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Abstract

Recent self-supervised representation learning tech-
niques have largely closed the gap between supervised and
unsupervised learning on ImageNet classification. While
the particulars of pretraining on ImageNet are now rela-
tively well understood, the field still lacks widely accepted
best practices for replicating this success on other datasets.
As a first step in this direction, we study contrastive self-
supervised learning on four diverse large-scale datasets.
By looking through the lenses of data quantity, data do-
main, data quality, and task granularity, we provide new
insights into the necessary conditions for successful self-
supervised learning. Our key findings include observations
such as: (i) the benefit of additional pretraining data beyond
500k images is modest, (ii) adding pretraining images from
another domain does not lead to more general representa-
tions, (iii) corrupted pretraining images have a disparate
impact on supervised and self-supervised pretraining, and
(iv) contrastive learning lags far behind supervised learn-
ing on fine-grained visual classification tasks.

1. Introduction

Self-supervised learning (SSL) techniques can now pro-
duce visual representations which are competitive with rep-
resentations generated by fully supervised networks for
many downstream tasks [18]. This is an important mile-
stone for computer vision, as removing the need for large
amounts of labels at training time has the potential to scale
up our ability to address challenges in domains where super-
vision is currently too difficult or costly to obtain. However,
with some limited exceptions, the vast majority of current
state-of-the-art approaches are developed and evaluated on
standard datasets like ImageNet [40]. As a result, we do not
have a good understanding of how well these methods work
when they are applied to other datasets.

Under what conditions do self-supervised contrastive
representation learning methods produce “good” visual
representations? This is an important question for computer
vision researchers because it adds to our understanding of
SSL and highlights opportunities for new methods. This is
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Figure 1. What conditions are necessary for successful self-
supervised pretraining on domains beyond ImageNet? We
investigate the impact of self-supervised and supervised training
dataset size, the downstream domain, image quality, and the gran-
ularity of downstream classification tasks.

also an important question for domain experts with limited
resources who might be interested in applying SSL to real-
world problems. With these objectives in mind, we attempt
to answer the following questions:
(i) What is the impact of data quantity? How many un-
labeled images do we need for pretraining, and when is it
worthwhile to get more? How much labeled data do we
need for linear classifier training or end-to-end fine-tuning
on a downstream task? In which regimes do self-supervised
features rival those learned from full supervision?
(ii) What is the impact of the pretraining domain? How
well do self-supervised representations trained on one do-
main transfer to another? Can we learn more general repre-
sentations by combining datasets? Do different pretraining
datasets lead to complementary representations?
(iii) What is the impact of data quality? How robust are
self-supervised methods to training time image corruption
such as reduced resolution, compression artifacts, or noise?
Does pretraining on corrupted images lead to poor down-
stream performance on uncorrupted images?
(iv) What is the impact of task granularity? Does SSL
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result in features that are only effective for “easy” classifi-
cation tasks, or are they also useful for more challenging,
“fine-grained” visual concepts?

We address the above questions through extensive quan-
titative evaluation across four diverse large-scale visual
datasets (see Figure 1). We make several interesting ob-
servations and recommendations including:
• For an ImageNet-scale dataset, decreasing the amount of

unlabeled training data by half (from 1M to 500k images)
only degrades downstream classification performance by
1-2% (Figure 2). In many contexts this trade-off is rea-
sonable, allowing for faster and cheaper pretraining. This
also indicates that current self-supervised methods cou-
pled with standard architectures may be unable to take
advantage of very large pretraining sets.

• Self-supervised representations that are learned from im-
ages from the same domain as the test domain are much
more effective than those learned from different domains
(Table 1). Self-supervised training on our current datasets
may not be sufficient to learn representations that readily
generalize to many contexts.

• Neither (i) combining datasets before pretraining (Ta-
ble 2) nor (ii) combining self-supervised features learned
from different datasets (Table 3) leads to significant per-
formance improvements. More work may be required be-
fore self-supervised techniques can learn highly general-
izable representations from large and diverse datasets.

• Pretraining on corrupted images affects supervised and
self-supervised learning very differently (Figure 4). For
instance, self-supervised representations are surprisingly
sensitive to image resolution.

• Current self-supervised methods learn representations
that can easily disambiguate coarse-grained visual con-
cepts like those in ImageNet. However, as the granu-
larity of the concepts becomes finer, self-supervised per-
formance lags further behind supervised baselines (Fig-
ure 5). The contrastive loss may lead to coarse-grained
features which are insufficient for fine-grained tasks.

2. Related Work
SSL for visual representations. Early self-supervised
representation learning methods typically centered around
solving hand-designed “pretext tasks” like patch location
prediction [16], rotation prediction [20], inpainting [37],
cross-channel reconstruction [59], sorting sequences of
video frames [33], solving jigsaw puzzles [35], or coloriza-
tion [58]. However, more recent work has explored con-
trastive learning-based approaches where the pretext task
is to distinguish matching and non-matching pairs of aug-
mented input images [28, 36, 48]. The prototypical ex-
ample is SimCLR [8, 9], which is trained to identify the
matching image using a cross-entropy loss. Other vari-
ations on the contrastive SSL framework include using a

momentum encoder to provide large numbers of negative
pairs (MoCo) [11, 25], adaptively scaling the margin in
MoCo (EqCo) [62], and contrasting clustering assignments
instead of augmented pairs (SwAV) [6]. Moving beyond
the contrastive loss entirely, some papers recast the problem
in a “learning-to-rank” framework (S2R2) [52], use sim-
ple feature prediction (SimSiam) [12], or predict the output
of an exponential moving average network (BYOL) [24].
[4] investigates the role of negatives in contrastive learn-
ing, though we note that BYOL and SimSiam avoid us-
ing negatives explicitly. In this work, our focus is on self-
supervised visual classification. We do not explore alter-
native settings such as supervised contrastive learning [31],
contrastive learning in non-vision areas like language [39]
or audio [41], or other methods that aim to reduce the anno-
tation burden for representation learning such as large-scale
weak supervision [34].

SSL beyond ImageNet. ImageNet classification has long
been viewed as the gold standard benchmark task for SSL,
and the gap between supervised and self-supervised perfor-
mance on ImageNet has steadily closed over the last few
years [6,8,24,25]. There is now a growing expectation that
SSL should reduce our dependence on manual supervision
in challenging and diverse domains which may not resem-
ble the traditional object classification setting represented
by ImageNet. A number of papers have studied how well
self-supervised representations pretrained on ImageNet per-
form on downstream tasks like fine-grained species classi-
fication [56], semantic segmentation [5], scene understand-
ing [24], and instance segmentation [25].

More recently, researchers have begun to study the ef-
fectiveness of contrastive learning when pretraining on
datasets other than ImageNet. In the case of remote sens-
ing, the unique properties of the data have motivated the
development of domain-specific contrastive learning tech-
niques [2,30]. In the medical domain, where images tend to
be very dissimilar to ImageNet, it has been shown that con-
trastive pretraining on domain-specific images leads to sig-
nificant gains compared to pretraining on ImageNet [9, 43].
[32] compared the representations learned from five differ-
ent datasets, and showed that in most cases the best per-
forming representations came from pretraining on similar
datasets to the downstream task. In the case of fine-grained
data, [51] found that contrastive pretraining on images of
animals and plants did not lead to superior performance on
downstream bird classification compared to pretraining on
ImageNet. These apparently conflicting observations may
be explained by the relationship between the pretraining
and downstream data distributions, which we investigate in
our experiments. [60] and [50] pretrained on several dif-
ferent datasets and showed that there was surprisingly little
impact on downstream detection and segmentation perfor-
mance, unless synthetic data was used for pretraining [60].
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[47] pretrained on very large datasets (JFT-300M [44] and
YFCC100M [46]), but did not observe an improvement over
ImageNet pretraining in the standard regime.

We build on the above analysis by performing controlled,
like-for-like, comparisons of SSL on several large datasets.
This allows us to separate dataset-specific factors from gen-
eral patterns in SSL performance, and deliver new insights
into the necessary conditions for successful pretraining.
Analysis of SSL. A number of works have explored ques-
tions related to the conditions under which SSL is success-
ful. [42] showed that self-supervised representations gen-
eralize better than supervised ones when the downstream
concepts of interest are less semantically similar to the pre-
training set. [18] showed that contrastive pretraining on
ImageNet performs well on downstream tasks related to
object recognition in natural images, while leaving more
general study of pretraining in different domains to future
work. While these works show that SSL on ImageNet can
be effective, our experiments demonstrate that current SSL
methods can perform much worse than supervised baselines
on non-ImageNet domains, e.g. fine-grained classification.

Existing work has also investigated other aspects of SSL,
e.g. [38] examined the invariances learned, [10] showed that
easily learned features can inhibit the learning of more dis-
criminative ones, [8, 50, 60] explored the impact of dif-
ferent image augmentations, [10, 50] compared representa-
tions from single vs. multi-object images, and [8,23] varied
the backbone model capacity. Most relevant to our work
are studies that vary the amount of data in the pretraining
dataset, e.g. [32,50,57,60]. We extend this analysis by pre-
senting a more detailed evaluation of the impact of the size
of the unlabeled and labeled datasets, and investigate the
role of data quality, data domain, and task granularity.

3. Methods
Datasets. We perform experiments on four complemen-
tary large-scale datasets: ImageNet [15], iNat21 [50],
Places365 [61], and GLC20 [13]. Collectively, these
datasets span many important visual properties, including:
curated vs. “in-the-wild” images, fine- vs. coarse-grained
categories, and object-centric images vs. scenes. Each
dataset has at least one million images, which allows us to
make fair comparisons against the traditional ImageNet set-
ting. ImageNet (1.3M images, 1k classes) and Places365
(1.8M images, 365 classes) are standard computer vision
datasets, so we will not describe them in detail. For Ima-
geNet, we use the classic ILSVRC2012 subset of the full
ImageNet-21k dataset. For Places365, we use the official
variant “Places365-Standard (small images)” where all im-
ages have been resized to 256x256. iNat21 (2.7M images,
10k classes) contains images of plant and animal species
and GLC20 (1M images, 16 classes) consists of remote
sensing images. As both are recent datasets, we discuss

them in the supplementary material.
Fixed-size subsets. For some experiments we control for
dataset size by creating subsampled versions of each dataset
with sizes: 1M, 500k, 250k, 125k, and 50k images. We
carry out this selection only once, and the images are cho-
sen uniformly at random. We refer to these datasets using
the name of the parent dataset followed by the number of
images in parentheses, e.g. ImageNet (500k). Note that sub-
sets of increasing size are nested, so e.g. ImageNet (500k)
includes all of the images in ImageNet (250k). These sub-
sets are also static across experiments, e.g. ImageNet (500k)
always refers to the same set of 500k images. With the ex-
ception of Figures 2 and 3, we use the full dataset for any
type of supervised training (i.e. linear evaluation, fine tun-
ing, or supervised training from scratch). We always report
results on the same test set for a given dataset, regardless of
the training subset used.
Training details. All experiments in this paper are based on
a ResNet-50 [26] backbone, which is standard in the con-
trastive learning literature [6, 8, 25]. We primarily perform
experiments on SimCLR [8], a simple and popular con-
trastive learning method that contains all the building blocks
for state-of-the-art self-supervised algorithms. We follow
the standard protocol of first training with self-supervision
alone and then evaluating the learned features using linear
classifiers or end-to-end fine-tuning. Unless otherwise spec-
ified, we use hyperparameter settings based on [8] for all
methods and datasets. While this may not lead to maximal
performance, it is likely to be representative of how these
methods are used in practice – due to the high computa-
tional cost of contrastive pretraining, extensive hyperparam-
eter tuning is not feasible for most users. We also consider
MoCo [25] and BYOL [24] in Figure 3. Full training details
are provided in the supplementary material.

4. Experiments
We now describe our experiments in which we investi-

gate the impact of data quantity, data domain, data quality,
and task granularity on the success of contrastive learning.

4.1. Data quantity

First we consider the question of how much data is re-
quired to learn a “good” representation using SSL. There
are two important notions of data quantity: (i) the number
of unlabeled images used for pretraining and (ii) the num-
ber of labeled images used to subsequently train a classifier.
Since labels are expensive, we would like to learn represen-
tations that generalize well with as few labeled images as
possible. While unlabeled images are cheap to acquire, they
still incur a cost because pretraining time is proportional to
the size of the pretraining set. To understand when SSL is
cost-effective, we need to understand how performance de-
pends on these two notions of data quantity.
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To study this question, we pretrain SimCLR using differ-
ent numbers of unlabeled images. Each pretrained represen-
tation is then evaluated using different numbers of labeled
images. In Figure 2 we present these results for iNat21 (left
column), ImageNet (center column), and Places365 (right
column). We also include results for supervised training
from scratch (in black). We show linear evaluation results
in the top row and corresponding fine-tuned results in the
bottom row. Each curve in a figure corresponds to a dif-
ferent pretrained representation. The points along a curve
correspond to different amounts of supervision used to train
a linear classifier or fine-tune the network.
There is little benefit beyond 500k pretraining images.
The gap between the 500k (blue) and 1M (orange) pretrain-
ing image curves is typically less than 1-2% in top-1 accu-
racy. This means that for a dataset with one million images,
we can trade a small decrease in accuracy for a 50% de-
crease in pretraining time. If a 2-4% top-1 accuracy drop
is acceptable, then the pretraining set size can be reduced
by a factor of four (from 1M to 250k). However, the dif-
ference between 50k (pink) pretraining images and 250k
(green) pretraining images is substantial for each dataset,
often in excess of 10% top-1 accuracy. We conclude that
SimCLR seems to saturate well before we get to ImageNet-
sized pretraining sets. This is consistent with observations
from the supervised learning literature, though more images
are required to reach saturation [34].
Self-supervised pretraining can be a good initializer
when there is limited supervision available. In the bot-
tom row of Figure 2 we see that when only 10k or 50k
labeled images are available, fine-tuning a SimCLR repre-
sentation is significantly better than training from scratch.
When supervision is plentiful, fine-tuned SimCLR repre-
sentations achieve performance similar to supervised train-
ing from scratch. It is interesting to compare this to findings
from the supervised setting which suggest that networks
which are initially trained on distorted (i.e. augmented) im-
ages are unable to recover when subsequently trained with
undistorted ones [1].
Self-supervised representations can approach fully su-
pervised performance for some datasets, but only by us-
ing lots of labeled images. The ultimate goal of SSL is
to match supervised performance without the need for large
amounts of labeled data. Suppose we consider the right-
most point on the black curves in Figure 2 as a proxy for
“good” supervised performance. Then in both the linear
and fine-tuned cases, the gap between SimCLR (pretrained
on 1M images) and “good” supervised performance is quite
large unless well over 100k labeled images are used. For
instance, the gap between “good” supervised performance
and a classifier trained using 50k labeled images on top of
SimCLR (1M) is around 11% (11%) for Places365, 23%
(21%) for ImageNet, and 58% (56%) for iNat21 in the lin-

ear (and fine-tuned) case. Although SSL works well when
lots of supervision is available, further innovation is needed
to improve the utility of self-supervised representations in
the low-to-moderate supervision regime.
iNat21 is a valuable SSL benchmark. Figure 2 shows
a surprisingly large gap (∼ 30%) between supervised and
self-supervised performance on iNat21 in the high supervi-
sion regime. In Figure 3 we see that other SSL methods
exhibit similar limitations. The newer BYOL outperforms
MoCo and SimCLR, but a considerable gap (∼ 25%) re-
mains. The high supervised performance shows that the
task is possible, yet the self-supervised performance re-
mains low. It seems that iNat21 reveals challenges for SSL
that are not apparent in ImageNet, and we believe it is a
valuable benchmark for future SSL research.

4.2. Data domain

In the previous section we observed that increasing the
pretraining set size yields rapidly diminishing returns. In
this section we consider a different design choice: what
kind of images should we use for pretraining? Since most
contrastive learning papers only pretrain on ImageNet, this
question has not received much attention. We take an ini-
tial step towards an answer by studying the properties of
SimCLR representations derived from four pretraining sets
drawn from different domains.

We train SimCLR on iNat21 (1M), ImageNet (1M),
Places365 (1M), and GLC20 (1M). By holding the pretrain-
ing set size constant, we aim to isolate the impact of the
different visual domains. We present in-domain and cross-
domain linear evaluation results for each representation in
Table 1. In Table 2 we consider the effect of pretraining on
pooled datasets, i.e. new image collections built by shuf-
fling together existing datasets. Finally, in Table 3 we study
different fused representations, which are formed by con-
catenating the outputs of different feature extractors.
Pretraining domain matters. In Table 1 we see that
in-domain pretraining (diagonal entries) consistently beats
cross-domain pretraining (off-diagonal entries). The gap
can be surprisingly large, e.g. in-domain pretraining pro-
vides a 12% boost on iNat21 compared to the best cross-
domain pretraining (ImageNet). One might have expected
that a visually diverse dataset like ImageNet would lead
to a better self-supervised representation than a more ho-
mogeneous dataset like GLC20 (even when evaluating on
GLC20) but this is not what we observe.

The off-diagonal entries of Table 1 show that training
SimCLR on ImageNet leads to the best cross-domain per-
formance, while GLC20 leads to the worst cross-domain
performance. Since the pretraining protocols and dataset
sizes are held constant, we suggest that the characteristics
of the image sets themselves are responsible for the differ-
ences we observe. The strong cross-domain performance of
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(a) Linear Evaluation

(b) Fine-Tuning

Figure 2. How much data does SimCLR need? Linear evaluation results (top row) and fine-tuning results (bottom row) as a function
of the number of unlabeled images used for pretraining and the number of labeled images used for downstream supervised training. The
“Supervised” curve (black) corresponds to training from scratch on different numbers of labeled images. It is the same for the top and
bottom plots in each column. Most SSL papers focus on the “high data” regime, using ∼ 106 images (e.g. all of ImageNet) for both
pretraining and classifier supervision, but there are significant opportunities for improvement in the “low-data” regime. Even with 106

labeled images for linear classifier training, SimCLR performs far worse than supervised learning on iNat21, suggesting that iNat21 could
be a more useful SSL benchmark than ImageNet in future.

Figure 3. How does SimCLR compare to other self-supervised
methods? Linear evaluation results on iNat21 for SimCLR,
MoCo, and BYOL. All methods are pretrained on 1M images for
1000 epochs and follow the same linear evaluation protocol. The
more recent BYOL performs better than the others, but a large gap
remains to supervised performance.

SimCLR pretrained on ImageNet may be due to semantic
similarity – perhaps it is better to pretrain on a dataset that
is semantically similar to the downstream task, even in a
self-supervised context. This makes sense because there are
classes in ImageNet that are similar to classes in iNat21 (an-
imals) and Places365 (scenes). This also explains the weak
performance of GLC20, since remote sensing imagery is

Pretraining iNat21 ImageNet Places365 GLC20
iNat21 (1M) SimCLR 0.493 0.519 0.416 0.707
ImageNet (1M) SimCLR 0.373 0.644 0.486 0.716
Places365 (1M) SimCLR 0.292 0.491 0.501 0.693
GLC20 (1M) SimCLR 0.187 0.372 0.329 0.769
Supervised (All Images) 0.791 0.741 0.539 0.826

Table 1. Does pretraining domain matter? Linear evaluation
results for representations derived from different million-image
datasets. We train the linear classifiers using the full training
sets. The results in the “Supervised” row correspond to super-
vised training from scratch on the full training set. We report MAP
for GLC20 and top-1 accuracy for other datasets. In all cases, in-
domain pretraining outperforms cross-domain pretraining. In each
column we highlight the best and second-best results.

not similar to the other datasets.
Adding cross-domain pretraining data does not neces-
sarily lead to more general representations. We have
seen that pretraining on different domains leads to represen-
tations with significantly differing capabilities. This leads to
a natural question: what happens if we combine our datasets
and then learn a representation?

Table 2 gives linear evaluation results for SimCLR pre-
trained on different “pooled” datasets. In each row, n im-
ages from dataset A and m images from dataset B are shuf-
fled together to produce a pretraining set of size n+m. For
instance, the pretraining dataset in the first row of Table 2
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250k 250k - - 0.444 0.597 0.467
- 250k 250k - 0.334 0.596 0.490

250k - 250k - 0.428 0.531 0.483
250k 250k 250k 250k 0.410 0.574 0.482
In-Domain (250k) 0.451 0.608 0.485
In-Domain (500k) 0.477 0.629 0.499
In-Domain (1M) 0.493 0.644 0.501

Table 2. The effect of dataset pooling. Linear evaluation results
for self-supervised representations derived from pooled datasets,
where two or more datasets are shuffled together. We train the
linear classifiers using the full training sets. The “In-Domain” re-
sults correspond to pretraining on subsets of the dataset named at
the top of the column. Pooling datasets increases pretraining set
size and diversity, but we find that performance decreases relative
to comparable in-domain pretraining. The “In-Domain (1M)” row
corresponds to the diagonal entries of Table 1.

consists of 250k iNat21 images and 250k ImageNet images
shuffled together.

If we compare the “In-Domain (500k)” row against the
(equally sized) pooled datasets in the first three rows of Ta-
ble 2, we see that the in-domain pretraining on 500k images
is always better. Similarly, the “In-Domain (1M)” row beats
the 1M-image pooled dataset (consisting of 250k images
from the four datasets). The more diverse pooled pretrain-
ing sets always lead to worse performance compared to the
more homogeneous pretraining sets of the same size.

Table 2 also allows us to say whether it is worthwhile to
add pretraining data from a different domain (as opposed to
swapping out some in-domain data for some data from a dif-
ferent domain, as we have been discussing so far). The “In-
Domain (250k)” row is better than the 1M-image pooled
dataset and almost all of the 500k-image pooled datasets. It
seems that adding pretraining data from a different domain
typically hurts performance. In contrast, Figure 2 shows
that increasing the amount of in-domain pretraining data
consistently improves performance.

We hypothesize that the reason for this lackluster per-
formance is that diverse images are easier to tell apart,
which makes the contrastive pretext task easier. If the con-
trastive task is too easy, the quality of the representation
suffers [4, 10]. While more investigation is needed, the fact
that increasing pretraining data diversity can hurt perfor-
mance suggests a “diversity-difficulty trade-off” that should
be considered when creating pretraining sets for SSL.
Self-supervised representations can be largely redun-
dant. From Table 1 it is clear that pretraining on dif-
ferent datasets leads to representations that differ signifi-
cantly. For instance, iNat21 SimCLR beats ImageNet Sim-
CLR on iNat21 (+12.4% ) and ImageNet SimCLR beats
iNat21 SimCLR on ImageNet (+12.7%). Do these repre-
sentations learn complementary information, or do they just
capture the same information to different degrees?

ImageNet iNat21 Dim. ImageNet iNat21
SimCLR - 2048 0.647 0.380
- SimCLR 2048 0.520 0.506
Sup. - 2048 0.711 0.434
- Sup. 2048 0.490 0.769
Sup. Sup. 4096 0.712 0.772
SimCLR SimCLR 4096 0.641 0.520
SimCLR & Sup. - 4096 0.720 0.472
- SimCLR & Sup. 4096 0.527 0.772
SimCLR Sup. 4096 0.605 0.769
Sup. SimCLR 4096 0.717 0.553

Table 3. The effect of representation fusion. Linear evalu-
ation results for different combinations of supervised and self-
supervised representations on ImageNet and iNat21. We train the
linear classifiers using the full training sets. For comparability, the
in-domain supervised results in this table (ImageNet Sup. evalu-
ated on ImageNet and iNat21 Sup. evaluated on iNat21) are for
linear classifiers trained on representations learned from full su-
pervision. “Dim.” is the representation dimensionality. In each
column we highlight the best and second-best results.

To probe this question we concatenate features from dif-
ferent pretrained networks and carry out linear evaluation
on these “fused” representations. In Table 3 we present
linear evaluation results for fused representations on Im-
ageNet and iNat21. Combining ImageNet SimCLR and
iNat21 SimCLR is worse than ImageNet SimCLR alone on
ImageNet (-0.6%), but better than iNat21 SimCLR alone
on iNat21 (+1.4%). These effects are small relative to the
> 12% difference between ImageNet SimCLR and iNat21
SimCLR. This suggests that the two self-supervised repre-
sentations are largely redundant.

There is a larger effect when combining supervised
and self-supervised representations. For iNat21, adding
ImageNet Sup. (i.e. supervised ImageNet features) on
top of iNat21 SimCLR improves performance significantly
(+4.7%). However, adding iNat21 Sup. on top of ImageNet
SimCLR actually decreases performance (-4.2%). These re-
sults are consistent with the hypothesis that dataset seman-
tics are important even for SSL. Since ImageNet is seman-
tically broader than iNat21 (ImageNet has animal classes,
but also many other things), features learned from ImageNet
(supervised or self-supervised) should be more helpful for
iNat21 than vice-versa.

4.3. Data quality

We have seen that the characteristics of the pretraining
data can have a significant impact on the quality of self-
supervised representations. In this section we dig deeper
into this question by studying the impact of pretraining
on artificially degraded images. This serves two purposes.
First, this is a practical question since there are many set-
tings where image quality issues are pervasive e.g. medical
imaging [45] or camera trap data [3]. Second, it can help us
understand the robustness properties of SSL.

To create a corrupted dataset we apply a particular image
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Figure 4. What is the effect of pretraining image corruption?
Decrease in linear evaluation accuracy on ImageNet due to pre-
training on corrupted versions of the ImageNet training set. The
zero point corresponds to pretraining (supervised or SimCLR) on
uncorrupted images followed by linear evaluation. “Supervised”
and “SimCLR” have different zero points. All linear classifiers
are trained using the full uncorrupted ImageNet training set.

corruption to each image in the dataset. This is a one-time
offline preprocessing step, so corruptions that have a ran-
dom component are realized only once per image. Given a
corrupted dataset we then pretrain as normal. During linear
evaluation, we use the original clean images for training and
testing, i.e. the corrupted images are only used for pretrain-
ing.

In Figure 4 we present linear evaluation results on Im-
ageNet for a simple but diverse set of corruptions. The
zero point corresponds to pretraining on uncorrupted im-
ages, and we measure how much performance drops when
pretraining on corrupted images. The “Salt and Pepper”
corruption is salt and pepper noise applied independently
to each pixel, in each channel, with probability 0.01. The
“JPEG” corruption is JPEG compression with a very low
quality level of 10. For “Resize”, we resize each image
so that the short side is 256 pixels while preserving the as-
pect ratio. This reduces the resolution of the crops used
for training. For our downsampling corruptions, we follow
the resize operation with downsampling by 2x or 4x and
then upsampling by the same factor. This holds constant
the image size and the fraction of the image occupied by
each object, but reduces resolution. Implementation details
and examples can be found in the supplementary.
Image resolution is critical for SSL. “Downsample (2x)”
and “Downsample (4x)” are by far the most damaging cor-
ruptions for SimCLR, reducing accuracy by around 15%
and 34%, respectively. Since SimCLR already involves
extreme cropping, we might expect more robustness to
changes in image resolution. This finding could be par-
tially explained by the difficulty of generalizing to higher-
resolution images during linear classifier training [49].
However, supervised pretraining faces the same challenge
but the effect of downsampling is much less dramatic. This

suggests that the performance drop is due to deficiencies in
the features learned by SimCLR.
SSL is relatively robust to high-frequency noise. “JPEG”
and “Salt & Pepper” both add high-frequency noise to the
image. For SimCLR, these corruptions have a much milder
impact than the downsampling corruptions. One possible
explanation is that downsampling destroys texture informa-
tion, which is known to be a particularly important signal
for convolutional neural networks [19, 29]. For supervised
pretraining the ranking of corruptions is very different, with
“JPEG” landing between 2x and 4x downsampling.

4.4. Task granularity

We have seen that the properties of pretraining datasets
are important for determining the utility of self-supervised
representations. But are there downstream tasks for which
self-supervised representations are particularly well or
poorly suited? We consider fine-grained classification and
show that classification performance depends on task gran-
ularity, i.e. how fine or coarse the labels are. While there
are formal methods for measuring dataset granularity [14],
we claim by intuition that iNat21 is more fine-grained than
ImageNet, which is more fine-grained than Places365.

In Figure 5 we use label hierarchies (which are available
for ImageNet, iNat21, and Places365) to explicitly study
how performance depends on label granularity. We treat
“distance from the root of the hierarchy” as a proxy for
granularity, so labels further from the root are considered to
be more fine-grained. We perform (i) linear classifier train-
ing (for SimCLR) and (ii) end-to-end training from scratch
(for “Supervised”) using the labels at the finest level of the
taxonomy and re-compute accuracy values as we progres-
sively coarsen the predictions and labels. We do not re-train
at each level of granularity. A complete description of this
process can be found in the supplementary materials.
The performance gap between SSL and supervised
learning grows as task granularity becomes finer. We
start with the iNat21 results in Figure 5. The supervised
and SimCLR pretrained models perform similarly at the
coarsest levels of the label hierarchy (“Kingdom”). Both
models perform worse as task granularity increases, but the
SimCLR model degrades much more rapidly (“Species”).
This suggests that SimCLR may fail to capture fine-grained
semantic information as effectively as supervised pretrain-
ing. We also observe a growing supervised/self-supervised
gap for ImageNet and Places365. The magnitude of this
gap seems to track dataset granularity, since iNat21 (most
fine-grained) has the largest gap and Places365 (least fine-
grained) has the smallest gap. The fact that supervised
learning achieves high performance on iNat21 while SSL
lags behind suggests that iNat21 could be a valuable bench-
mark dataset for the next phase of SSL research.
Are the augmentations destructive? State-of-the-art con-
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Figure 5. How does performance depend on label granularity? Linear evaluation at different levels of label granularity for iNat21,
ImageNet, and Places365. Each plot compares supervised learning from scratch against a linear classifier trained on top of in-domain
SimCLR. Both are trained using the full training sets. We plot top-1 accuracy against label granularity, which is more fine-grained as we
move from left to right. The numbers on the x-axis are the class counts at a given level of the label hierarchy. We do not re-train at coarser
granularity levels, we just change the evaluation label set. The definitions of the hierarchy levels are given in the supplementary material.

trastive learning techniques are designed for ImageNet, so
the default augmentation policy may be poorly tuned for
other datasets [56]. For instance, if color is a key fine-
grained feature for species classification then the “color jit-
ter” augmentation used by SimCLR may destroy important
information for iNat21 classification. Could this explain the
rapid drop in performance exhibited by iNat21 SimCLR for
fine-grained classes? Notice that there is a similar, though
less extreme, fine-grained performance drop for ImageNet
SimCLR in Figure 5. Since the ImageNet-tuned augmenta-
tions are presumably not destructive for ImageNet, it does
not seem likely that this fully explain our observations.
Does contrastive learning have a coarse-grained bias?
We hypothesize that the contrastive loss tends to cluster im-
ages based on overall visual similarity. The intuition is that
fine-grained features are often subtle, and subtle features are
unlikely to be very useful for distinguishing between pairs
of images in the contrastive pretext task. If our hypothe-
sis is correct then the boundaries between different clus-
ters would not be well-aligned with the boundaries between
fine-grained classes. This effect could be overlooked when
evaluating on coarse-grained classes, but would become ap-
parent on a more fine-grained task. Additional analysis is
required to fully understand this “granularity gap” in SSL,
which we leave to future work.

5. Conclusion
We have presented a comprehensive set of experiments

to address several aspects of the question: when does con-
trastive visual representation learning work? In Section 4.1
we found that we need fewer than 500k pretraining images
before encountering severe diminishing returns. However,
even the best self-supervised representations are still much
worse than peak supervised performance without hundreds
of thousands of labeled images for classifier training. In
Section 4.2 we found that self-supervised pretraining on 1M
images from different domains results in representations

with very different capabilities, and that simple methods
for combining different datasets do not lead to large gains.
In Section 4.3 we showed that image resolution is critical
for contrastive learning and, more broadly, that some image
corruptions can degrade a self-supervised representation to
the point of unusability while others have almost no impact.
Finally, in Section 4.4 we found that supervised pretrain-
ing retains a substantial edge when it comes to fine-grained
classification. These experiments highlight several areas
where further research is needed to improve current SSL
algorithms, most of which were not evident from traditional
evaluation protocols, i.e. top-1 accuracy on ImageNet.

Limitations. We mainly perform experiments using one
self-supervised method. We focus on SimCLR because it
reflects the essence of state-of-the-art contrastive learning
methods without introducing additional architectural com-
plexities. While our MoCo and BYOL experiments are
not much different from SimCLR, it is important to vali-
date our results on other self-supervised methods. It would
also be interesting to explore alternative backbone archi-
tectures [7, 17], though after controlling for training set-
tings, ResNet-50 remains competitive with newer architec-
tures [54, 55]. We study only classification tasks, so addi-
tional work is also required to understand how these results
translate to segmentation [53] or detection [27,63]. Finally,
we only consider datasets up to roughly ImageNet scale.
We believe this is the most practical setting for most use
cases, but it is possible that some patterns may be different
for significantly larger datasets and models [21, 22].
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