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Abstract

Accurately detecting and tracking pedestrians in 3D
space is challenging due to large variations in rotations,
poses and scales. The situation becomes even worse for
dense crowds with severe occlusions. However, existing
benchmarks either only provide 2D annotations, or have
limited 3D annotations with low-density pedestrian distri-
bution, making it difficult to build a reliable pedestrian
perception system especially in crowded scenes. To bet-
ter evaluate pedestrian perception algorithms in crowded
scenarios, we introduce a large-scale multimodal dataset,
STCrowd. Specifically, in STCrowd, there are a total of
219 K pedestrian instances and 20 persons per frame on
average, with various levels of occlusion. We provide syn-
chronized LiDAR point clouds and camera images as well
as their corresponding 3D labels and joint IDs. STCrowd
can be used for various tasks, including LiDAR-only, image-
only, and sensor-fusion based pedestrian detection and
tracking. We provide baselines for most of the tasks. In
addition, considering the property of sparse global distri-
bution and density-varying local distribution of pedestrians,
we further propose a novel method, Density-aware Hierar-
chical heatmap Aggregation (DHA), to enhance pedestrian
perception in crowded scenes. Extensive experiments show
that our new method achieves state-of-the-art performance
for pedestrian detection on various datasets. https:
//github.com/4DVLab/STCrowd.git

1. Introduction

Accurate pedestrian perception in 3D space plays a cru-
cial role in thorough scene understanding. Many appli-
cations also benefit from reliable and accurate pedestrian

†: Corresponding author.

Figure 1. STCrowd provides 2D/3D image annotations, 3D point
cloud annotations, and joint annotations for consecutive frames.
Note that STCrowd contains a large quantity of crowded scenes
with severe occlusions, which pose great challenges to pedestrian
detection and tracking.

perception [2, 4, 61], including surveillance, serving robots,
autonomous driving, etc. However, pedestrian perception
is intractable for three reasons. First, pedestrians are not
rigid bodies and they can have various poses. Second, hu-
mans are relatively small for sensors to capture compared
with other agents, such as vehicles. For instance, in LiDAR
point clouds, pedestrians in the distance are usually repre-
sented as a few sparse points. Third, people tend to con-
gregate when walking, which makes the detection of each
individual person harder. Occlusion in crowded scenarios is
a thorny problem for pedestrian perception.

Many datasets [4, 9, 14, 16, 19, 23, 32, 36, 39, 53, 54] have
been collected to accelerate the research on the pedestrian
perception field. Previous pedestrian perception datasets
can be classified into two groups: image-based pedes-
trian datasets and multimodal traffic datasets. The for-
mer [5–7, 9, 14, 16, 23, 32, 36, 52–54] focus on pedestrian
detection and tracking on 2D images and merely provide
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2D bounding box annotations, which is insufficient for
deep models to infer accurate 3D positions of the pedes-
trians. The urgent demand for precise pedestrian percep-
tion in 3D space has given rise to a suit of 3D annotated
datasets [4, 8, 19, 24, 33, 39, 58]. However, these datasets all
focus on the traffic scenes, where most objects on the roads
are vehicles and pedestrians are distributed sparsely, which
limits the exploration and evaluation of learning-based per-
ception methods, especially for crowded scenes.

Specifically targeting 3D pedestrian perception in chal-
lenging crowded scenarios, we introduce a large-scale mul-
timodal dataset, STCrowd, with manually labeled 3D anno-
tations for both images and point clouds. There are a total
number of 219 K pedestrian instances in STCrowd with 20
persons per frame on average and more than 30 persons per
frame in extremely crowded scenes. Specifically, there are
8 pedestrians in 5 meters on average centered on each per-
son, which is much denser than contemporary 3D detection
benchmarks, e.g., nuScenes [4] and KITTI [19]. Due to the
lack of crowded 3D pedestrian datasets, perception algo-
rithms always suffer from severe occlusions when dealing
with crowded scenarios. STCrowd is very useful for ex-
ploring more effective methods and testing their robustness.
In addition, we capture the data in 9 different scenes, cover-
ing different weather, light conditions and road conditions.
With rich annotations, STCrowd is applicable for differ-
ent tasks, including LiDAR-only, image-only, and sensor-
fusion based detection, tracking and even trajectory predic-
tion. We also provide baselines for most of the tasks in this
paper to facilitate further research.

For LiDAR-captured outdoor scenes, pedestrians typ-
ically account for a small portion of the whole scene.
For crowded scenarios, pedestrians gather together, which
causes different degrees of occlusion and makes it dif-
ficult to distinguish each individual pedestrian accurately
in the crowd. Considering the sparse global distribution
and density-varying local distribution of the pedestrians,
we propose a novel method, Density-aware Hierarchical
heatmap Aggregation (DHA), to enhance pedestrian per-
ception especially in crowded scenes. Specifically, DHA
is comprised of the spatial attention module and the hier-
archical heatmap aggregation module. The former makes
the network focus on the pertinent foreground regions and
the latter helps distinguish individuals in density-varying
scenes via multi-level heatmaps. We evaluate our method
on STCrowd and achieve state-of-the-art performance. The
extension of the proposed DHA to tracking problem and
ablation studies on various backbones also demonstrate its
effectiveness and good generalization capability. Our con-
tribution is summarized as below:
1) We propose a large-scale multimodal pedestrian-oriented
dataset in crowded scenarios with 3D manual annotations.
High-density distributions of pedestrians result in severe oc-

clusion, which bring challenges for accurate perception.
2) Our dataset can be used for various tasks, including
LiDAR-only, image-only, and sensor-fusion based pedes-
trian detection and tracking. We provide baselines and met-
rics for most of the tasks to facilitate further research.
3) We propose a novel method to enhance LiDAR-based
pedestrian perception in crowded scenes and achieve state-
of-the-art performance on the STCrowd benchmark.

2. Related Work
Image-based Datasets Many datasets have been proposed
over the last decade for pedestrian detection. Early datasets,
like INRIA [15], ETH [18], TUD-Brussels [44], and Daim-
ler [17] are too small for the training and generalization of
deep learning-based methods. Caltech [16] is a widely-used
pedestrian dataset with plenty of annotations. After that,
more and more datasets were proposed for boosting data-
driven human detection techniques, including KAIST [23],
CityPersons [53], WiderPerson [54], NightOwls [32], etc.
Especially, CrowdHuman [36] and DensePeds [5] provide
many crowded scenes. In addition, there are also some
datasets with traffic scenes containing pedestrians, such
as CamVid [3], Vistas [31] Cityscapes [14], D2-City [9],
BDD100k [52], METEOR [7], etc. Note that all of them
annotate pedestrians with 2D annotations, which is not ap-
plicable for real-world 3D perception.
Multimodal Datasets With the rapid development of au-
tonomous driving, there is a growing demand for large-
scale datasets with 3D annotations. Apolloscape Detec-
tion/Tracking [30] is a challenging urban traffic scenes
dataset. It only has 3D annotations for the LiDAR point
cloud. Because almost all the autonomous vehicles have
both cameras and LiDAR sensors for perception, there are
many multimodal datasets containing synchronized images
and LiDAR point cloud, such as KITTI [19], nuScenes [4],
Waymo Open [39], H3D [33], A2D2 [20], KAIST [13],
A*3D [58], Argoverse [8], Lyft L5 [24], etc. However, they
all focus on the driving scenes, where vehicles account for
most of the scene, and pedestrians are distributed sparsely.
In fact, pedestrians have free rotations and diverse poses,
and they are much smaller than vehicles, which dramati-
cally increases the difficulty in the detection and tracking.
Furthermore, high-density crowd scenes are much more
challenging due to the existence of severe occlusion. Our
dataset provides diverse scenes with various densities and
distributions of pedestrians, which is significant for testing
perception methods’ generalization.
3D Detection and Tracking LiDAR-only-based 3D de-
tection methods aim to classify and locate the 3D bounding
boxes in the given point cloud. Most of them [10,34,35,38,
41, 47, 56, 57, 59, 60] first project the point cloud into a 3D
or 2D representation, such as voxel and pillar. After that,
the standard 2D convolution and 3D convolution are uti-
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Figure 2. Scene examples of STCrowd with different backgrounds and weather, including clear weather (the first row), cloudy and rainy
conditions (the second row). Note that the last figure shows the poor captured LiDAR point cloud due to the rainy conditions.

lized to process these structured representations. Another
group of existing methods [37, 48, 49] aims to process the
point cloud in the raw data, which better preserves the 3D
geometric information but has a high computational cost for
the large-scale point clouds. Because of the complementary
roles of point clouds and images, the LiDAR and camera
fusion methods have gained much attention in recent years.
PointPainting [41] makes the sensor fusion in the point level
with a hard-association. PointAugmenting [42] performs
the point-wise fusion in the feature level. Furthermore,
MV3D [11] and AVOD [26] perform fusion at the region
proposal level. Similarly, [28, 29, 46, 51] project the point
cloud onto the bird’s eye view (BEV) and then fuse the im-
age features in the BEV level. For the 3D tracking [22], ex-
isting methodologies for 2D tracking can be easily adapted
to 3D space [2, 45]. A common pipeline is to combine the
3D detectors and 3D Kalman filters to perform 3D track-
ing [12,43]. However, most of them often struggle with the
challenging crowded scenes with severe occlusions. Using
spatial attention and hierarchical heatmaps, our method can
focus on pedestrians in large-scale scenes and distinguish
individuals well for density-varying crowds.

3. Dataset

STCrowd is collected by a 128-beam LiDAR and a
monocular camera, which are synchronized and mounted
at a fixed position on the vehicle. The detailed set-up of
the sensors is shown in the supplementary materials. The
annotated dataset is comprised of 84 sequences and the to-
tal number of frames is 10, 891. Each sequence contains a
variable number of continuously recorded frames, ranging
from 50 to 800. There are 219 K and 158 K instance-level
bounding box annotations in point clouds and images, re-
spectively. Joint annotations of point clouds and images in
sequences are also provided. In particular, we get official
permission for collecting the data and we protect personal
privacy by blurring faces shown in images. The data an-
notation project involved 20 people with professional skills
and took 960 man-hours effort. And we have two rounds of
quality inspection for each batch of data.

Figure 3. Occlusion cases in STCrowd. (a) shows occlusion cases
in image. (b) demonstrates examples in LiDAR point cloud from
different views (front, top, and side view) from left to right, in
which severely occluded pedestrians are marked by yellow boxes.

3.1. Characteristics

Diverse scenes and weather. We collect data in different
scenes and weather conditions as shown in Figure. 2. Our
scenes include rich background with bridges, trees, build-
ings and designed architectures. Unlike traffic scenes in
which pedestrians gather around junctions or roadsides, the
distribution of pedestrians in our scenes is more diverse.
The weather also varies to include clear, cloudy and rainy
days. Different lighting conditions will influence the color
information of the image, and the rainy or wet conditions
will affect the reflection from the LiDAR sensor, resulting
in fewer points on objects and the background (eg. for the
last picture shown in Figure. 2, it is clear to see that the
captured points are very limited), which is challenging for
perception algorithms.
Diverse crowd densities. STCrowd contains crowd scenar-
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Table 1. Comparison of STCrowd with popular multimodal datasets, where Fr denotes frames, PerFr denotes per frame of LiDAR point
cloud, - represents unknown. Density-2/5/10 shows the average number of pedestrians within 2, 5, and 10 meters respectively centered
on each pedestrian. Person/Range is the ratio of the number of pedestrians in each frame and the LiDAR scan diameter. The last three
indicators measure the density of the dataset from different aspects.

LiDAR Fr 3D Boxes Beam Person Num Person PerFr Person/Range Density-2/5/10
PedX [25] 2.5k 0 - 14k 5.6 - -
Argoverse [8] 22k 993k 32 110k 5 - -
Lyft L5 [24] 46k 1.3M 64 210k 4.6 - -
A*3D [58] 39k 230k 64 20k 0.5 - -
KITTI [19] 15k 80k 64 4.5k 0.3 0.006 0.5/1.3/2.3
nuScenes [4] 40k 1.4M 32 208k 5 0.05 0.7/1.6/2.7
H3D [33] 27k 1M 64 280k 10 0.1 1.5/4.0/7.2
Waymo Open [39] 230k 12M 64 2.8M 12 0.16 1.0/2.9/5.6
ours 11k 219k 128 219k 20 0.4 2.4/8.0/15.8

Figure 4. Wide-span point cloud densities for instances with the
distance to LiDAR sensor increasing.

ios of various densities, which are divided into four levels,
including fewer than 10, 10 ∼ 20, 20 ∼ 30, and more than
30 pedestrians. High-density is the most important charac-
teristic of STCrowd. Table. 1 shows the comparison with
related datasets, which are widely-used for the 3D percep-
tion of large-scale outdoor scenes. STCrowd is notable on
three evaluation values. The first is the number of pedes-
trians per frame. Our dataset has 20 pedestrians on aver-
age, which obviously exceeds others. The second is the ra-
tio of pedestrians and the scene range captured by LiDAR,
which can show the density of the distribution of pedestri-
ans in the whole scene. Statistics show that the value of
our dataset is 2.5 times the density in Waymo and more
than 4 times others. The last evaluation is to illustrate the
degree of the crowd gathering by computing the average
number of pedestrians in 2, 5, and 10 meters centered on
each pedestrian. There are 2.4, 8, and 15.8 persons under
such measurements for our dataset, which reveals the lo-
cal high-density characteristic of STCrowd. When people
gather, point clouds of different instances always stick with
each other, which makes it difficult for perception methods
to distinguish individuals accurately.

Dense crowds lead to severe occlusions in both images
and LiDAR point cloud. As shown in Figure. 3, many
pedestrians only have a partial body or only one arm or a

head, which makes accurate perception difficult due to lim-
ited partial features. We annotate occlusion labels (from 0 to
2) for each pedestrian, measuring how much it is occluded,
where 0, 1, and 2 denote none of the body, no more than
half the body and over half the body occluded, respectively.
Hierarchically dividing the dataset according to occlusion
situations can help test the performance of methods in deal-
ing with challenging cases.

Besides various scene-level densities, we also demon-
strate diverse instance-level densities. As shown in Fig-
ure. 4, the point clouds of pedestrians become sparser as
the distance to the LiDAR sensor increasing. Long-distance
instances are hard to detect because the shape and scale in-
formation may loss on sparse points.
Diverse human poses. Our dataset has a diversity of hu-
man poses. Figure 5 shows some examples, like walking
in person or in group, running, taking bicycles, taking bal-
ance cars, sitting, holding an umbrella, etc. The diversity in
pedestrian poses further increases the difficulty of accurate
perception.

3.2. Annotations

We provide high-quality manually labeled ground truth
for both LiDAR point clouds and images. For annotations in
point clouds, we labeled each pedestrian using a 3D bound-
ing box (x, y, z, l, w, h, θ), where x, y, z denotes the cen-
ter coordinates and l, w, h are the length, width, and height
along the x-axis,y-axis and z-axis, respectively. Pedestrians
with fewer than 15 points in the LiDAR point cloud are not
annotated. For annotations of images, besides 3D bounding
box, we also label the 2D bounding box with x, y, w, h for
general 2D detection and tracking. For the objects captured
by both the camera and LiDAR, we annotate the joint ID
in sequences, which facilitates tracking and sensor-fusion
tasks. The frequency of our annotation is 2.5HZ. We also
provide annotations for the level of density and occlusion,
which is mentioned above.
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Figure 5. Diverse human poses in STCrowd. The same pedestrian
in the image and the point cloud is marked by yellow boxes.

3.3. Tasks & Metrics

Our multi-modal dataset supports detection, tracking,
and prediction tasks. We give evaluation metrics in this sec-
tion to provide benchmarks on our dataset.

3.3.1 Detection Metric

Average Precision metric. Following [4], we use Average
Precision (AP) metric with the 3D center distance thresh-
old. For crowded scenes, the distance thresholds are chosen
from D = {0.25, 0.5, 1} meters and the mean Average Pre-
cision (mAP) is calculated by:

mAP =
1

|D|
∑
d∈D

APd

Average Recall with different occlusion levels. In ad-
dition to AP, for crowded scenes, the performance on oc-
cluded instances are also considered, and we calculate the
average recall with different center distance thresholds D =
{0.25, 0.5, 1} for different levels of occlusion i:

ARi =
1

|D|
∑
d∈D

Recalli,d, i ∈ {0, 1, 2}

3.3.2 Tracking Metric

MOTA We use traditional Multi-Object Tracking Accuracy
(MOTA) to measure the tracking result:

MOTA = 1− (FP + IDS + FN)/GT

where FP and FN are false positive and false negative, IDS
denotes the false ID matching for tracking in different time-
steps, and GT is the number of ground truth tracked in-
stances.
ML & MT ML(mostly loss) is the proportion of successful
track matching of ground truth in less than 20% of the time
in all tracking targets. MT(mostly track) is the proportion
of successful track matching of ground truth in more than
80% of the time in all tracking targets.

3.3.3 Prediction Metric

FDE & MDE Final displacement error (FDE) is the Eu-
clidean distance between the predicted output and the
ground truth at the last time step and Mean displacement
error (MDE) is the average Euclidean distance between the
predicted output and the ground truth for each time step.

4. DHA: Density-aware Hierarchical Heatmap
Aggregation

For pedestrian detection in crowded scenarios, pedes-
trians are always walking together, resulting in local high
density and occlusion in both the point cloud and the im-
age. Moreover, the density distribution and pose types of
pedestrians vary. These challenges narrow down the ca-
pability of existing methods for accurate pedestrian detec-
tion in such conditions. To tackle these problems, we pro-
pose the density-aware hierarchical heatmap aggregation
(DHA) module shown in Figure. 6, which makes the model
learn the attention on the location of individuals and pro-
duces multi-scale predictions covering regions with differ-
ent densities, in which the proposed module could mitigate
too much background influence and tackle the problem of
pedestrian clustering at various densities levels.

In what follows, we give detailed explanations for these
two main components, i.e., the spatial attention module fo-
cusing on the pertinent regions of pedestrians and the multi-
level heatmap loss covering varying density conditions.

4.1. Spatial Attention Module

Crowds of pedestrians tend to be clustered, presenting
locally high density and globally sparse distribution. Hence,
attention to these foreground regions is crucial to the perfor-
mance of pedestrian detection. To this end, we follow [40]
to model the global attention with a transformer. As shown
in Figure. 6, we apply the triplet <Query, Key, Value> at-
tention layer to extract the correlation among different lo-
cations and reweight these locations. For the final output
X̄ ,

X̄ = softmax(QKT )× V,

where Q, K, V denote the output of Query, Key and Value
layer.
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Figure 6. Density-aware hierarchical heatmap aggregation. We
design the spatial attention with multi-level Gaussian score map
supervision to tackle the problem of various density distribution
and background influences, where it can also act as a plug-in for
different backbones.

Figure 7. Hierarchical heatmaps. We design the spatial Hierar-
chical Gaussian score heatmap supervision to tackle the problem
of various density distributions and background influences. The
coarse-level heatmap is downsampled from the regular one, in
which the positive regions occupy a larger portion targeting a bal-
anced foreground / background ratio. For the fine-grained level
heatmap, it can clearly distinguish the closer pedestrians for accu-
rate one-to-one assignment (as shown in the rectangle).

4.2. Hierarchical Heatmaps

Balanced positive and negative samples also have a great
impact on high-performance 3D detection. However, unlike
big objects (like truck covering a large portion of heatmap),
pedestrians only occupy a limited space, resulting in most of
the heatmap being zero (or negative region). The density-
varying property also worsens the condition. We thus in-
troduce hierarchical heatmaps to construct the multi-level
detection targets, where the coarse-level heatmap could bal-
ance the ratio of positive and negative samples and the fine-
grained heatmap can better tackle the clustering pedestrians
with an accurate one-to-one assignment (avoid one grid in
the heatmap representing more than two persons).

Specifically, we use a modified CenterHead [50] to clas-
sify and localize the pedestrians. The ground truth heatmap
is a Gaussian map produced based on 3D centers of an-
notated bounding boxes. As shown in Figure 7, the fea-
tures generated from Spatial attention module are first up-
sampled to get the fine-grained feature maps and corre-
sponding heatmaps, and then down-sampled to obtain the
coarse-level features, where fine-grained level heatmap de-
livers an accurate one-to-one assignment for close and
crowded pedestrians and coarse-level heatmap balances the
ratio of foreground and background samples. Gaussian fo-
cal loss is calculated on each pair of prediction and target
heatmaps.

With the cooperation of these two components, i.e., spa-
tial attention module and hierarchical heatmaps, DHA han-
dles the crowd scenarios with varying density well.

5. Experiments
In this section, we first provide the detailed experimen-

tal setup, then evaluate extensive methods and our pro-
posed DHA for 3D detection on STCrowd. Furthermore,
we demonstrate the performance of DHA on 3D tracking
and prove its generalization capability by ablation study. Fi-
nally, the benchmark of trajectory prediction on our dataset
is provided to facilitate the research of crowd prediction.
Moreover, we provide more analyses and qualitative results
in the supplementary material.

5.1. Baseline

We present several popular baselines with different
modalities for 3D detection. For image-based method, Cen-
terNet [55] regresses 3D bounding boxes in the world-
coordinate system from only monocular images. For
LiDAR-only 3D detectors, anchor based and anchor-free
methods are used to evaluate the performance on our
dataset, including PointPillar [27] and CenterPoint [50].
Furthermore, we also evaluate two point encoding meth-
ods for CenterPoint, i.e., Voxel-CenterPoint and Pillar-
CenterPoint. Our method takes the Voxel-CenterPoint as
the backbone and employs DHA as the classification head.
For LiDAR-image-fusion-based 3D detectors, we show cur-
rent SOTA PointPainting [41] and PointAugmenting [42],
where pixel-wise prediction and pixel-wise image features
are used to represent the image. Note that all the backbone
for these fusion-based methods is the Voxel-CenterPoint.

5.2. Implementation Details

For experiments on STCrowd, we set the detection range
to [0, 30.72m] for the X axis, [-20.48m, 20.48m] for Y
axis, and [-4m, 1m] for Z axis. Voxel-CenterPoint employs
a (0.12m, 0.16m, 0.2m) voxel size, and Pillar-CenterPoint
and PointPillars utilize a (0.12m, 0.16m) grid. For the
anchor-based method, the anchor is set as [0.57m, 0.6m,
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Table 2. Benchmarks for image-only, LiDAR-only, and LiDAR-image-fusion-based 3D detection on validation set of STCrowd. AP(d)
denotes that different meters are used as matching thresholds of 3D center distance d. ARi represents the average recall on easy, moderate,
and hard cases respectively with different occlusion levels i.

Methods Modality AP(0.25) AP(0.5) AP(1.0) mAP AR0 AR1 AR2

CenterNet [55]+ResNet18 RGB 0.009 0.091 0.397 0.166 0.456 0.350 0.285
CenterNet [55]+ResNet101 RGB 0.056 0.112 0.486 0.203 0.478 0.361 0.273

CenterNet [55]+DLA34 RGB 0.041 0.200 0.467 0.236 0.578 0.451 0.349

PointAugmenting [42] RGB+LiDAR 0.483 0.629 0.649 0.587 0.932 0.866 0.800
PointPainting [41] RGB+LiDAR 0.509 0.638 0.656 0.601 0.929 0.867 0.783

PointPillar [27] LiDAR 0.091 0.276 0.368 0.245 0.576 0.399 0.238
Pillar-Center [50] LiDAR 0.456 0.574 0.592 0.541 0.866 0.811 0.706
Voxel-Center [50] LiDAR 0.505 0.613 0.628 0.582 0.859 0.834 0.740

Ours LiDAR 0.498 0.667 0.685 0.617 0.902 0.873 0.782

Table 3. Mean Average Precision (mAP) for 3D pedestrian de-
tection on Waymo (W level

range) [39], H3D [33], and nuScenes [4]
datasets.

Dataset W 1
30 W 2

30 W 1
50 W 2

50 H3D nuScenes

Pillar-Center 0.697 0.652 0.535 0.472 0.478 0.719
Voxel-Center 0.701 0.649 0.598 0.532 0.595 0.783

Ours 0.726 0.673 0.638 0.569 0.609 0.795

1.7m] which is calculated as the average size of pedes-
trian 3D ground truth bounding boxes. For post-processing
of detection results, we use a circle NMS method which
keeps only one instance prediction within radiance fewer
than 0.3m to reduce redundant bounding boxes and drops
the predicted box which has fewer than 5 points.

5.3. Results

LiDAR-only 3D detection We compare the results of our
proposed method with existing anchor-based and anchor-
free methods in Table. 2. Specifically, the anchor-free meth-
ods perform much better than anchor-based methods. The
various human poses and densities become a hindrance
for anchor-based methods, making it difficult for these an-
chors to cover pedestrian locations well. Moreover, the
proposed DHA achieves state-of-art performance compared
with anchor-free methods, demonstrating that DHA can
tackle the issue of density-varying and unbalanced samples
well, while vanilla anchor-free methods do not well attend.

For crowded scenes, we show the result of average recall
ARi (as shown in Section 3.3.1) for different occlusion lev-
els in Table.2 to evaluate the performance when facing key
challenges in pedestrian detection. Consistently, the pro-
posed method achieves about 4% and 6% improvement for
each level compared with the Voxel-CenterPoint and Pillar-
CenterPoint backbone, respectively.

We further provide the visualization results for the detec-
tion task in crowded scenes in Figure. 8. It can be observed
that in crowded scenes, our method performs much bet-
ter, even covering these challenging pedestrians when they
are extremely close to each other and occluded severely (as
shown in rectangles), while the baseline cannot distinguish
these boxes clearly and misses some dense predictions.

We also conduct experiments in Table. 3 for 3D pedes-
trian detection on three other large-scale datasets. Obvi-
ously, our method consistently outperforms baselines (cur-
rent SOTAs) on contemporary benchmarks, demonstrating
good generalization capability of our method on 3D pedes-
trian detection.
Multimodal fusion-based 3D detection As shown in Ta-
ble. 2, both fusion methods perform better than LiDAR-
only baselines, which demonstrates the image features play
a complementary role compared with LiDAR point clouds.
Although our method only unitize LiDAR features, it is still
comparable to sensor-fusion-based methods.
Image-only 3D detection It is obvious that there is a big
gap between the image-only method and others. Because it
is difficult to estimate the depth information from monoc-
ular images and severe occlusions of the crowd in images
make things worse. In this manner, LiDAR point clouds
provide an appealing option and act as a complementary
function to tackle these occlusions to some extend.

5.4. Ablation studies

First, we perform ablation experiments to investigate the
generalization ability of the proposed modules on various
backbones. The results on the validation set are reported
in Table 4 and we test our DHA module on pillar-based
and voxel-based LiDAR-only-based detection backbones.
The results demonstrate that it consistently improves the
performance with a large margin, i.e., 5% and 3.5%, re-
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Figure 8. The detection visualization on crowded scenes. The first
row is the prediction results from the baseline method [50] and
the bottom shows our results. The blue boxes are ground truth,
and the red boxes are predictions. It can be found that for some
crowded regions and pedestrians (as shown in rectangles), the
baseline method often omits and mismatches, while our method
achieves better results on such cases because the proposed DHA
can focus more on the foreground and distinguish the crowded re-
gions with fine-grained heatmaps.

Table 4. Ablation studies for DHA block on different backbones
on STCrowd validation set.

Pillar-Center Voxel-Center PointAugmenting DHA mAP
✓ 0.541
✓ ✓ 0.591

✓ 0.582
✓ ✓ 0.617

✓ 0.587
✓ ✓ 0.594

Table 5. Ablation study of DHA on STCrowd.

Methods ours w/o SAM w/o HH Voxel-Center

mAP 0.617 0.601 0.603 0.582

spectively, compared to the baseline. We also test DHA on
LiDAR-image-fusion-based detection backbone, PointAug-
menting, and still get improvement (because image fea-
tures already provide a remedy for the crowded scene, DHA
only achieves a slight gain). We also conduct the ablation
study for Spatial Attention Module (SAM) and Hierarchical
Heatmaps (HH) (Table. 5). Results show the effectiveness
of two modules in improving the performance.

5.5. 3D Tracking

For tracking tasks, we learn to predict a two-dimensional
velocity estimation for each detected object as an addi-
tional regression output following the methodology of Cen-

terPoint [50]. We mainly conduct experiments on Cen-
terPoint [50] with pillar and voxel representation, respec-
tively. The proposed DHA module is also incorporated to
investigate its generalization ability on the tracking task (Ta-
ble.6). It can be found that our proposed DHA consistently
achieves the better results.

Table 6. Results of LiDAR point cloud tracking on validation set
of STCrowd.

Methods MOTA ↑ MT ↑ ML ↓
Pillar-Center 0.245 0.295 0.102
Voxel-Center 0.342 0.355 0.084

Ours 0.368 0.363 0.086

5.6. Trajectory Prediction

As shown in Table. 7, we also provide the baselines of
trajectory prediction on our crowd dataset, including popu-
lar vanilla-LSTM [21], social-LSTM [1], and StarNet [62].
Our dataset can boost the research of action and trajectory
prediction in crowd scenes by involving more multimodal
inputs or features.

Table 7. Results on trajectory prediction task.

Methods FDE ↓ MDE ↓
LSTM [21] 1.133 0.648
Social-LSTM [1] 1.122 0.638
StarNet [62] 0.983 0.404

5.7. More Applications

Accurate pedestrian perception leads to wider applica-
tions, like the on-campus delivery robots and intelligent
patrols for stations, for which dense and crowded campus
scene would be the major challenges. Our dataset can pro-
vide a benchmark and challenging metrics for them.

6. Conclusion
Focusing on 3D perceptions in crowded scenarios, we

propose a new multimodal dataset with diverse crowd den-
sities, multiple scenes, various weather, and different hu-
man poses. In particular, our dataset contain situations with
high density and severe occlusions, which is challenging for
current 3D perception methods. Based on multimodal data
and annotations, our dataset can facilitate many perception
tasks. Benchmarks on most of the tasks are provided in the
paper. In addition, we propose a novel method to achieve
more accurate perception on crowded scenes by consider-
ing the properties of pedestrian distribution. Experiments
illustrate the superiority and generalization capability of our
method.

19615



References
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,

Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. So-
cial lstm: Human trajectory prediction in crowded spaces. In
CVPR, pages 961–971, 2016. 8

[2] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe.
Tracking without bells and whistles. In ICCV, pages 941–
951, 2019. 1, 3

[3] Gabriel J Brostow, Jamie Shotton, Julien Fauqueur, and
Roberto Cipolla. Segmentation and recognition using struc-
ture from motion point clouds. In European conference on
computer vision, pages 44–57. Springer, 2008. 2

[4] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. CVPR, 2020. 1, 2,
4, 5, 7

[5] Rohan Chandra, Uttaran Bhattacharya, Aniket Bera, and Di-
nesh Manocha. Densepeds: Pedestrian tracking in dense
crowds using front-rvo and sparse features. In IROS, pages
468–475. IEEE, 2019. 1, 2

[6] Rohan Chandra, Uttaran Bhattacharya, Aniket Bera, and Di-
nesh Manocha. Traphic: Trajectory prediction in dense and
heterogeneous traffic using weighted interactions. In CVPR,
pages 8483–8492, 2019. 1

[7] Rohan Chandra, Mridul Mahajan, Rahul Kala, Rishitha
Palugulla, Chandrababu Naidu, Alok Jain, and Dinesh
Manocha. Meteor: A massive dense & heterogeneous
behavior dataset for autonomous driving. arXiv preprint
arXiv:2109.07648, 2021. 1, 2

[8] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jag-
jeet Singh, Sławomir Bak, Andrew Hartnett, De Wang, Peter
Carr, Simon Lucey, Deva Ramanan, and James Hays. Argo-
verse: 3d tracking and forecasting with rich maps. CVPR,
pages 8740–8749, 2019. 2, 4

[9] Zhengping Che, Max Guangyu Li, Tracy Li, Bo Jiang, Xue-
feng Shi, Xinsheng Zhang, Ying Lu, Guobin Wu, Yan Liu,
and Jieping Ye. D2-city: A large-scale dashcam video
dataset of diverse traffic scenarios. ArXiv, abs/1904.01975,
2019. 1, 2

[10] Qi Chen, Lin Sun, Zhixin Wang, K. Jia, and A. Yuille. Object
as hotspots: An anchor-free 3d object detection approach via
firing of hotspots. ECCV, 2020. 2

[11] Xiaozhi Chen, Huimin Ma, Jixiang Wan, B. Li, and Tian
Xia. Multi-view 3d object detection network for autonomous
driving. CVPR, 2017. 3

[12] Hsu-kuang Chiu, Antonio Prioletti, Jie Li, and Jeannette
Bohg. Probabilistic 3d multi-object tracking for autonomous
driving. arXiv preprint arXiv:2001.05673, 2020. 3

[13] Yukyung Choi, Namil Kim, Soonmin Hwang, Kibaek Park,
Jae Shin Yoon, Kyounghwan An, and In So Kweon. Kaist
multi-spectral day/night data set for autonomous and assisted
driving. IEEE Transactions on Intelligent Transportation
Systems, 19(3):934–948, 2018. 2

[14] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. CVPR,
pages 3213–3223, 2016. 1, 2

[15] Navneet Dalal and Bill Triggs. Histograms of oriented gra-
dients for human detection. In CVPR, volume 1, pages 886–
893. Ieee, 2005. 2

[16] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Per-
ona. Pedestrian detection: An evaluation of the state of the
art. TPAMI, 34(4):743–761, 2011. 1, 2

[17] Markus Enzweiler and Dariu M Gavrila. Monocular
pedestrian detection: Survey and experiments. TPAMI,
31(12):2179–2195, 2008. 2

[18] Andreas Ess, Bastian Leibe, Konrad Schindler, and Luc
Van Gool. A mobile vision system for robust multi-person
tracking. In CVPR, pages 1–8. IEEE, 2008. 2

[19] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The In-
ternational Journal of Robotics Research, 32:1231 – 1237,
2013. 1, 2, 4

[20] Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi,
Xavier Ricou, Rupesh Durgesh, Andrew S. Chung, Lorenz
Hauswald, Viet Hoang Pham, Maximilian Mühlegg, Sebas-
tian Dorn, Tiffany Fernandez, Martin Jänicke, Sudesh Mi-
rashi, Chiragkumar Savani, Martin Sturm, Oleksandr Voro-
biov, Martin Oelker, Sebastian Garreis, and Peter Schuberth.
A2D2: Audi Autonomous Driving Dataset. 2020. 2

[21] Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R Ste-
unebrink, and Jürgen Schmidhuber. Lstm: A search space
odyssey. IEEE transactions on neural networks and learn-
ing systems, 28(10):2222–2232, 2016. 8

[22] Hou-Ning Hu, Qi-Zhi Cai, Dequan Wang, Ji Lin, Min Sun,
Philipp Krahenbuhl, Trevor Darrell, and Fisher Yu. Joint
monocular 3d vehicle detection and tracking. In CVPR,
pages 5390–5399, 2019. 3

[23] Soonmin Hwang, Jaesik Park, Namil Kim, Yukyung Choi,
and In So Kweon. Multispectral pedestrian detection:
Benchmark dataset and baseline. In CVPR, pages 1037–
1045, 2015. 1, 2

[24] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni,
A. Ferreira, M. Yuan, B. Low, A. Jain, P. Ondruska, S.
Omari, S. Shah, A. Kulkarni, A. Kazakova, C. Tao, L. Platin-
sky, W. Jiang, and V. Shet. Level 5 perception dataset 2020.
2019. 2, 4

[25] Wonhui Kim, Manikandasriram Srinivasan Ramanagopal,
Charles Barto, Ming-Yuan Yu, Karl Rosaen, Nick Goumas,
Ram Vasudevan, and Matthew Johnson-Roberson. Pedx:
Benchmark dataset for metric 3-d pose estimation of pedes-
trians in complex urban intersections. IEEE Robotics and
Automation Letters, 4(2):1940–1947, 2019. 4

[26] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh,
and Steven L. Waslander. Joint 3d proposal generation and
object detection from view aggregation. IROS, 2018. 3

[27] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. CVPR, 2019. 6, 7

[28] Ming Liang, Binh Yang, Yun Chen, Rui Hu, and R. Urta-
sun. Multi-task multi-sensor fusion for 3d object detection.
CVPR, 2019. 3

19616



[29] Ming Liang, Binh Yang, Shenlong Wang, and R. Urtasun.
Deep continuous fusion for multi-sensor 3d object detection.
ECCV, 2018. 3

[30] Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wen-
ping Wang, and Dinesh Manocha. Trafficpredict: Trajectory
prediction for heterogeneous traffic-agents. In AAAI, 2019.
2

[31] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and
Peter Kontschieder. The mapillary vistas dataset for semantic
understanding of street scenes. In ICCV, pages 4990–4999,
2017. 2

[32] Lukás Neumann, Michelle Karg, Shanshan Zhang, Christian
Scharfenberger, Eric Piegert, Sarah Mistr, Olga Prokofyeva,
Robert Thiel, Andrea Vedaldi, Andrew Zisserman, and Bernt
Schiele. Nightowls: A pedestrians at night dataset. In ACCV,
2018. 1, 2

[33] Abhishek Patil, Srikanth Malla, Haiming Gang, and Yi-Ting
Chen. The h3d dataset for full-surround 3d multi-object de-
tection and tracking in crowded urban scenes. 2019 Inter-
national Conference on Robotics and Automation (ICRA),
pages 9552–9557, 2019. 2, 4, 7

[34] C. Qi, Xinlei Chen, O. Litany, and L. Guibas. Imvotenet:
Boosting 3d object detection in point clouds with image
votes. CVPR, 2020. 2

[35] C. Qi, O. Litany, Kaiming He, and L. Guibas. Deep hough
voting for 3d object detection in point clouds. ICCV, 2019.
2

[36] Shuai Shao, Zijian Zhao, Boxun Li, Tete Xiao, Gang Yu,
Xiangyu Zhang, and Jian Sun. Crowdhuman: A bench-
mark for detecting human in a crowd. arXiv preprint
arXiv:1805.00123, 2018. 1, 2

[37] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. CVPR, 2019. 3

[38] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang,
and Hongsheng Li. From points to parts: 3d object detec-
tion from point cloud with part-aware and part-aggregation
network. TPAMI, 2021. 2

[39] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, and etc.
Scalability in perception for autonomous driving: Waymo
open dataset. CVPR, pages 2443–2451, 2020. 1, 2, 4, 7

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 5

[41] Sourabh Vora, Alex H. Lang, Bassam Helou, and Oscar Bei-
jbom. Pointpainting: Sequential fusion for 3d object detec-
tion. CVPR, 2020. 2, 3, 6, 7

[42] Chunwei Wang, Chao Ma, Ming Zhu, and Xiaokang Yang.
Pointaugmenting: Cross-modal augmentation for 3d object
detection. CVPR, 2021. 3, 6, 7

[43] Xinshuo Weng and Kris Kitani. A baseline for 3d multi-
object tracking. arXiv preprint arXiv:1907.03961, 1(2):6,
2019. 3

[44] Christian Wojek, Stefan Walk, and Bernt Schiele. Multi-
cue onboard pedestrian detection. In CVPR, pages 794–801.
IEEE, 2009. 2

[45] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple
online and realtime tracking with a deep association metric.
In ICIP, pages 3645–3649. IEEE, 2017. 3

[46] Liang Xie, Chao Xiang, Zhengxu Yu, Guodong Xu, Zheng
Yang, Deng Cai, and Xiaofei He. Pi-rcnn: An efficient multi-
sensor 3d object detector with point-based attentive cont-
conv fusion module. AAAI, 2020. 3

[47] Binh Yang, Wenjie Luo, and R. Urtasun. Pixor: Real-time
3d object detection from point clouds. CVPR, 2018. 2

[48] Zetong Yang, Y. Sun, Shu Liu, and Jiaya Jia. 3dssd: Point-
based 3d single stage object detector. CVPR, 2020. 3

[49] Zetong Yang, Y. Sun, Shu Liu, Xiaoyong Shen, and Jiaya
Jia. Std: Sparse-to-dense 3d object detector for point cloud.
ICCV, 2019. 3

[50] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-
based 3d object detection and tracking. CVPR, 2021. 6, 7,
8

[51] Jin Hyeok Yoo, Yeocheol Kim, Ji Song Kim, and J. Choi. 3d-
cvf: Generating joint camera and lidar features using cross-
view spatial feature fusion for 3d object detection. ECCV,
2020. 3

[52] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. CVPR, pages 2633–2642, 2020. 1, 2

[53] Shanshan Zhang, Rodrigo Benenson, and Bernt Schiele.
Citypersons: A diverse dataset for pedestrian detection. In
CVPR, pages 3213–3221, 2017. 1, 2

[54] Shifeng Zhang, Yiliang Xie, Jun Wan, Hansheng Xia, Stan Z.
Li, and Guodong Guo. Widerperson: A diverse dataset for
dense pedestrian detection in the wild. IEEE Transactions
on Multimedia (TMM), 2019. 1, 2

[55] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
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