Deep generative models, like GANs, have considerably improved the state of the art in image synthesis, and are able to generate near photo-realistic images in structured domains such as human faces. Based on this success, recent work on image editing proceeds by projecting images to the GAN latent space and manipulating the latent vector. However, these approaches are limited in that only images from a narrow domain can be transformed, and with only a limited number of editing operations. We propose FlexIT, a novel method which can take any input image and a user-defined text instruction for editing. Our method achieves flexible and natural editing, pushing the limits of semantic image translation. First, FlexIT combines the input image and text into a single target point in the CLIP multimodal embedding space. Via the latent space of an autoencoder, we iteratively transform the input image toward the target point, ensuring coherence and quality with a variety of novel regularization terms. We propose an evaluation protocol for semantic image translation, and thoroughly evaluate our method on ImageNet. Code will be available at https://github.com/facebookresearch/SemanticImageTranslation/.
limited to the semantics identified in the latent space via a pre-trained classifier [1, 41, 57] or through a semi-automatic manner [22, 48]. These semantics are specific to the single domain the GAN was trained on, such as age or apparent gender in the case of faces. Some flexibility w.r.t. the input images can be obtained by training a GAN to directly modify the images, known as image-to-image translation. These methods learn a transformation between two domains, using paired data [23, 38, 49] or unpaired data [6, 56]. However, these models only learn a single transformation, or combinations thereof [50], specific to the training data, limiting the scope of their applicability.

We tackle these challenges with a unified framework which modifies an input image based on a user-defined text query of the form \((S \rightarrow T) \), like cat \(\rightarrow \) dog. For this semantic image translation task, the goal is to make minimal image modifications while transforming the image as requested. We leverage CLIP [40], which combines text and image representations in one powerful multimodal embedding space. This space is used to define our target point, based on the embeddings from the user input. We perform a per-image optimization procedure, using specific strategies to ensure image quality and relevance to the transformation query. Our method requires only fixed pre-trained components, and can thus be used off-the-shelf without requiring any training. The image is optimized in the latent space of an auto-encoder, rather than a GAN, which greatly enlarges the scope of possible input images. This allows for truly flexible image edits; as Figure 1 shows, even a sow’s ear can be changed into a silk purse.

We also propose a quantitative evaluation protocol for the task of semantic image translation. Evaluation is based on three criteria: (i) the transformed image should correctly correspond to the text query, (ii) the output image should look natural, and (iii) visual elements irrelevant to the text query should remain unchanged. We thoroughly evaluate our model on ImageNet, and demonstrate quantitatively and qualitatively the superiority of our method against baselines, broadening the horizon of text-driven image editing.

2. Related Work

Image editing. Deep generative networks, like GANs, have given rise to numerous image editing applications, ranging from photography retouching [42], image inpainting [52], object insertion [17], domain translation [53, 56], colorization [23], super-resolution [25, 35], among many others. Automatic user-driven image editing aims at providing the user control to modify an image, by tweaking segmentation masks [37], scene graphs [10], or class labels [5]. Allowing the user to provide unstructured free-form text queries is more challenging. Close to our objective, ManiGAN [36] aims at performing text-based edits by training a model to refine the details of an image based on its textual description. Their quantitative evaluation protocol uses transformation queries on the COCO dataset by considering random unaligned (image, caption) pairs, resulting in possibly incoherent transformation queries. We carefully design our evaluation protocol to avoid such cases.

Image latent space. While GANs are highly effective as generative models, inference of the latent variable given an image is in principle intractable. Even though joint learning of an inference network has been proposed, see e.g. [11,14], the mode-seeking training dynamics of GANs are not suited for good reconstruction performance beyond the training distribution (or even within it, if modes are dropped). Variational autoencoders [33], on the other hand, offer an inference network by construction, and their likelihood-based training objective ensures accurate reconstructions.

Vector-quantized variational autoencoders (VQ-VAE) [2,47], which discretize the latent space, have been found to offer both good reconstructions as well as compelling samples. In particular, VQ-GAN [15,51] further improves reconstructions by including an adversarial loss term to train the autoencoder. In our work, we adopt the VQ-GAN autoencoder, and edit images in its latent space.

Latent space manipulation. The introduction of “style-based” GANs, such as StyleGAN [27–29] significantly improved the disentanglement of the latent space, leading to a surge of research into its interpretation and manipulation. By using an auxiliary classifier, a simple approach consists in finding linear boundaries in the latent space separating binary attributes [18,41,57], which allows to edit attributes by “walking” in the orthogonal latent direction. StyleFlow [1] proposes a non-linear approach by learning the latent transformations using normalizing flows. Other methods [22,48] operate without a pre-trained classifier and find the transformations in an unsupervised manner, requiring a manual labelling process to interpret and annotate the “discovered” transformations. Rather such restricted sets of possible edit dimensions, we target more general transformations described by free-text.

Semantic alignment with CLIP. To align images and text, CLIP [40] learns encoders that map both modalities to a shared latent space in which they can easily be compared and combined. Vision encoders are based on ResNets [20] and Vision Transformers [13].

CLIP, trained on 400M web-crawled image/text pairs with a simple contrastive InfoNCE loss [46], can provide a robust differentiable signal for image synthesis and editing, used in conjunction with diffusion models [32], and generators based on Bézier curve strokes [16]. CLIP was also successfully used in conjunction with VQGAN to generate novel art images [8] or perform semantic style transfer [30]. Similarly to us, StyleCLIP [39] transforms images based on
text queries via alignment in CLIP’s latent space. However it relies on the latent space of StyleGAN2 to optimize the image, which requires training a separate generative and latent space inference model per application domain.

3. FlexIT framework for semantic editing

An overview of our image transformation approach is depicted in Figure 2. It relies on three pre-trained components. First, we edit the input image in a latent space, with the requirement that a wide range of images can be encoded and decoded back to an RGB image with minimal distortion. We chose the VQGAN autoencoder [15] for that purpose. Second, we embed the text query and input image in a multimodal embedding space, to define the optimization target for the modified image. We use the CLIP [40] multimodal embedding spaces. Finally, to ensure that the modified image remains similar to the input, we control its distance to the input image with the LPIPS perceptual distance [54] computed with a VGG [43] backbone.

Optimization scheme. The core idea of the FlexIT method is to edit the input image in a latent space, guided by a high-level semantic objective defined in the multimodal embedding space. Let E be the image encoder, D the image decoder and (C_t, C_i) the multimodal encoders for text and image respectively. Given an input image I_0 and a textual transformation $S \rightarrow T$, we first initialize FlexIT by computing the initial latent image representation as $z_0 = E(I_0)$ and the target multimodal point P as

$$P = C_i(T) + \lambda_I C_i(I_0) - \lambda_S C_t(S). \quad (1)$$

We choose to use a multimodal embedding space since it allows text and image modalities to be combined together in a meaningful way: semantic transformations defined by textual embeddings can be applied to images with linear operations [24]. In this context, our target point P can be seen as an image embedding that has been semantically modified with textual embeddings, by removing the source class information ($-\lambda_S E_t(S)$) and adding the target class information ($+ E_i(T)$). Since we don’t know what is the optimal linear combination of image and text embeddings, we consider λ_I and λ_S as parameters which will be validated on our development set.

To find an output image which, when encoded in the multimodal embedding space, gets as close as possible to the target point, we optimize the embedding loss:

$$L_{emb}(z) = \|C_i(D(z)) - P\|_2^2. \quad (2)$$

We add two regularization terms to the embedding loss, to encourage that only the content related to the transformation query is changed. Without regularization, the optimization scheme can alter any part of the image if this helps in getting closer to the multimodal target point, which we have found to yield unnatural artifacts. The distance to the input image I_0 is controlled with a LPIPS distance:

$$L_{perc}(z) = d_{LPIPS}(D(z), I_0). \quad (3)$$

To enforce staying in parts of the latent space that are well decoded by our image decoder, we use a regularization term with respect to the initial latent code z_0. We use a ℓ_2 norm at each spatial position i of the latent code, and sum these norms across spatial positions to obtain the loss:

$$L_{latent}(z) = \sum_i \|z^i - z^i_0\|_2. \quad (4)$$

This $\ell_{2,1}$ loss encourages sparse z^i changes, i.e. limiting changes in spatial locations, which is aligned with our objective to transform a localized part of the input image.

Finally, note that λ_I in Eq. (1) also acts as a regularization parameter, by encouraging the input and output image to be close in the multi-modal embedding space.

The total loss we optimize can be written as:

$$L_{total}(z) = L_{emb}(z) + \lambda_p L_{perc}(z) + \lambda_z L_{latent}(z). \quad (5)$$
After initialization, the latent image variable z is updated via gradient descent with a fixed learning rate μ for a fixed number of steps N, while keeping all network weights frozen. Following the implementation of the Fast Gradient Method [12], we normalize the gradient before the update.

Image optimization space. The distance to the multimodal target point is a differentiable loss that can be optimized via gradient descent. A straightforward approach consists in performing gradient descent directly in the pixel-space. However, this type of image representation lacks a prior on low-level image statistics. By optimizing over a latent variable instead, the image is obtained as the output of a neural-network based decoder. Choosing an autoencoder, like that of VQGAN, lets us (i) make use of the decoder’s low-level priors, which guides the optimization problem towards images that exhibit at least low-level consistency; and (ii) encode and decode images in its latent space with little distortion. The spatial dimensions in the VQGAN latent space allows to edit specific parts of the image independently, contrary to GANs which typically rely on more global latent variables. Although GANs generate realistic images with stronger priors, it is problematic to optimize their latent space for two reasons: first, GANs work well on narrow distributions (such as human faces), but do not work as well when trained on a much wider distribution; second, even with a GAN trained on a wide distribution such as that of ImageNet, it is hard to faithfully reconstruct an image using its latent space.

We report on experiments with optimization over raw pixels and GAN latent spaces in Section 4.3.

Implementation details. In FlexIT, we run the optimization loop for $N = 160$ steps, which we found enough to transform most images. We use a resolution of 288 for encoding images with VQGAN, which compresses the images in a latent space with dimensions (256, 18, 18).

We take advantage of various pre-trained CLIP models, and combine their embeddings with concatenation, as shown in Figure 3. By default, we use three image embedding networks with different ResNet and ViT architectures, which implement complementary inductive biases. To encode an image with a single CLIP network, we average the embeddings of multiple augmentations of the input image (8 by default). We have empirically observed that using multiple augmentations per network stabilizes optimization in the early stages.

For the regularization coefficients, we use $\lambda_z = 0.05$, $\lambda_p = 0.15$, $\lambda_S = 0.4$, $\lambda_I = 0.2$ as our default values. These coefficients are set using our ImageNet-based development set, and are fixed for all experiments.

These implementation choices are analysed in Sec. 4.4.

4. Experiments

Below, we first describe our evaluation protocol in detail. We then present qualitative and quantitative results, and an in-depth analysis of various components of our approach.

4.1. Evaluation Protocol

Evaluation dataset. We did not find a satisfying evaluation framework to study the problem of semantic image translation: existing dataset and metrics focus on narrow image domains, or random text transformation queries [36, 39]. To overcome this, we have decided to build upon the ImageNet dataset [9] for its diversity and its high number of classes: by defining which class labels can be changed into one another (like cat \rightarrow tiger), we can build a set of sensible object-centric transformation queries. We have selected a subset of the 273 ImageNet labels that we manually split into 47 clusters according to their semantic similarity. For instance, there is a cluster containing all kinds of vegetables. Details on the subset selection and grouping are presented in the appendix. We only consider transformations $S \rightarrow T$ where S and T are in the same cluster, in order to avoid nonsensical transformations between unrelated objects, e.g. laptop \rightarrow butterfly.

For each target label T we construct eight transformation queries by randomly sampling eight other classes $\{S_i\}$ within the same cluster, and sample a random image from each S_i from the ImageNet validation set. This gives a total of 2,184 transformation queries that we split into a development set and a test set of equal size. We use the development set to tune various hyper-parameters of our approach, and report evaluation metrics on the test set.

Metrics. We evaluate the success of the transformation by means of the **Accuracy** of an image classifier, which is possible since we use ImageNet class labels as the transformation targets. We use a DeiT [44] classifier, which has an ImageNet validation accuracy of 85.2%. We judge a transformation successful if, for the transformed image, class T has the highest probability among the 273 selected classes.
Figure 4. Transformation examples with FlexIT on ImageNet images. From top to bottom: input and output image, as well as dataset image from the target class. Columns (a)-(e) show examples of successful transformations. Column (f) shows an interesting behavior where another object has been added in the image to add more context (a table tennis racket in the hand of the person). The last two columns show the most frequent modes of failure: only part of the input object is transformed (g), or parts of the input object that should be changed are not changed: in column (h), the transformed images still has a broccoli shape with green parts instead of an orange and round spaghetti squash.

To assess naturalness of transformed images, we use the Fréchet Inception distance (FID) [21]. To avoid numerical instability related to estimating the feature distribution with a small number of samples, we use the “Simplified FID” (SFID) [31] which does not take into account the off-diagonal terms in the feature covariance matrix. In addition to the SFID, we use a class-conditional SFID score (CS-FID) which is an average of the SFID scores computed for each target class separately. Because we compute these scores with a low number of examples for many classes, the CSFID score has a high bias, low variance profile on our dataset [7], and we have found it to be reliable and stable. The CSFID metric is a measure of both image quality and transformation accuracy, as it measures the feature distribution distance between the transformed images and the reference images from the target class in the training set. Editing should not change parts of the image that are irrelevant to the transformation defined in the text, e.g., the background. We use the LPIPS perceptual distance [54] to measure deviation from the input image. It is a weighted ℓ_2 distance of deep image features, and has been demonstrated to correlate well with human perceptual similarity. During training, we used the LPIPS distance based on VGG features, so as to reduce bias in the LPIPS evaluation which is based on AlexNet features. The LPIPS distance cannot differentiate between edits that are relevant to the text query, and those which are not; and we don’t know the minimal LPIPS distance between an image and its closest successful transformation. Still, we argue that it should be as low as possible.

More details on the metrics we used in our experiments are presented in the appendix.

4.2. Results

Qualitative results of FlexIT transformations on ImageNet images are presented in Figure 4, including successful transformations as well as several failure cases. To demonstrate the generality of our approach, we also show examples of color transformations for images from the Stanford Cars dataset [34] in Figure 5.

Semantic image translation is inherently a trade-off between having the most relevant and natural output image (as measured by Accuracy, CSFID and SFID), while staying as close as possible to the input image (as measured by LPIPS). We consider two extreme configurations as baselines, which only optimize one of these two criteria: (i) The COPY baseline, which simply copies the input image without any modification, and (ii) the RETRIEVE baseline that outputs a random validation image labelled with the target class T. We add the ENCODE baseline that simply passes the input image through the VQGAN autoencoder.

We also evaluate StyleCLIP [39], the most relevant text-driven image transformation algorithm from the literature. We consider the version most similar to our method that embeds images with an ImageNet-trained StyleGAN2, and iteratively updates the StyleGAN2 latent representation to maximize the similarity with a given text in the CLIP latent space. We have also trained ManiGAN [36] on ImageNet

\footnote{We used the publicly available model from https://github.com/justinpinkney/awesome-pretrained-stylegen2, and train our own e4e encoder [45] to embed images into this latent space.}
Figure 5. Example transformations on the Cars dataset: input images (first row), FlexIT results (second row), StyleCLIP results based on a StyleGAN2 backbone pre-trained on LSUN Cars dataset (last row). Although GAN-based images have better details like the wheels, they are farther away from the input images.

Table 1. Evaluation of FlexIT and baselines on ImageNet images.

<table>
<thead>
<tr>
<th>Method</th>
<th>LPIPS ↓</th>
<th>Acc.%↑</th>
<th>CSFID ↓</th>
<th>SFID ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPY</td>
<td>0.0</td>
<td>0.45</td>
<td>106.0</td>
<td>0.2</td>
</tr>
<tr>
<td>ENCODE</td>
<td>17.5</td>
<td>1.6</td>
<td>107.5</td>
<td>3.0</td>
</tr>
<tr>
<td>RETRIEVE</td>
<td>72.4</td>
<td>90.6</td>
<td>27.2</td>
<td>0.2</td>
</tr>
<tr>
<td>ManiGAN [36]</td>
<td>21.7</td>
<td>2.0</td>
<td>123.8</td>
<td>17.0</td>
</tr>
<tr>
<td>StyleCLIP [39]</td>
<td>33.4</td>
<td>8.0</td>
<td>146.6</td>
<td>35.8</td>
</tr>
<tr>
<td>FlexIT (Ours)</td>
<td>24.7</td>
<td>51.3</td>
<td>57.9</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Results are reported in Table 1. As expected, the copy baseline is ideal on LPIPS and SFID, but fails to adapt to the transformation target T, and thus fails on Accuracy and CSFID. For the same reason, the auto-encoding baseline also fails on Accuracy and CSFID, but demonstrates the non-trivial impact of using the VQGAN latent space on LPIPS and SFID. The RETRIEVE baseline provides ideal metrics for Accuracy, CSFID and SFID, as it returns natural images of the target class. It fails on LPIPS, however, since the output image is unrelated to the input.

Our FlexIT approach combines a low LPIPS (24.7 vs. 17.5 for ENCODE) with an accuracy of 51.3% and a CSFID of 57.9, which is closer to the CSFID of RETRIEVE (27.2) than that of ENCODE (107.5). The StyleCLIP scores are poor, with high SFID and CSFID scores which was expected as StyleCLIP has been designed to work well where GANs shine. The StyleGAN2 model we use, trained on ImageNet, is agnostic to class information and cannot synthesize realistic images for all ImageNet classes. ManiGAN works well when trained on narrow domains with color change transformation requests, but we find that it does not produce convincing edits when trained on ImageNet.

To provide insight into which transformations work well, and which less so, we group our 47 ImageNet clusters into 13 bigger groups (see appendix for details) and report the average CSFID and failure rate (1−accuracy) scores for each group in Figure 6. Generally, transformations among natural objects are more successful than transformations among man-made objects. We believe that this is mostly because the latter appear in a wider variety of shapes and contexts which leads to more difficult transformations.

4.3. Ablation studies

Regularizers. In Figure 7, we show the evolution of CSFID along the optimization steps, where we consider our method without regularization, with each regularization scheme separately, and with all regularizers (default configuration). Compared to not using regularization, the LPIPS regularization substantially improves the CSFID score along the optimization path, while also reducing LPIPS as expected. The CLIP regularizer has a similar effect, but is able to reduce CSFID further while the LPIPS distance is only slightly reduced compared to our method without any regularization. These two regularizers are complementary: while the LPIPS loss mitigates image deviation
for local features, the CLIP loss provides semantic guidance which helps to reconstruct recognizable objects. Using all regularizers allows us to obtain the lowest CSFID scores at low LPIPS. Corresponding qualitative examples are shown in Figure 8.

CLIP embedding module. We study how different choices of CLIP image encoders impact the CSFID score. Our default configuration involves two ResNet-based networks and one ViT-based network to embed the image in the CLIP space. We experiment with a single ViT or ResNet, a combination of ViT with a single ResNet, and also using all available pre-trained CLIP networks, which comprises a ViT-B/16, a ViT-B/32, a ResNet50, ResNet50×4 and ResNet50×16, see [40] for details on the modules. For each CLIP network configuration, we experiment with either not using data augmentation, or using \(d \in \{1, 8, 32\} \) augmentations. We apply basic geometric augmentations that are commonly used to train image classification net-

works (more details in appendix). Each of the \(N_{\text{nets}} \) CLIP networks sees a different augmentation in each of the \(N_{\text{steps}} \) optimization steps, resulting in a total of \(d \times N_{\text{nets}} \times N_{\text{steps}} \) augmentations of the input image.

From the results in Figure 9, we see that while the ViT and ResNet embedding networks lead to similar results, they are complementary and combining them leads to a substantial improvement. Adding additional networks leads to further improvements. Second, using data augmentation is very beneficial, and leads to a reduction in CSFID of 10 or more points for all network configurations. Using more than one augmentation does not improve results substantially: it suffices to a different augmentation for each network at each optimization step. In our other experiments we use the three smallest (and fastest) CLIP networks as our default setting.

Image optimization space. We compare our choice of optimizing in the VQGAN latent space with using the latent spaces of StyleGAN2 [29] and IC-GAN [5], as well as optimizing directly in the pixel space. IC-GAN [5] generates images similar to an input image, and uses a latent variable to allow for variability in its output. As IC-GAN does not offer direct inference of the latents for a given image, we take 1,000 samples from the latent prior, and keep the one yielding minimal LPIPS distance to the input image. We found that optimization to further reduce the LPIPS w.r.t. the input image from this point on was not effective. For StyleGAN2 [29], we use the same network pre-trained on ImageNet as we used for StyleCLIP. To embed the evaluation images into this latent space, we first obtain an initial prediction of the vector with the e4e encoder [45], as in StyleCLIP, and then perform an additional 1,000 optimization steps to better fit the input image, following the GAN inversion procedure described in [28].

The results in Figure 10 show that using the VQGAN latent space allows to substantially decrease the CSFID score along the iterations, while only slightly increasing LPIPS. Using the raw pixel space is not effective to decrease the CSFID. IC-GAN has relatively good image synthesis abilities but it is hard to faithfully encode images in its latent space, yielding high LPIPS scores above 50. The Style-
GAN2 latent space (\mathcal{W}^+) is bigger, allowing generated images to be closer to the input images; however its CSFID scores are not competitive with the other approaches.

4.4. Hyperparameter study

In Figure 11, we illustrate the effect of our hyper-parameters on the LPIPS, CSFID, and Accuracy metrics. For the three regularization parameters $\lambda_p, \lambda_z, \lambda_I$, we observe that (i) the LPIPS distance with respect to the input image is smaller as the regularization gets stronger, as expected; (ii) less regularization allows more image modifications, yielding better accuracy scores, as illustrated in the bottom panel; (iii) there is a global minimum in CSFID scores when we vary each hyper-parameter independently (top panel). Regularization constraints are indeed useful to prevent inserting unnatural visual artifacts; however, too much regularization penalizes our algorithm as the distribution of output images gets closer to the input distribution, and thereby farther from the target distribution.

The parameter λ_S, similarly to the regularization parameters, has an optimal value which minimizes the CSFID. It is beneficial to give a hint to the optimization algorithm which semantic content should be changed, however focusing too much this objective reduces image realism.

For our main experiments, we set our hyper-parameters to minimize the CSFID score on the development set. This is a natural choice given the convex shape of the CSFID scores, whereas optimizing for accuracy would remove the regularizers which is detrimental for image quality.

5. Conclusion

Contributions. We propose FlexIT, a novel method for semantic image translation. By relying on an autoencoder latent space, rather than specialized GAN latent spaces, it can operate on a wide range of images. Using a general pre-trained multi-modal embedding space provides flexibility, giving FlexIT the ability to process free-text transformation queries without training. We also propose an evaluation protocol for semantic image translation, based on ImageNet, which we use to thoroughly evaluate our approach and its components.

Limitations. Our method works best for semantic translation when the input image provides guidance, but has difficulties synthesizing realistic novel objects from scratch. Also, while we studied transformations that change the class or color of the main object in a scene, other transformations of interest could consider changing the action of a subject (person walking vs. running), changing object attributes, adding or deleting objects, or consider more elaborate textual descriptions which require non-trivial grounding in the image (“change the color of car parked next to the bicycle.”). Importantly, progress in this direction will require to identify the right data and evaluation metrics.

Broader impacts. As our algorithm relies on CLIP for editing, it could potentially inherit its biases. The authors of CLIP have demonstrated that their model is subject to fairness issues such as misclassifying human faces into non-human or crime-related categories, and producing gender biased associations. Our editing method could reflect such biases if prompted transformations such as doctor \rightarrow newscaster, although we have not observed experimental evidence of this. A potential bias mitigation strategy would be to add constraints with CLIP prompts to control bias before and after editing.

Our model provides new capabilities to an expanding set of image editing and synthesis tools based on deep generative models. As any generative image model, synthetic images generated by our method can potentially be used in unintended ways with undesirable effects. We believe however that open publication of research in this area contributes to a good understanding of such techniques, and can aid the community in efforts to develop method that detect unauthentic content.

Acknowledgements

This work was partly supported by ANR grant VISA DEEP (ANR-20-CHIA-0022).
References

[34] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D object representations for fine-grained categorization. In *4th International IEEE Workshop on 3D Representation and Recognition (3DRR-13)*, Sydney, Australia, 2013. 5

[35] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

[41] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of GANs for semantic face editing. In CVPR, 2020. 1, 2

[57] Peiyue Zhuang, Oluwasanmi O Koyejo, and Alex Schwang. Enjoy your editing: Controllable GANs for image editing via latent space navigation. In ICLR, 2021. 1, 2