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Abstract

Establishing superior-quality correspondences in an im-
age pair is pivotal to many subsequent computer vision
tasks. Using Euclidean distance between correspondences
to find neighbors and extract local information is a com-
mon strategy in previous works. However, most such works
ignore similar sparse semantics information between two
given images and cannot capture local topology among cor-
respondences well. Therefore, to deal with the above prob-
lems, Multiple Sparse Semantics Dynamic Graph Network
(MS2DG-Net) is proposed, in this paper, to predict proba-
bilities of correspondences as inliers and recover camera
poses. MS2DG-Net dynamically builds sparse semantics
graphs based on sparse semantics similarity between two
given images, to capture local topology among correspon-
dences, while maintaining permutation-equivariant. Exten-
sive experiments prove that MS2DG-Net outperforms state-
of-the-art methods in outlier removal and camera pose es-
timation tasks on the public datasets with heavy outliers.
Source code:https://github.com/changcaiyang/MS2DG-Net

1. Introduction

Recently, finding high-quality correspondences has at-
tracted broad attention in computer vision because of its
wide applications, e.g., visual localization [30], image fu-
sion [17], virtual reality [34], Simultaneous Location and
Mapping (SLAM) [21], Structure from Motion (SfM) [31],
etc. However, the existing feature detection and descrip-
tion methods (SIFT [14], SuperPoint [6], ContextDesc [15],
etc.) cannot provide significantly distinctive local features,
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(a) Neighborhood based on Euclidean distance

(b) Neighborhood based on sparse semantics similarity

Figure 1. The comparing illustration of (a) and (b), which are
neighborhoods selected by Euclidean distance and sparse seman-
tics similarity, respectively. The yellow, green and red lines repre-
sent the selected correspondences, inliers and outliers.

which will lead to matching results ambiguity. Hence, the
initial correspondence set, based on the nearest neighbor
matching strategy, will inevitably have numerous incorrect
correspondences (i.e., outliers).

Outlier removal is an indispensable step to improve the
correct correspondence (i.e., inlier) ratio of putative cor-
respondences. Some traditional methods (RANSAC [7],
VFC [19] and LPM [18]) are applicable to special scenes,
but they may be unsuitable for the explosive growth of gen-
eral datasets with an extremely low inlier ratio.

The permutation-equivariant deep learning-based outlier
removal methods are data-driven, emerging as the times
require, so they can capture the rich potential relationship
among correspondences. Specifically, CNe [20], motivated
by Point-Net [26], has adopted PointNet-like architectures
to process each correspondence independently and predict
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the probabilities of correspondences as inliers. Although it
is a pioneering work and has achieved good performance,
the network performance is adversely affected by ignoring
the relationship among correspondences. Hence, local in-
formation has been introduced, in various ways, without
losing permutation-equivariant, to capture the relationship
among correspondences, in some networks, such as OA-
Net [42], N3-Net [25], NM-Net [43], ACNe [33] and so on.

Although the above networks perform well, the seman-
tics information between two given images’ sparse corre-
spondences, which is called sparse semantics similarity in
our paper, is not considered, and the local topology among
correspondences can not capture well. Observing Figure 1,
we can find that, for an image pair of the same scene, there
are numerous outliers in the neighborhood based on Eu-
clidean distance, while the neighborhood according to se-
mantic similarity is more likely to be correct. In real life,
humans match two images with naked eyes, without con-
sidering Euclidean distances of contents in images, but pay-
ing attention to similarity of them, that is, somewhere with
similar semantics information. In Figure 1(a), neighbors
are close to the selected correspondence in the Euclidean
space, but without similar sparse semantics information, so
they are more likely to be outliers. And in Figure 1(b), we
can find that semantics similar structures, such as colum-
nar structures of building archs are brought close together,
although they are distant in the Euclidean space. By com-
parison, this phenomenon can be solved in Figure 1(b),
but it will be ignored in Figure 1(a). Inspired by the hu-
man matching process, in this work, we use a graph neu-
ral network to construct dynamic graphs via sparse seman-
tics similarity, to capture the local topology among corre-
spondences. Specifically, we propose Multiple Sparse Se-
mantics Dynamic Graph Network (MS2DG-Net) to remove
outliers while preserving permutation-equivariant, which
greatly improves the matching effectiveness.

In this paper, MS2DG-Net can dynamically adjust ad-
jacency relationships between the selected correspondence
feature map and residual ones in each graph. Meanwhile,
it can also obtain multi-scale sparse semantics information,
by concatenating sparse semantics information with differ-
ent dimensions through a shortcut, which helps to prevent
overfitting and capture richer contextual information.

Our contribution is twofold. Firstly, we find sparse cor-
respondences may have sparse semantics and introduce a
novel fashion by graph neural network to dynamically con-
struct graphs based on sparse semantics similarity in the im-
age pair and capture the local topology among correspon-
dences. Secondly, we design Multiple Sparse Semantics
Dynamic Graph Network (MS2DG-Net), while maintaining
permutation-equivariant, to build different sparse semantics
graphs in different layers and fuse multi-scale information
to obtain richer contextual information.

2. Related Work

2.1. Outlier Removal

Conventional outlier removal methods are divided into
three categories, i.e., resampling-based, non-parametric
model-based and relaxed algorithms in the literature [16].
RANSAC [7] is representative of resampling-based meth-
ods, which adopts a generation and verification strategy
to solve the problem, and has many variants (MLESAC
[36], MAGSAC [1] and so on). VFC [19], providing a
new framework to address non-rigid matching, is a repre-
sentative work of non-parametric model-based algorithms.
GMS [2] and AdaLAM [3] adopt less strict geometric con-
straints to adapt to more complex scenes, e.g., wide base-
lines, which are called relaxed algorithms.

The handcrafted ones have made remarkable achieve-
ments in specific scenes, however, their performance is not
satisfactory in public datasets with a large number of out-
liers. Hence, deep learning-based outlier removal is put on
the agenda, where some networks ( CNe [20] and DFE [28])
have proved that taking only correspondence coordinates as
input is a feasible way to remove outliers. After that, some
networks (ACNe [33] and LAGA-Net [5]) have introduced
the attention mechanism to improve network performance.
OA-Net [42] has inserted a clustering layer to capture some
useful information, e.g., the underlying epipolar geometry.
LFLN-Net [38] and NM-Net [43] have redefined neighbor-
hood to find reliable correspondences. LMC-Net [13] and
CL-Net [44] have added motion coherence and local-to-
global consensus, respectively, to improve the performance
of networks. COTR [10] and LoFTR [32] introduce the
idea of Transformer [37] to improve the performance of net-
works. The above networks perform well. However, all
of them neglect similar sparse semantics information in the
image pair and local topology among correspondences can
not capture well.

2.2. Graph Neural Network

Lately, the graph neural network has been applied in
computer vision, due to its expressive capabilities. In [22],
the correctness of answer reasoning has been improved by a
graph neural network to construct multiple facts at the same
time. Yang et al. [41] have proposed a framework, in the
generated scene graph, using a graph neural network to up-
date representations of target objects and relationships, and
correct the prediction of the scene graph. Wang et al. [39]
have introduced a new graph convolutional network, which
can dynamically update the local features of point clouds,
and has a good effect in point cloud segmentation and clas-
sification tasks. Liang et al. [12] have built a graph neural
network between superpixels, in the segmentation task, to
make better use of remote correlation. Chen et al. [4] have
proposed an iterative visual reasoning system based on the
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graph knowledge, which can integrate spatial and semantics
information. In this paper, we construct dynamic graphs,
via a graph neural network, based on sparse semantics sim-
ilarity in the image pair, to capture local topology among
correspondences well. After that, we concatenate multi-
scale sparse semantics information to capture more abun-
dant contextual information, which has made great process
in outlier removal and camera pose estimation tasks.

3. Proposed Method
3.1. Problem Formulation

Given a pair of images (I, I ′), our goal is to remove out-
liers and recover camera poses. First, local features (SIFT
[14], SuperPoint [6], etc.) can be used to detect keypoints
and obtain descriptors. Then, the initial correspondence set
C can be built by a nearest neighbor matching strategy:

C = {c1; c2; ...; cN} ∈ RN×4, ci = (xi, yi, ui, vi) (1)

where ci denotes a putative correspondence between two
keypoints (xi, yi) and (ui, vi) in the image pair, both of
which are normalized with camera intrinsic parameters.

Following OA-Net [42], we iteratively use MS2DG-Net
to produce the probability set P ′ = {p′1; p′2; ...; p′N} with
p′i ∈ [0, 1), which indicates the probability of each corre-
spondence ci as an inlier. As shown in Figure 2, after the
ith MS2DG-Net, both of the residual value set Ri and the
probability set Pi as guidance information and the initial
correspondence set C are concatenated, and the results are
put into the (i + 1)th MS2DG-Net. To obtain the resid-
ual value set Ri, the probability set Pi is successively op-
erated by the weighted eight-point algorithm and epipolar
error calculation [8]. Finally, we get the final probability
set P ′. Following CNe [20], the weighted eight-point algo-
rithm is leveraged to recover an estimate for the essential
matrix Êm, which can eliminate the negative effects of in-
correct correspondences, so that it can regress a more accu-
rate essential matrix than the traditional one [8]. In addition,
the algorithm is differentiable for P ′, so the essential matrix
can be estimated in an end-to-end fashion. The above oper-
ations can be written as:

Ri = ep(C, (g(C,Pi))) (2)

Oi =

{
zψ(C), i = 1

zψ ([C||Ri−1||Pi−1]), i ≥ 2
(3)

Pi = pre(Oi) (4)

Êm = g(C,P ′) (5)

where ep is the epipolar error calculation operation; g(·) de-
notes the weighted eight-point algorithm; zψ (·) is described
as the permutation-equivariant MS2DG-Net with its param-
eters ψ; [·||·] presents a concatenation operation; pre is a

Figure 2. The Architecture of MS2DG-Net. mi represents the
channel dimension of this position in the i-th iteration. When i =
1, mi = 4, otherwise mi = 6

prediction layer; Pi equals P ′, representing the final proba-
bility set, in the last iteration.

3.2. Multiple Sparse Semantics Dynamic Graph

Build Sparse Semantics Dynamic Graph. Firstly, a corre-
spondence ci is encoded into a feature map fi = {as} , s =
1, 2, ...S by a multi-layer perceptron, where S is the dimen-
sion of the feature space. k-nearest neighbors of the se-
lected feature map fi are defined according to the sparse
semantics similarity (inversely proportional to the sparse
semantics distance dsem) between fi and each correspon-
dence feature map fii′ = {a′s} , i′ = 1, 2, ...N , in which
the sparse semantics distance dsem is denoted as:

dsem =
∥∥fi − fii′∥∥ (6)

After selecting neighbors, we construct an edge set Eij
by concatenating the selected correspondence feature map
and residual feature maps. And residual feature maps are
obtained by subtracting the neighboring feature maps from
the selected correspondence one, which can reduce the neg-
ative influence of absolute positions of neighboring feature
maps. (See Table 3 for an ablation test.) So we choose this
way to construct the edge set Eij , and it can be defined as:

Eij = [fi||fi − fij ], j = 1, 2, ..., k (7)

where [·||·] presents concatenation; fi, fij and fi − fij
are the correspondence, neighborhood and residual feature
maps, respectively.

Finally, a directed graph G is built for each feature map
fi with its k-nearest neighbors according to the sparse se-
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Figure 3. S2DG-Layer 1.

mantics similarity, to capture the local topology, denoted as:

Gi = (Vij , Eij) , i = 1, 2, ..., N, j = 1, 2, ..., k (8)

where Gi represents a directed graph of a feature map fi;
Vij = {fi1; fi2; ...; fik} indicates fi’s neighbors; Eij de-
notes an oriented edge set.
Information Aggregation. We try three ways (maximum
pooling, average pooling and Transformer [37]) to aggre-
gate information. The first two indiscriminately treat each
feature map, which ignore the different importance of each
one. However, Transformer [37] can pay more attention to
the potential inliers by the calculation of similarity. (See
Table 5 for an ablation test.)

Therefore, we learn from Transformer [37] to aggre-
gate dynamic graph information along the edge set Eij .
Figure 3 shows that we use MLPs to map the edge set
Eij to QueryEij , KeyEij and V alueEij , and then KeyEij

and QueryEij
are served to calculate the key-query sim-

ilarity LAEij
. After that, we perform an element-wise

Hadamard product between the key-query similarity LAEij

and V alueEij
, followed by an element-wise summation op-

eration. To obtain a more robust feature map f ′i , we inte-
grate the feature map fi, corresponding to the edge set Eij ,
into the above results. These operations can be written as:

LAEij
= Softmax

(
QueryEij

�KeyEij

)
(9)

f ′i =

k∑
j=1

(
LAEij � V alueEij

)
+ γfi (10)

where � and Softmax(·) are the element-wise Hadamard
product and a softmax operation, respectively;

∑
repre-

sents the element-wise summation operation; γ is a learned
hyper-parameter, which is initially set to 1, and then gradu-
ally learns an appropriate value.
Sparse Semantics Graph Rebuild. After each informa-
tion aggregation, the sparse semantics similarity between
feature maps has been updated. That is, while using the pre-
vious neighboring information, it may cause an irreparable

error in subsequent calculations. Therefore, reconstructing
graphs in each layer is necessary.

We build a new graph (l+1)G
(
(l+1)Vij ,

(l+1)Eij
)

in the
(l + 1)th layer, where (l+1)Vij is composed of the se-
lected feature map f ′i ’s k−nearest neighbors according to
the sparse semantics distance dsem and (l+1)Eij denotes
the oriented edge set between (l)f ′i ((l+1)fi and (l)f ′i rep-
resent the same spatial feature map in different layers) and
elements in (l+1)Vij .
Multiple Sparse Semantics Dynamic Graph Fusion. Fea-
ture maps with different dimensions S contain different
sparse semantics information, which can provide comple-
mentary information for each other. Hence, we concate-
nate different feature maps along their dimensions, so that
feature maps can learn multi-scale sparse semantics infor-
mation and obtain stronger representation abilities. How-
ever, Transformer [37] acquires that feature maps have the
same dimension. But, if we do that, we will lose multiple
sparse semantics information and Table 5 can support this
point. We also try a trick (through MLPs) to transform
feature maps in the lth layer into the same dimension S as
the (l + 1)th layer. Comparison results can be seen from
the 6th and 8th rows in Table 5, and the operation reduces
the performance of MS2DG-Net a lot. Hence, we choose
the suboptimal way (maxpooling) to aggregate information
in the next layer. Specifically, before a maxpooling oper-
ation, we use MLPs for feature projection and dimension
transformation. The above operations can be written as:

(l+1)Eij = [(l+1)fi||(l+1)fi − (l+1)fij ], j = 1, 2, ..., k
(11)

(l+1)f ′i =Maxpooling(MLPs((l+1)Eij)) (12)

(l+1)fiout = [(l+1)f ′i ||(l)f ′i ], (l+1)S = 2× (l)S (13)

where (l+1)Eij is the edge set in the (l+1)th layer; (l+1)fi
and (l+1)fi − (l+1)fij are the selected and residual feature
maps in the (l+1)th layer, respectively; (l)f ′i and (l+1)f ′i are
the updated feature maps in the S2DG Layer 1 and S2DG
Layer 2, respectively; (l+1)fiout is the output of the MS2DG
Block; (l)S and (l+1)S are the feature map dimensions in
the lth and (l + 1)th layer, respectively.

3.3. Property

Why Can We Directly Connect Edges. According to the
Markov assumption [29], in an oriented graph, a random
variable X is independent of its non-descendants given its
parents. That is, in Fig. 3, fi1 is the parent feature map
(node) of vi2, and fi is not the child feature map of vi2, so
that vi2 has no influence in feature map fi as an inlier, due
to the information of vi2 embedded in fi1. Therefore, we
only need to aggregate the edge features directly connecting
to the feature map fi and that is enough to get the local
topology information of the whole graph.
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3.4. Loss Function

Following CNe [20], a hybrid loss function is leveraged
to optimize the proposed network:

L = Lc(P
′, G) + βLe(Em, Êm) (14)

where Lc(·, ·) presents a binary cross entropy loss function
for the classification operation; P ′ and G are the predicted
probability set and weakly supervised ground truth (labels),
respectively; The later is chosen under the epipolar error [8]
threshold of 10−4; Le(·, ·) is used to regress the essential
matrix, where Em is the ground truth essential matrix and
Êm is the predicted essential matrix; β is a weight parame-
ter to balance these two losses.

3.5. Implementation Details

As shown in Figure 2, MS2DG-Net is composed of a
Perceptron Layer, a MS2DG Block, three ContextNorm
Blocks, a Cluster Block, another three ContextNorm
Blocks, another Perceptron Layer and a Prediction Block
in order. Notably, the ContextNorm Block, including Per-
ceptron, Context Normalization, Batch Normalization and
ReLU activation function, is proposed in CNe [20]. The
Cluster Block is introduced in OA-Net [42], and the Pre-
diction Block consists of a tanh and a ReLU activation
functions. MS2DG-Net performs two iterations in total.
In the first iteration, the first Perceptron Layer transforms
the correspondence set C ∈ RN×4 into a feature map set
F ∈ RN×64. After the MS2DG Block, the dimension of the
feature map set is changed from 64 to 192. After that, the
feature map set F passes through the remaining network,
and we can obtain the first residual value set R1 ∈ RN×1
and the first probability set P1 ∈ RN×1. Following OA-
Net [42], we concatenate both of them as prior information
to guide network learning. Then, the prior information and
the initial correspondence set are put into the iteration net-
work and we can obtain the final probability set P ′.

The proposed network is trained on the PyTorch [24].
We follow the parameter setting of OA-Net [42]. Adam
[23] optimizer with a learning rate of 10−3 is adopted. In
addition, the batchsize of the input is 32. And the parameter
β is set as 0 at the begining, and after 20k iterations, it is
changed to 0.1. Experiments are implemented on Ubuntu
18.04 by NVIDIA GTX 3090 GPUs.

4. Experiments

In the section, we firstly introduce evaluation protocols.
After that, to prove the effectiveness of MS2DG-Net, we
perform outlier removal and camera pose estimation tasks
under outdoor and indoor scenes. Finally, we do ablation
studies about the proposed operations in outdoor scenes.

4.1. Evaluation Protocols

In this section, datasets (outdoor and indoor scenes) and
evaluation metrics will be orderly introduced.
Outdoor Scenes. Yahoo’s YFCC100M dataset [35] as out-
door scenes, made up of 100 million images from the In-
ternet, is splitted into 72 sequences in [9]. Following OA-
Net [42], we choose 68 sequences as training sequences,
and the remaining 4 sequences as unknown scenes to test all
the methods. Moreover, [9] is used to generate the ground
truth (labels) as well as recover camera poses.
Indoor Scenes. SUN3D [40] as indoor scenes, composed
of a sequence of indoor RGB-D videos, is sampled in every
ten frames to form a video picture dataset. We select 239
sequences as training sequences, and the rest 15 sequences
as unknown scenes to test.

In this paper, all the networks are trained under the
same setting. The training sequences are divided into three
sets, including training (60%), validation(20%) and testing
(20%), and the testing is picked up as known scenes. The
images of known scenes are more like to images in training
than unknown scenes.
Evaluation Metrics. Following OA-Net [42], we choose
mAP5◦ as the default metric in the camera pose estimation
task, and Precision(P ), Recall(R) and F -score(F ) are
chosen as metrics on the outlier removal task.

4.2. Baselines

We choose a traditional method (RANSAC [7]) and six
learning-based networks ( Point-Net++ [27], DFE [28],
ACNe [33], CNe [20], OA-Net++ [42] and NM-Net [43]
) as baselines. Following [42], 3D Euclidean space is in-
stead of 4D to select the neighborhood in PointNet++ [27].
OA-Net++ [42] employs an iterative network, while OA-
Net [42] not.

4.3. Outlier Removal

Outlier removal, a basic and important step, is significant
for higher-level computer vision tasks. So we evaluate the
proposed MS2DG-Net and baselines on the outlier removal
task. Table 1 presents the comparison results of outlier re-
moval on outdoor and indoor datasets under known and un-
known scenes. The quantitative results show that MS2DG-
Net surpasses the baselines in the outlier removal task on
all evaluation metrics. Furthermore, compared with clas-
sical RANSAC, learning-based networks have a significant
improvement of more than 10% on F -score. That is, the
learning-based networks can effectively deal with outliers
in the general datasets with an extremely low inlier ratio.

In addition, Figure 5 can support this point. Meanwhile
we can find that visualization results of RANSAC, OA-
Net++ and MS2DG-Net are shown from top to bottom. Our
MS2DG-Net is obviously superior to other algorithms in
different challenging scenarios.
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Table 1. Quantitative comparative results of outlier removal on outdoor and indoor datasets with SIFT under known and unknown scenes.
The bold result of each column represents the best result.

Datasets Outdoor(%) Indoor(%)

Matcher Known Scene Unknown Scene Known Scene Unknown Scene
P R F P R F P R F P R F

RANSAC [7] 47.35 52.39 49.74 43.55 50.65 46.83 51.87 56.27 53.98 44.87 48.82 46.76
Point-Net++ [27] 49.62 86.19 62.98 46.39 84.17 59.81 52.89 86.25 65.57 46.30 82.72 59.37

DFE [28] 56.72 87.16 68.72 54.00 85.56 66.21 53.96 87.23 66.68 46.18 84.01 59.60
ACNe [33] 60.02 88.99 71.69 55.62 85.47 67.39 54.11 88.46 67.15 46.16 84.01 59.58
CNe [20] 54.43 86.88 66.93 52.84 85.68 65.37 53.70 87.03 66.42 46.11 83.92 59.37

OA-Net++ [42] 60.03 89.31 71.80 55.78 85.93 67.65 54.30 88.54 67.32 46.15 84.36 59.66
NM-Net [43] - - - 55.30 85.80 64.71 - - - 46.68 83.98 56.34
MS2DG-Net 63.17 90.98 74.57 59.11 88.4 70.85 54.50 88.63 67.50 46.95 84.55 60.37

4.4. Camera Pose Estimation

Recovering camera poses needs ample inliers, which
puts forward a higher challenge to networks, and is also a
basic task for follow-up computer vision tasks. This task re-
quires not only a robust matcher, but also appropriate local
features. Hence, we evaluate our MS2DG-Net and baselines
with different local features (SIFT [14] and SuperPoint [6])
under outdoor and indoor scenes.

Table 2 shows that our MS2DG-Net significantly out-
strips all the other comparison methods on all scenes with
SIFT [14] or SuperPoint [6]. Specifically, compared to the
second best network (OA-Net++ [42]), the parameters of
OA-Net++ and our MS2DG-Net are 2.47M and 2.61M .
Although ours has a litte more parameters, our MS2DG-
Net (with SIFT [14]) gains performance increasements of
5.79% and 10.18% for mAP5◦ without RANSAC under
known and unknown scenes, respectively. Besides, with
RANSAC post-processing, MS2DG-Net also has a signif-
icant performance improvement on baselines in all scenar-
ios. From Table 2, it is surprising to discover that the per-
formance of all methods (except RANSAC) combined with
SuperPoint [6] are lower than those combined with SIFT
[14]. To explain this, we show partial typical visualization
results of logit values by MS2DG-Net on YFCC100M in
Figure 4. Comparing with Figure 4 (a) and Figure 4 (b),
we can find that although SuperPoint [6] has more inliers
than SIFT [14], its average logit value is much lower than
SIFT [14], which can explain why our network can be com-
bined with SIFT [14] better.

Additionally, in Figure 5, partial typical visualization re-
sults of RANSAC, OA-Net++ and MS2DG-Net are shown
from top to bottom. Our MS2DG-Net has achieved the best
performance under different challenging scenes.

4.5. Ablation Studies

In the section, ablation studies about the number of
neighbors and proposed operations on the outdoor dataset
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Figure 4. Partial typical visualization results of logit values of
putative correspondence sets by our MS2DG-Net on YFCC100M
dataset. The red and yellow lines represent inliers and outliers,
respectively. The length of the line is the size of the logit value
passing our network. And if the logit value is greater than 0, it is
used to calculate the probability of a correspondence as an inlier,
otherwise it is considered as an outlier.

Figure 5. Parametric analysis of k on YFCC100M with SIFT.

with SIFT are provided.
How to select edges? We adopt two ways to construct
an edge set Eij , that is, the selected correspondence fea-
ture map is concatenated with neighboring feature maps or
residual ones. For the former, the absolute positions of the
neighboring feature maps will bring adverse effects to the
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Table 2. Quantitative comparison results of camera pose estimation on the outdoor and indoor datasets. The mAP5◦(%) without/with
RANSAC as a post-processing step is reported.

Local Features Matcher Outdoor(%) Indoor(%)
Known Scene Unknown Scene Known Scene Unknown Scene

RANSAC [7] -/5.81 -/9.07 -/4.52 -/2.84
Point-Net++ [27] 10.49/33.78 16.48/46.25 10.58/19.17 8.10/15.29

DFE [28] 19.13/36.46 30.27/51.16 14.05/21.32 12.06/16.26
SIFT [14] ACNe-Net [33] 29.17/40.32 33.06/50.89 18.86/22.12 14.12/16.99

CNe [20] 13.81/34.55 23.95/48.03 11.55/20.60 9.30/16.40
OA-Net++ [42] 32.57/41.53 38.95/52.59 20.86/22.31 16.18/17.18
NM-Net [43] -/- 32.93/51.90 -/- 14.13/16.86
MS2DG-Net 38.36/45.34 49.13/57.68 22.20/23.00 17.84/17.79
RANSAC [7] -/12.85 -/17.47 -/14.93 -/12.15

Point-Net++ [27] 11.87/28.46 17.95/38.83 11.40/21.19 9.38/17.08
DFE [28] 18.79/31.72 29.13/43.00 13.35/22.57 12.04/17.41

SuperPoint [6] ACNe-Net [33] 26.72/31.16 32.98/45.34 18.35/21.12 13.82/18.05
CNe [20] 12.18/30.25 24.25/42.57 12.63/21.81 10.68/17.36

OA-Net++ [42] 29.52 /35.72 35.27/45.45 20.01/24.43 15.62/18.56
MS2DG-Net 30.4/36.02 37.38/46.48 20.28/24.86 16.08/18.67

Table 3. Evaluation of MS2DG-Net(NF) and MS2DG-Net(RF) on
outdoor dataset with SIFT. mAP5◦ (%), P (%), R(%) and F (%)
(under unknown scenes) are reported.

Method Outdoor(%)
Known Unknown P R F

MS2DG-Net(NF) 34.27/43.52 40.90/53.45 55.60 87.45 67.98
MS2DG-Net(RF) 37.96/45.12 46.08/56.60 57.28 87.69 69.30

selected correspondence feature map. And from Table 3,
we can find that the later performs better than the former
in camera pose estimation and outlier removal tasks, so we
choose the later.
How to choose k? Neighbor number k, deciding the
amount of information in each dynamic graph, is pretty im-
portant. As shown in Figure 6, with the increase of k, the
effect continues to improve, but after k = 20, the effect im-
proves slowly and unstably. After comprehensive consider-
ation, we choose k = 20 for subsequent operations.
Fixed Graph vs. Dynamic Graph. Fixed graph: Es-
tablish a directed graph according to the Euclidean dis-
tance to capture the local geometric structure among cor-
respondences. Dynamic graph: Build a dynamic graph
based on sparse semantics similarity, to capture the local
topology structure among feature maps (the dimension S
= 64). Table 4 presents that MS2DG-Net(FG) achieves a
marginal improvement and even decreases comparing to
OA-Net++, while MS2DG-Net(DG) has a significant im-
provement. Due to initial correspondences with abundant
outliers in the public dataset, the local geometry is not ob-
vious or easy to capture. However, similar sparse semantics
information among inliers can be used to efficiently capture
the local topology information.

Table 4. Comparison results of MS2DG-Net(FG) and MS2DG-
Net(DG) on the outdoor dataset with SIFT. mAP5◦ (%), P (%),
R(%) and F (%) (under unknown scenes) are reported.

Method Outdoor(%)
Known Unknown P R F

OA-Net++ [42] 34.04/42.06 38.95/51.65 55.27 87.00 67.60
MS2DG-Net(FG) 32.51 /43.06 39.84 /54.40 56.56 86.99 68.55
MS2DG-Net(DG) 37.96 /45.12 46.08/56.60 57.28 87.69 69.30

Table 5. Ablation studies on the outdoor dataset with SIFT under
known and unknown scenes. mAP5◦(%) without/with RANSAC
are shown. 64, 128 and 256 are dimensions of feature maps.

max pooling ave pooling Transformer Outdoor(%)
Known Unknown

64 37.96 /45.12 46.08/56.60
64 37.14/44.36 45.20/ 55.60

64 38.58/45.16 47.43/ 57.50
128 37.72/45.22 44.43/54.90

64 & 64 35.97/44.88 45.05/56.18
64 & 128 35.34/44.09 43.63/55.33

128 & 256 64 38.15/44.64 47.82/56.95
128 64 38.36/45.34 49.13/57.68

How to aggregate information? Three methods (maxi-
mum pooling, average pooling and Transformer [37]) are
used to aggregate information along the edges. And Table
5 presents that Transformer [37] aggregation method per-
forms best in all evaluation metrics and the reason has been
explained above.
Is a wider dimension useful? From Table 5, comparing
with the third and fourth lines, we can find that the model
with the dimension S = 64 performs better. The model,
whose dimension S = 128, has more parameters and may
be overfitting.
Does multi-scale information help? In Table 5, compar-
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Figure 6. Partial typical visualization results on YFCC100M and SUN3D datasets with SIFT. From left to right: images of Buckingham-
palace, Reichstag, Notre-dame-front-facade, Sacre-coeur, Te-mit1, Te-harvard1, Te-hotel1 and Te-brown1. From top to bottom: the results
of RANSAC, OA-Net++ and our MS2DG-Net. The green lines describe correct correspondences, the red lines otherwise.

ing with the third, fifth and last lines, we see that the model
including two different dimensions performs best, and the
model including two dynamic graphs with the same dimen-
sion performs even worse than the model with one dynamic
graph, which can prove that multi-scale information is use-
ful.
Is a larger model helpful? [11] has suggested that, in
general, a network with two graph convolutional layers is
enough. Meanwhile, comparing with the last and penul-
timate lines in Table 5 can support the above view. So a
larger model may not provide help, but increase the number
of parameters, so we choose a two-layer dynamic graph in
our network.

5. Conclusion
In this work, motivated by the human matching pro-

cess in the real world, we design MS2DG-Net to find
high-quality correspondences. Compared with operations
based on the Euclidean space, our MS2DG-Net employ

a multi-scale dynamic graph to capture the local topol-
ogy among correspondences based on the sparse seman-
tics similarity in the image pair. Therefore, our MS2DG-
Net can learn to find correct correspondences according to
sparse semantics information and local topology, which im-
proves the performance of our network, while maintaining
permutation-equivariant. Our experiments demonstrate that
our MS2DG-Net has clear superiority than several state-of-
the-art methods in outlier removal and camera pose estima-
tion tasks in publicly available datasets.
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