table in the first scene and
the car in the second scene.

Table 1. Novel view rendering quality. Comparison of the ren-
dering quality of our method to neural volume rendering and view
synthesis approaches on the DTU dataset.

Scan #1 #8 #21 #103
PSNR↑

PixelNeRF 21.64 23.70 16.04 16.76
IBRNet 25.97 27.45 20.94 27.91
NeRF10.2h 26.62 28.33 23.24 30.40
NSVF≈10.2h 28.77 29.21 27.79 32.79
MVSNeRFft−15min 28.05 28.88 24.87 32.23
Ours15min 29.72 28.90 25.43 33.3

Comparison to neural volume rendering methods. In
this comparison, we focus on the convergence time needed
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Figure 5. Comparison to neural volumetric rendering ap-
proaches. MVSNeRF [1] achieves good performance but uses
only local information (3 neighboring views) for view synthesis.
In contrast, our method constructs a global scene representation
thus outperforming MVSNeRF after a few minutes of training.
NSVF and NeRF need hours of training to reach the same qual-
ity of reconstruction.
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Figure 6. Qualitative comparison to neural volumetric render-
ing approaches. We show the results of our method, NeRF [10],
MVSNeRF [1] and NSVF [8] at three different times during op-
timization corresponding to the times in Figure 5. The last col-
umn shows the error image. Our method and MVSNeRF perform
the best in terms of visual quality, however, MVSNeRF only con-
structs a local (view-based) representation of the scene wheras our
method constructs a global representation. This allows our method
to achieve the best performance at T3.

for a method to render good quality images. Figure 5
shows the PSNR of validation views from a scene of the
DTU dataset over training time and Figure 6 shows a ren-
dered test view at 3 timestamps: T1=2min, T2=6min and
T3=10min. NeRF [10] exhibits the slowest convergence of
all four methods. By the end of 10min, the rendered image
from NeRF still remains quite blurry. NSVF [8] uses an ex-
plicit feature volume in the form of a sparse voxel octree and
thus achieves faster convergence than NeRF. However, our
method outperforms both NeRF and NSVF by a large mar-
gin in terms of PSNR metric across all time scales, indicat-
ing our method can converge much faster and is able to gen-
erate photorealistic views in a very short time frames. The
closest contender to our method is MVSNeRF [1], which
learns a “generalizable” network and is able to achieve a
very high PSNR with little training. However, unlike ours
and the other methods, MVSNeRF does not construct a
global representation of the scene. Instead, it forms a view-
centric volume which it uses to synthesize novel views near
the target-view. This behavior of only adopting local infor-
mation limits MVSNeRF’s ability to fuse information from
further views. Therefore, our method is able to converge to
a better PSNR as training goes on. In Table 1, we show the
quantitative view quality results on the DTU dataset. Even
when only optimizing for a short period of time, our method
outperforms both NeRF and NSVF that have been trained
for ≈ 10h. Our method also outperforms MVSNeRF which
has been fine-tuned for the same amount of time.

VBA convergence: In Figure 8 we visualize the dif-
ference in the convergence rate between our novel opti-
mizer used in the volumetric bundle adjustment compared
to ADAM. By utilizing the Hessian as in LM-based opti-
mization, our method is able to converge much faster.

Evaluation of geometry and depth accuracy. In this
experiment, we investigate whether our method is able to
improve on the base depth estimate and how the depth esti-
mated by our method compares to the LiDAR-based depth
from iPhone ARKit. Figure 7 shows the results of this com-
parison. Our method takes as input the base depth obtained
using MiDAS [16] (left image) and estimates the final depth
prediction (middle image). The inpainted LiDAR depth
produced by ARKit on an iPhone 12 Pro is shown in the
right. We can see that the depth estimation produced by our
method improves considerably on the initial depth map that
is taken as an input by our approach to guide the volumet-
ric optimization. This indicates that our method is able to
correct the imperfections in the inaccurate depth readings.
Secondly, our method achieves more detailed reconstruc-
tion of delicate structures than the LiDAR data from ARKit,
as shown in the highlight boxes.

Ablation study. In this ablation study, we first examine
the impact of different scene representations and different
optimizers on the quality of the scene reconstruction. We
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Figure 7. Depth reconstruction quality. We show the depth image estimated using (a) an off-the-shelf monocular depth prediction
method [16], (b) the final depth estimated by our method and (c) the depth obtained from the iPhone 12 Pro LiDAR for comparison.
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Figure 8. Optimizer efficiency. Visualization of the convergence
of the novel second-order optimizer used in our volumetric bundle
adjustment (VBA) compared to ADAM.

show the results in the top half of Table 2. We see that
both our bundle adjustment method, VBA, and the nVDB
representation contribute significantly to the output quality
for the view synthesis task. Therefore, both components
are essential to our goal of fast photorealistic scene capture.
Next, we evaluate how sensitive our method is to the qual-
ity of the base depth image. We show the quality of the
rendered image given the base depth produced from three
different methods: 1) MiDAS s (the small version of Mi-
DAS), 2) MiDAS [16] and 3) MVSNet [26]. We see that
our method is able to produce good quality reconstructions
with the depth from all three approaches.

7. Limitations and social impact

There are some limitations to our approach. Firstly, our
method is reliant on a guiding depth image to initialize the
volume efficiently. As we have shown, this is not a major
issue as our method is not very sensitive to the initial depth
input and there are many depth estimation methods avail-
able to provide this depth input. Secondly, our method does
not handle infinitely far background elements as the nVDB
needs to cover the whole scene. This could be overcome
by adding an extra background appearance feature that is
parameterized like an environment map. As our method in-

Table 2. Impact of the optimizer, representation and depth
guidance. We show the performance using our nVDB representa-
tion compared to the popular ADAM [6] optimizer used for train-
ing NeRF and MVSNeRF. In terms of the representation we show
our nVDB and NSVF [8] which is the closest related approach.
We also show the impact of different depth guidance methods.

Base Depth Rep. Opt. PSNR
MiDAS s nVDB ADAM 26.70
MiDAS s NSVF ADAM 22.94
MiDAS s nVDB VBA 28.54
MiDAS nVDB VBA 28.906
MiDAS s nVDB VBA 28.54
MVSNet nVDB VBA 29.45

volves generating synthetic images, there is the possibility
for its use in creating fake media and spreading disinforma-
tion. However, this cannot be done using our system alone
and therefore the direct impact our method can have on so-
ciety is mainly positive.

8. Conclusion

In this paper, we have proposed a novel system for online
photorealistic scene capture. This is achieved through two
contributions: The first is a neural tree-based representa-
tion of the scene, called nVDB. The nVDB efficiently stores
scene features and can dynamically adjust its topology for
online reconstruction. The second is an optimization strat-
egy that improves the efficiency of the bundle adjustment al-
lowing us to jointly refine the volume parameters and cam-
era poses to ensure photometric consistency. Together these
two contributions allow our method to capture photorealis-
tic models of scenes very efficiently. The results show that
our method outperforms current reconstruction systems in
terms of view quality and neural volume rendering methods
in terms of efficiency. We believe our method can bring new
levels of realism and immersion to AR applications.
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