
Probing Representation Forgetting in Supervised and Unsupervised Continual

Learning

MohammadReza Davari1,2 * Nader Asadi1,2 ⇤ Sudhir Mudur1
Rahaf Aljundi 3 Eugene Belilovsky1,2

1 Concordia University 2 Mila – Quebec AI Institute 3 Toyota Motor Europe

Abstract

Continual Learning (CL) research typically focuses on
tackling the phenomenon of catastrophic forgetting in neu-
ral networks. Catastrophic forgetting is associated with an
abrupt loss of knowledge previously learned by a model
when the task, or more broadly the data distribution, be-
ing trained on changes. In supervised learning problems
this forgetting, resulting from a change in the model’s rep-
resentation, is typically measured or observed by evaluating
the decrease in old task performance. However, a model’s
representation can change without losing knowledge about
prior tasks. In this work we consider the concept of rep-
resentation forgetting, observed by using the difference in
performance of an optimal linear classifier before and after
a new task is introduced. Using this tool we revisit a num-
ber of standard continual learning benchmarks and observe
that, through this lens, model representations trained with-
out any explicit control for forgetting often experience small
representation forgetting and can sometimes be comparable
to methods which explicitly control for forgetting, especially
in longer task sequences. We also show that representation
forgetting can lead to new insights on the effect of model ca-
pacity and loss function used in continual learning. Based
on our results, we show that a simple yet competitive ap-
proach is to learn representations continually with standard
supervised contrastive learning while constructing proto-
types of class samples when queried on old samples.1

1. Introduction

Continual Learning (CL) is concerned with methods for
learners to manage changing training data distributions. The
goal is to acquire new knowledge from new data distribu-
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tions while not forgetting previous knowledge. A common
scenario is CL in the classification setting, where the class
labels presented to the learner change over time. In this sce-
nario, a phenomenon known as catastrophic forgetting has
been observed [11,31]. This phenomenon is often described
as a loss of knowledge about previously seen data and is ob-
served in the classification setting as a decrease in accuracy.

Deep learning has been traditionally motivated as an ap-
proach, which can automatically learn representations [4],
forgoing the need to design handcrafted features. Indeed
representation learning is at the core of deep learning meth-
ods in supervised and unsupervised settings [10]. In the
case of many practical scenarios we may not simply be in-
terested in the final performance of the model, but also the
usefulness of the learned features for various downstream
tasks [42]. Although a model’s representation may change,
sometimes drastically at task boundaries [5], this does not
necessarily imply a loss of useful information and may in-
stead correspond to a simple transformation. For example,
consider a standard multi-head CL setting, where each task
shares a representation and only differs through task spe-
cific “heads”. A permutation of the features leading into
the classification heads leads to total catastrophic forgetting
as measured by standard approaches as the task heads no
longer match with the representations. However, this does
not correspond to a loss of knowledge about the data, nor a
less useful representation. Indeed recent works have high-
lighted the importance of fast remembering versus catas-
trophic forgetting [14, 17], a looser continual learning re-
quirement where in the task performance may decrease but
the agent is able to recover rapidly upon observing a few
samples from the previous task. In this light, maintaining a
useful representation, which facilitates rapid recovery, is as
important as maintaining high performance for the task.

CL envisions having learners operate over long time
horizons while continually maintaining old knowledge and
integrating new knowledge. Hence, in addition to directly
measuring the performance on previous tasks using the last
layer classifiers, it is sensible to consider the usefulness of
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their representations for previous tasks. In this paper we
highlight that traditional approaches of evaluating forget-
ting are unable to properly disambiguate trivial changes in
the features (e.g. permutation) from abrupt losses of useful
representations. We instead use optimal Linear Probes (LP),
commonly used to study unsupervised representations [8]
and intermediate layer representations [36, 48], to evaluate
CL algorithms and their effectiveness.

We revisit several CL settings and benchmarks and mea-
sure forgetting using LP. Our focus is particularly on re-
evaluating finetuning approaches that do not apply explicit
control for the non-iid nature of continual learning. We ob-
serve that in many commonly studied cases of catastrophic
forgetting, the representations under naive finetuning ap-
proaches, undergo minimal forgetting, without losing criti-
cal task information.

Our major contributions in this work are as follows. First
we bring three new significant insights obtained and demon-
strated through extensive experimental analysis:

1. In a number of CL settings the observed accuracy can
be a misleading metric for studying forgetting, partic-
ularly when compared to finetuning approaches

2. Naive training with SupCon [21] or SimCLR (in the
unsupervised case) have advantageous properties for
continual learning, particularly in longer sequences.

3. By using LP based evaluation, forgetting is clearly de-
creased for wider and deeper models, which is not seen
that clearly from earlier observed accuracy.

Secondly, we suggest a simple approach to facilitate fast
remembering, which does not require using a large memory
during training; it relies only on a small memory combined
with SupCon based finetuning.

2. Related Work

The design of CL methods is often focused on mitigating
the catastrophic forgetting phenomenon, with aspects such
as maximization of forward and backward transfer between
tasks taken as secondary [27]. One class of methods focuses
on bypassing this problem by growing architectures over
time as new tasks arrive [2,25,41,43]. Under the fixed archi-
tecture setting, one can identify two main categories. The
first category of methods rely on storing and re-using sam-
ples from the previous history while learning new ones; this
includes approaches such as GEM [27] and ER [7]. The sec-
ond category of methods encode the knowledge of the pre-
vious tasks in a prior that is used to regularize the training
of the new task [1, 22, 26, 34, 49]. A classic method in this
vein is Learning without Forgetting (LwF) [26], which miti-
gates forgetting by a regularization term that distills knowl-
edge [18] from the earlier tasks. The network representa-
tions from earlier stages are recorded, and are used during
training for a new task to regularize the objective by distill-
ing knowledge from the earlier state of the network. Sim-

ilarly, Elastic Weight Consolidation (EWC) [20] preserves
the knowledge of the past tasks through a quadratic penalty
on the network parameters important to the earlier tasks.
The importance of the parameters is approximated via the
diagonal of the Fisher information matrix [32]. The scale
of the importance matrix, �, determines the network’s pref-
erence towards preserving old representations or acquiring
new ones for the current task. In Sec. 4.1 we examine the ef-
fectiveness of these approaches in mitigating representation
forgetting.

Recent works on elucidating the nature of catas-
trophic forgetting have examined the influence of task se-
quence [33], network architecture [3], and change in repre-
sentation similarity [38]. Our work is related in spirit to [38]
as we pursue measuring how much forgetting has occurred
on the learned representation and we additionally study this
for intermediate representations. One significant difference
is that in [38], the authors use linear CKA (centred Kernel
Alignment) [23] to measure the similarity between interme-
diate representations influenced by forgetting, while in our
work we measure how much forgetting has occurred on the
representations using LP.

Several recent works have also studied the behavior of
networks with increasing model capacity. In [39] the au-
thors examine several common architectures under the task
incremental setting and demonstrate that pre-training is es-
sential to combat forgetting and to achieve high perfor-
mance on all tasks. They conclude that training only with
larger models yields no benefit for continual learning. Our
analysis revisit this setting and take a closer look at how
representation forgetting is affected with increase in model
width and depth.

Several works [40] have focused on modifying the last
layer of a classification network to make more effective use
of the representation for prior tasks. This indirectly high-
lights the fact that the last layer can be modified to yield
better performance on prior tasks. Particularly [30, 40] use
a buffer of old examples at training time to improve learn-
ing and then use them at evaluation time to construct a class
mean prototype. This allows for more effective use of the
representations of the network. These works consider set-
tings where the CL methods are used to control forgetting,
while we also emphasize that naive continuation of training
under task shift can yield strong representations. Our work
can also be seen as both a way to explain and to motivate
the need for such approaches.

Self-supervised learning (SSL) is becoming increasingly
popular in visual representation learning. Some of the best
performing methods rely on contrastive learning [8, 15].
These methods have been recently evaluated in a lim-
ited continual learning setting [19] where a sequence was
trained on non-iid unsupervised streaming data and then
applied in transfer learning settings on multiple datasets.
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However, forgetting was not evaluated. In contrast our
work, which also uses a SSL loss, focuses on the LP evalu-
ation and the study of representation forgetting with respect
to previously seen distributions. Contrastive methods are
also often used in the supervised setting, for example, the
recently popular SupCon loss [21]. In [5] and [30] the use
of SupCon is proposed in the online class-incremental set-
ting in combination with experience replay. Our work too
considers SupCon as one of the supervised representation
learning approaches. However distinct from the other works
we consider it in the offline task-incremental setting. We do
not look at its use in combination with replay or other ap-
proaches, but study the effect of standard finetuning with
SupCon loss, distinct from [5], where it is used to facilitate
separation of contrasts between old and new classes, spe-
cific to the class incremental setting.

3. Background and Methods

In this section we review the key tools used in our anal-
ysis including linear probes, centered kernel alignment, and
contrastive loss functions. Finally we discuss how the near-
est mean of exemplars approach can be used in the context
of non-rehearsal based methods, such as finetuning with
SupCon, as a simple continual learning method that also
facilitates rapid remembering.

3.1. Linear Probes for Representation Forgetting

Following the work in SSL [8] and in the analysis of in-
termediate representations [48] we evaluate the adequacy of
representations by an optimal linear classifier using training
data from the original task. A linear classifier is trained on
top of the frozen activations of the base network given the
training instances of a certain dataset. The test set accu-
racy obtained by using LP on that dataset is used as a proxy
to measure the quality of the representations. The differ-
ence in performance of the LP before and after a new task
is introduced, acts as a surrogate measure to the amount of
forgetting observed by the representations and is referred to
as representation forgetting.

Formally, for a given model f✓i computed from time
step i of a task sequence, we compute its optimal classifier
W ⇤

i = argminWi L(Wif✓i(Xi), Yi), where L is the objec-
tive function, and Xi and Yi correspond to the data from
task i. To assess representation forgetting between ✓a and
a model at a later point in the sequence, say ✓b, we eval-
uate T (Waf✓a(Xa), Ya) � T (Wbf✓b(Xa), Ya) where T is
the task performance (e.g. accuracy).

3.2. Centered Kernel Alignment

CKA [23] is a recent popular approach to compare rep-
resentations. It has been commonly used to compare repre-
sentations across depth as well as across models from dif-
ferent tasks in the CL settings [38]. Given a dataset com-

prised of m samples, and their representations X and Y ,
with features nx and ny respectively, i.e. X 2 Rm⇥nx and
Y 2 Rm⇥ny , the, typically used, linear CKA between X

and Y is given as kY TXk2

F

kXTXk2
F kY TY k2

F
. This similarity metric

has the advantage of being invariant to scaling and orthog-
onal transformations. However, being a simple linear align-
ment comparison it is not invariant to general classes of in-
vertible transformations. Furthermore, relative comparisons
of CKA metrics are challenging to interpret compared to
task performance degradation. CKA has been used in [38]
to compare the intermediate representations of a model in
consecutive task increments t and t+1. Ramasesh et al. [38]
proxy the CKA similarity between the intermediate repre-
sentations of the model f✓t and f✓t+1 to measure represen-
tation forgetting. Thus, under this paradigm, a high value
of CKA similarity is interpreted as minimal representation
forgetting. One limitation of this metric for representation
forgetting is its inability to distinguish between positive and
negative backward transfer (see Sec. 4.4). This is addressed
when measuring representation forgetting via LP.

3.3. Supervised and Unsupervised Contrastive Loss

Contrastive loss functions have become increasingly
popular in representation learning, particularly visual rep-
resentation learning. They have led to large advances in
unsupervised learning [8, 15]. As well they are becoming a
popular alternative to cross-entropy (CE) in the supervised
setting [12, 21], referred to as SupCon. Given a representa-
tion f✓, often consisting of a primary network and a projec-
tion, the SupCon loss for a minibatch X is given by:

X

xi2X

�1

|P (i)|
X

xp2P (i)

log
sim

�
f✓(xp), f✓(xi)

�
P

xa2X/xi
sim

�
f✓(xa), f✓(xi)

�

Where sim(a, b) = exp( aT b
⌧kakkbk ) and P (i) represents the

same class samples as xi from the minibatch, and the de-
nominator is taken over all other samples. Note that we
consider SupCon in the naive setting, thus all minibatches
are from the current task in our evaluations of SupCon. Sim-
ilar to this, in the unsupervised setting the SimCLR loss [8]
is given by:

�
X

xi2X

log
sim

�
f✓(xp(i)), f✓(xi)

�
P

xn2A(i) sim
�
f✓(xn), f✓(xi)

�

Where A(i) corresponds to all minibatch examples and their
data augmentations except xi, and xp(i) represents an aug-
mented version of xi.
3.4. Exemplars and Fast Remembering

Many CL methods utilize buffers of exemplars [40] that
are constantly updated. Typically, these samples are used
repeatedly to train the model [7]. In [30,40], the samples in
the memory are also used to continuously estimate a class
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Figure 1. Performance on ImageNet during the sequence (Ima-
geNet→Scenes→CUB→Flowers) using ResNet18. We observe that
although observed accuracy heavily degrades the LP accuracy, in fine-
tuning does not decay as drastically and can rival LP accuracy of
methods such as LwF and EWC. Moreover, we observe that the LP
Accuracy of SupCon training, which has no control for forgetting,
outperforms the LwF, a method designed for CL. Note EWC with
� = 8k is the best performing method in terms of LP and observed
acc., however it does not perform well on the current task (see Tab. 1).

Method Acc. Acc. Acc.
Scenes CUB Flowers

⌅ FT (CE) 56.9%± 1.1 54.5%± 2.6 89.3%± 1.1
⌅ LwF 57.6%± 1.5 43.1%± 2.9 85.3%± 0.5
⌅ EWC�:0.5k 52.5%± 1.1 47.8%± 2.5 85.9%± 1.6
⌅ EWC�:8k 42.1%± 1.5 38.3%± 0.9 79.1%± 1.0
⌅ FT (SupCon) 57.1%± 1.2 50.4%± 1.0 85.3%± 0.9

Table 1. Observed accuracy of the current task in the sequence Im-
ageNet→Scenes→CUB→Flowers using ResNet architecture. Al-
though EWC�:8k attains relatively poor performance on the cur-
rent task, it achieves the highest LP and observed accuracy for the
previously seen tasks (see Fig. 1). Moreover, the SupCon training
achieves comparably high accuracy on the current task (even sur-
passing CE on Scenes) while suffering from relatively small repre-
sentation forgetting (see Fig. 1).

mean for old samples using the new representation. This is
then used to construct a nearest mean of exemplars (NME)
classifier, which can be seen as a fast way to construct a
strong classifier that requires only a small amount of data.
Instead of relying on the same exemplars during training
and inference, one can use a small set of exemplars from the
task distribution at the end of a task sequence to construct
an NME based classifier in combination with a non-CL spe-
cific representation learning method such as SupCon [21].
Specifically the learner maintains a class mean for any class
it has encountered. These class means are updated either by
using a stored set of samples that is only used at inference or
upon encountering an old task again, obtaining a small set of
new samples to facilitate fast remembering. Notably, unlike
the prior work on NME classifiers in continual learning, we
don’t suggest using exemplars as a rehearsal memory during
the training, but as a method for fast remembering of class
means for old tasks during evaluation time. This has the ad-
vantage of not increasing the computational complexity of
training and not needing additional overhead in storing or
retrieving samples, except at the end of a task sequence or
upon re-encountering a task. Specifically, it can facilitate
rapid remembering; in situations without prior data stored.
Upon encountering a new task a model with minimal rep-
resentation forgetting can rapidly adapt by updating just its
class means.

4. Experiments

We perform evaluations in several CL scenarios, focus-
ing on the task-incremental setting. The evaluations are
based on LP and observed accuracy. Observed accuracy
refers to the standard accuracy used in the CL literature.
Specifically we measure observed accuracy, Aij , as the ac-
curacy of the model after step i on the test data of task j.

LP vs. Observed Accuracy for SplitCIFAR100

Figure 2. 10-Task SplitCIFAR100. We compare observed acc. and
linear probe acc. Naively finetuning with CE does poorly if using
the observed accuracy. However using the LP based evaluation we
observe that performance gap to other methods is lower. Further-
more when finetuning is performed instead with the SupCon loss
function LP performance can rival that of LwF.

Similarly, the average observed accuracy at the end of the
sequence is 1

T

P
t2T AT,t as used in e.g. [26]. Similarly we

can measure the LP accuracy for each step i and task j as
well as the average LP accuracy.

Datasets We use an ImageNet transfer setting based
on [26], a common SplitCIFAR100 [24] setting (split into
10 tasks), and reproduce the SplitCIFAR10 (split into 2
tasks) setting from [38]. Finally, to evaluate in very long
task sequence regimes, we use a downsampled version of
the entire ImageNet dataset (ImageNet32 [9]) split into 200
tasks of 5 classes each. For the ImageNet transfer set-
ting, we use a sequence consisting of the standard Ima-
geNet (LSVRC 2012 subset) [42], MIT Scenes [37] for in-
door scenes classification (5,360 samples over 67 classes),
Caltech-UCSD Birds (CUB) [47] for classification of bird
species (6,033 samples over 200 classes), and Oxford Flow-
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Observed and LP Accuracy SplitMiniImageNet

Figure 3. 20-Task SplitMiniImageNet. We compare observed ac-
curacy and Linear probe accuracy for Task 1 data. Naively fine-
tuning with CE as well as the LwF method does poorly if using
the observed accuracy. However using the LP based evaluation we
see that performance gap to other methods is less significant. LwF
performs similar to finetuning with SupCon. For this Longer task
sequence ER with large buffer, performance decays towards the
end of the sequence, while SupCon stays flat.

ers [35] for flower classification (2,040 samples over 102
classes). The use of this sequence allows us to complement
the standard long task sequence benchmarks with a more
realistic and diverse larger scale sequence. Optimization
hyperparameters for training are detailed in the Appendix.

Methods Compared Our work focuses on evaluating
naive finetuning based approaches using CE and Sup-
Con [21] loss functions, as well as a set of representative
CL methods. For regularization-based baselines, we con-
sider two of the most popular methods, which do not utilize
memory of any past samples: LwF [26] and EWC [20]. For
rehearsal-based baselines, which continuously store past
samples we focus on Experience Replay (ER). Indeed a
number of recent works have illustrated that ER, particu-
larly with increase in buffer size, is a strong baseline [7,38]
and rivals or exceeds other rehearsal based methods such as
iCaRL [40] and GEM [27]. Hence we use ER with both
a small buffer, M = 5 samples per class, and a relatively
large buffer, M = 20 samples per class.

4.1. Observed vs LP accuracy

In this section we study the observed vs LP accuracy for
various task sequences and methods, in both supervised and
unsupervised settings.

ImageNet Transfer We consider models trained on the
large ImageNet data and subsequently applied to different
tasks in the sequence. We take the setting of [26], which
considers the ImageNet [42] transfer to various datasets, in
particular CUB [46], and Scenes [37]. We extend this set-
ting by including Flowers [35] in the task sequence. To
reduce the computation of experiments we do random re-
size crops to 64⇥64 and utilize ResNet-18 for these ex-
periments. Additional results further confirming our ob-

LP Accuracy for SplitCIFAR100

Figure 4. SplitCIFAR100 comparison of unsupervised Linear
Probe accuracies on task 1 with supervised finetuning CE and Sup-
Con as well as LwF. We observe that LwF and CE based finetuning
can decay over time, while the unsupervised learning (SimCLR)
has an initial drop and stays relatively flat.

servations with larger crop size are given in the Appendix.
As mentioned earlier, in addition to LwF, we also examine
EWC [20] under two conditions: (a) large � value (8k), so
the network is inclined to preserve the knowledge impor-
tant to the previous tasks, and (b) small � value (0.5k), so
the network is encouraged to perform competitively on the
current task.

We report observed accuracy and LP accuracy on Im-
ageNet validation set as the model is trained on the
task sequence ImageNet ! Scenes ! CUB ! Flowers
(see Fig. 1). We also report the observed accuracy on the
current task in Tab. 1. Our evaluation reveals that although
the forgetting in terms of the traditional measure is high
for finetuning compared to LwF (as shown in [26]), the
LP accuracy of these methods suggest less drastic forget-
ting. Furthermore, the LP performance across finetuning
and other methods is not as drastically different as their re-
spective observed accuracies are. We see that the LP ac-
curacy of SupCon based finetuning, which has no explicit
control for forgetting, outperforms LwF, a method specifi-
cally designed for CL. It also closely tracks the performance
of EWC�:0.5k, while outperforming on the current task per-
formance. Indeed, as we can see in Tab. 1, SupCon train-
ing achieves comparably high accuracy on the current task
(even surpassing CE finetuning on Scenes) with relatively
small representation forgetting (see Fig. 1).

SplitCIFAR100 and SplitMiniImageNet We now con-
sider the SplitCIFAR100 with 10 tasks of 10 classes each
and the 20 task SplitMiniImageNet setting. We show in
Fig. 2 and Fig. 3 the performance on the first task through-
out the sequence for both settings. Similar to the previous
case we see: for finetuning with CE the LP based evalua-
tion shows much milder forgetting than observed accuracy.
When finetuning with SupCon, LP performance drops ini-
tially but then stays relatively flat and even increases, sug-
gesting that positive backward transfer is occurring. Over-
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LP Accuracy ImageNet 200 Task Sequence

Figure 5. 200-Task ImageNet32. We compare Linear probe accuracy for Tasks 1 data over the whole sequence. As the model observes
the later tasks of the sequence, the performance of finetuning with CE reaches LwF, and finetuning with SupCon outperforms ER with 5
samples per class.

time, SupCon outperforms the LwF [26] approach without
any specific CL based control in both task sequences. It
also obtains performance that becomes close to ER with 5
samples per class without access to any previous data. For
the longer MiniImageNet task sequence we see that over
time even the strong ER based baselines which train on old
data demonstrate a reduced LP performance, while finetun-
ing baselines remain relatively flat and even increase in the
case of SupCon. This suggests that in very long sequences,
finetuning baselines can be competitive to the more compu-
tationally expensive CL methods.

Utilizing SplitCIFAR100 we also consider the unsuper-
vised representation learning case where linear probes fol-
low naturally as a common evaluation setting. The litera-
ture on evaluation of continual learning methods in the un-
supervised setting is limited. Hence we directly compare
unsupervised and supervised approaches in their represen-
tation learning ability when presented with the same task
sequences. We focus on the SimCLR loss and evaluate LP
performance in comparison to other methods in Fig. 4. We
can see in Fig. 4 that the initial LP performance is lower for
SimCLR compared to the supervised losses. This is natural
as it does not have access to the labeled data. Despite the
higher starting accuracy, LwF and finetuning with CE show
a decay that continues in the first several tasks following
task 1. On the other hand SimCLR decays at the first step
but then remains nearly flat over the rest of the sequence,
showing a strong resistance to representation forgetting af-
ter this inital drop. However SupCon, which utilizes a loss
similar to SimCLR in the supervised setting, shows the best
of both worlds, has an initial drop and then illustrates grad-
ual backward transfer properties.

200 Task Sequence - SplitImageNet32 We now consider
a much longer sequence than typically studied in the litera-
ture to allow us to observe whether the trends we have seen
so far continue to hold. Using Imagenet32 we construct 200
tasks of 5 classes each. Fig. 5 shows the performance on
the first task throughout the whole sequence. We see that

in a very long sequence of tasks, the previous trends are
kept. Specifically, we see that as the model reaches the later
stages of the sequence, finetuning with CE reaches LwF,
and finetuning with SupCon outperforms the competitive
baseline of ER with a small buffer without access to buffer
data. Furthermore, we observe as in the previous section
that SimCLR performance stays flat. In the supplementary
material we also demonstrate that this pattern is not limited
to the first task but is maintained for other tasks along the
sequence.

4.2. Effects of Increased Model Capacity

Next, we use linear probes to evaluate the effect of in-
creased model width and depth. Recently [39] has sug-
gested that increased model size must be strictly combined
with pre-training in order to get increased robustness to
catastrophic forgetting. We revisit this in the context of both
wider and deeper models on a SplitCIFAR100 sequence of
10 tasks with 10 classes each. Table 2 shows the results us-
ing a Resnet18 with a much wider model (128 vs. 32) and
then a much deeper model (101 layers). We report both the
LP accuracy of task 1 at the end of the sequence and the
average of LP accuracies for all the tasks at the end of the
sequence.

First, we can see that as in the other cases, the LP ac-
curacy of finetuning is higher than observed accuracy, sug-
gesting that forgetting is less catastrophic than what is indi-
cated by observed accuracy. Secondly, we see that finetun-
ing evaluated using the observed accuracy is particularly de-
ceptive in revealing how the model representations changes
with increasing capacity. The observed and accuracy of task
1 are relatively close despite increasing capacity (wider or
deeper) while the corresponding LP accuracies show sub-
stantial gaps. Using observed accuracy one would conclude
that increasing width and capacity of the model without ap-
plying any CL specific method does not reduce forgetting.
This is consistent with the observations of [39], which eval-
uates only on observed accuracy. However, if we observe
the LP accuracy, it reveals a more clear picture of what oc-
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Task 1 Obs. Acc. Task 1 Task 1 LP LP Acc. All Avg. Obs.
Acc. at T=10 T=10 T=10 Acc.

RN18, Width=32 82.2 20.8 64.8 70.8 35.5
Finetuning(CE) RN18, Width=128 83.3 21.2 70.5 74.2 36.8

RN101, Width=32 82.9 19.8 67.9 72.4 35.9
RN18, Width=32 82.7 52.1 74.2 75.7 54.8

ER-M5 RN18, Width=128 83.6 54.8 75.6 77.3 55.4
RN101, Width=32 83 50.9 74.5 76.1 51.6
RN18, Width=32 82.4 61.3 76 76.4 65.2

ER-M20 RN18, Width=128 83.2 63.5 78.8 80.1 67
RN101, Width=32 82.9 60.7 77.1 77.5 63.9
RN18, Width=32 82.1 36.2 70.1 73.4 47.7

LwF RN18, Width=128 83.9 37.7 74.8 76.7 49.1
RN101, Width=32 82.5 35.5 71.0 74.6 46.3

Table 2. Final Accuracy of 10 task SplitCIFAR100 sequence with variable width and depth in the offline setting. M indicates the number of
samples per task used in the ER buffer. We observe that simple finetuning and LwF baselines show large forgetting, which do not improve
significantly with width or depth. On the other hand, the LP evaluation reveals that representation quality for finetuning and LwF becomes
closer to strong CL methods that store samples and also use more compute such as ER. Furthermore, LP evaluations reveal LwF (which
does not store prior data) with wider models can rival ER

Task 1 Obs. Acc. Task 1 Task 1 LP LP Acc. All Avg. Obs.
Acc. at T=10 T=10 T=10 Acc.

RN18, Width=32 18.6 12.2 39.8 36.4 22.3
Finetuning(CE) RN18, Width=128 19.4 12.7 42.3 41.7 19.8

RN101, Width=32 14.6 11.8 28.2 29.4 14.5
RN18, Width=32 18.8 27.3 36.0 40.1 33.8

ER-M5 RN18, Width=128 19.5 28.9 54.7 47.9 31.6
RN101, Width=32 15.0 24.7 37.1 30.4 24.3
RN18, Width=32 18.4 32.0 46.8 43.5 34.7

ER-M20 RN18, Width=128 20.0 31.8 51.2 50.7 32.5
RN101, Width=32 14.5 25.4 36.5 33.9 24.3
RN18, Width=32 18.5 13.4 29.5 36.0 22.7

LwF RN18, Width=128 19.7 18.3 34.6 39.1 22.1
RN101, Width=32 14.8 11.1 25.4 22.8 16.8

Table 3. Final Accuracy of 10 task SplitCIFAR100 sequence in the Online Setting. LP evaluations show that width substantially improves
online representation learning, while observed Avg Accuracies suggest it decreases. Increasing depth on the other hand appears to be less
effective in the online setting.

curs at the representation level, suggesting that larger mod-
els can indeed reduce forgetting even when trained from
scratch without explicit control of forgetting. Moreover,
we see that at the representation level as model capacity
increases, naive finetuning becomes much closer in perfor-
mance to costly (and under privacy constraints unusable)
CL methods such as ER, which require more compute and
memory.

In comparing depth and width we also see some key dis-
tinctions - increasing width appears to help more than in-
creasing depth. For ER we also see that increasing depth
yields a lower observed accuracy, while the LP evaluation
suggests the representations are similar. Similarly, in Tab. 3
we report the results for the online task-incremental set-
ting [7, 27]. In this setting, momentum tends to be detri-
mental to performance, thus we use a fixed learning rate of
0.01 with no momentum. We see similar behavior to the
previous case, the larger models can end up appearing to do
worse if we consider observed accuracy, but perform better
using LP evaluation. Wider models appear to do particu-
larly well in the online setting while deeper models have

degraded LP accuracy in this setting. Finally we see that
LwF which is a regularization method performs poorly in
this setting. Indeed regularization based methods do poorly
in the online setting. This suggests that amongst methods
without access to a replay buffer, finetuning may provide
the best representation learning.

4.3. Low-Cost Remembering with SupCon

The observed low representation forgetting properties of
finetuning with SupCon loss suggest if we can approximate
a classifier using it’s representation it would allow for low
cost remembering upon encountering a previously observed
task. We thus evaluate the use of the NME in combination
with SupCon. As discussed in Sec 3.4 such an approach
allows a simpler alternative to ER methods and moreover
facilitates fast remembering not relying on a buffer and re-
peatedly training the model with old samples. We use the
SplitCIFAR100 dataset to compare against several CL spe-
cific methods such as LwF and ER in Tab. 4. We use a
memory with M = 5 samples per class for this. We chose
the exemplars at random to simulate re-encountering an old
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Method Obs Acc. Task 1 Avg. Obs.
at T=10 Acc.

Finetuning(CE) 20.8% 35.5%
ER-M5 52.1% 54.8%
ER-M20 61.3% 65.2%
LwF 36.2% 47.7%
Finetune(SupCon) + NME-M5 48.0% 53.9%

Table 4. Final Accuracy of 10-task SplitCIFAR100 sequence
comparing only the observed accuracy and SupCon+NME. Sup-
con+NME gives superior performance to CL specific methods
such as LwF and nearly matches the performance of ER with a
similar memory size while not needing access to the memory dur-
ing task training.

task. We observe that just applying the simple approxi-
mation with a small number of samples allows for a rapid
recovery of the performance with the finetuning approach
alone, exceeding the performance of LwF on overall accu-
racy and task 1 accuracy. The overall performance is close
to that of ER with the same memory size and slightly below
the ER performance on task 1 at the end of the sequence. On
the other hand ER requires samples to be available during
the entire training sequence, requires the addition of extra
algorithmic elements specifically to control forgetting, and
uses substantially more compute (⇡ 2⇥ that of the finetun-
ing step in this case).

4.4. Depth-wise Probes and Comparison to CKA

We consider a 2-task SplitCIFAR10 setting from [38].
We use the same models and training procedures and sub-
sequently evaluate forgetting. In Tab. 5, we study the shift in
representations of each block of the network by measuring
the performance of LP on task 1 before and after training
the network on task 2.

First we see that the observed accuracy decreases from
85% to 63%, suggesting large degradation in performance
and large forgetting. However, following the optimal clas-
sifier evaluation protocol the accuracy degradation is seen
to be only 5.7%, without any CL method applied to control
forgetting. This suggests that the representations are still
highly useful for Task 1 despite training on Task 2. Second,
similar to [38] we note that the forgetting is concentrated at
the top layers. Indeed early layers in the network experience
almost no representation forgetting and in some cases im-
prove their usefulness with regards to Task 1. Ramasesh et
al.’s [38] analysis also showed forgetting occurring in early
layers to a lower degree than in higher layers and suggested
that forgetting is extreme in the upper layer representations.
Specifically, the authors measured linear CKA [23] perfor-
mance between layers (given in Tab. 5) showing that this
similarity metric dropped progressively from close to 1 to
0.2 for both ResNet and VGG models. However, our evalu-

ResNet: Network Acc. on T-1 after T-2 training: 63.64%

Block LP Acc. LP Acc.
� Acc. CKA*Post T-1 Post T-2

B-0 63.54% 64.62% +1.08% 0.97
B-1 68.24% 69.50% +1.26% 0.93
B-2 71.62% 71.34% �0.28% 0.88
B-3 77.64% 76.52% �1.12% 0.78
B-4 80.06% 78.98% �1.08% 0.31
B-5 85.82% 80.10% �5.72% 0.22

VGG: Network Acc. on T-1 after T-2 training: 57.88%

B-0 67.94% 66.86% �1.08% 0.95
B-1 73.60% 72.52% �1.08% 0.93
B-2 78.58% 75.68% �2.90% 0.85
B-3 81.54% 75.48% �6.06% 0.66

Table 5. Representation forgetting of Task 1 measured via optimal
linear probes (LP) on ResNet and VGG. The Accuracy degrada-
tion of LP trained on activations of stages (blocks of convolutions)
before and after observing Task 2 suggests that the representations
are still highly useful for Task 1 despite training on Task 2. *Note
CKA results are taken from [38] for comparison.

ation suggests that forgetting does not exist in lower layers
and also the loss in information is less catastrophic at higher
layers than suggested by [38].

5. Conclusion

We have highlighted the importance of evaluating rep-
resentations and not just task accuracy in CL. Our results
suggest a) representation forgetting under naive finetuning
in supervised settings is not as catastrophic as other met-
rics suggest b) We demonstrate that without evaluation of
features the effects of model size on forgetting and repre-
sentation learning will be misinterpreted. c) We show that
the self-supervised SimCLR loss and supervised SupCon
loss have lesser representation forgetting in long tasks se-
quences, maintaining or increasing performance on early
tasks. These results open up potential new directions for
approaches in continual learning. One such direction of us-
ing memories that are not available to the learner during
training is evaluated with promising initial results.

Limitations and Future Work Our work focuses on
comparing linear probe performance as a proxy of knowl-
edge retained from past tasks. However, task performance
may not be the only criteria to fully evaluate knowledge re-
tention related to past data. Another limitation of our work
is that it currently focuses on the task-incremental setting
and does not consider the important class-incremental set-
ting, a subject for future studies. Finally though our work
studies a diverse task sequence ImageNet ! Scenes !
CUB ! Flowers, to fully understand the behavior of rep-
resentation forgetting, results over more distant tasks may
be needed (e.g. ImageNet ! Sketch Images [13, 44])
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