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Figure 1: Brain signals are captured via EEG to supervise a semantic editing task. An individual is shown images that have an
associated vector representation while they look for a semantic feature of interest (such as dark hair) and their brain responses
are recorded. After a model is trained to detect semantic saliency from these brain responses, the classified brain responses
and the associated image vector representations are used to model features of the latent space that correlate with semantic
salience. Semantic features of a new source image can then be edited using this learned feature representation.

Abstract
Despite recent advances in deep neural models for se-

mantic image editing, present approaches are dependent on
explicit human input. Previous work assumes the availabil-
ity of manually curated datasets for supervised learning,
while for unsupervised approaches the human inspection of
discovered components is required to identify those which
modify worthwhile semantic features. Here, we present a
novel alternative: the utilization of brain responses as a su-
pervision signal for learning semantic feature representa-
tions. Participants (N=30) in a neurophysiological experi-
ment were shown artificially generated faces and instructed
to look for a particular semantic feature, such as “old”
or “smiling”, while their brain responses were recorded
via electroencephalography (EEG). Using supervision sig-
nals inferred from these responses, semantic features within
the latent space of a generative adversarial network (GAN)
were learned and then used to edit semantic features of new
images. We show that implicit brain supervision achieves
comparable semantic image editing performance to explicit
manual labeling. This work demonstrates the feasibility
of utilizing implicit human reactions recorded via brain-
computer interfaces for semantic image editing and inter-
pretation.

1. Introduction
Semantic editing of images has recently become possi-

ble by utilizing models that allow for the smooth manipu-
lation of image representations. However, semantic editing
requires real-world conceptualizations of semantic informa-
tion to be captured by the underlying models to achieve
convincing results. Due to their high performance in mod-
eling highly complex features, the most popular techniques
involve various approaches built on generative neural net-
works [28, 2, 11, 42, 41, 27, 32, 16, 7], although other neu-
ral architectures [4, 29] have also shown promise.

Recent work has demonstrated that Generative Adver-
sarial Networks (GANs) [15] encode human-interpretable
representations of semantic concepts [14, 42, 16, 7, 41],
which partially explains their performance in semantic edit-
ing tasks. However, GANs suffer from a lack of direct in-
terpretability of their latent representations and do not di-
rectly allow accurate semantic control. That is, semantic
representations are encoded in a continuous space, but due
to their high-dimensional and multivariate representation,
mapping from latent features to salient semantic image fea-
tures is non-trivial. Because of this, identifying and trans-
lating learned semantic representations into a usable form
remains an unsolved problem.

Supervised approaches, such as conditional GANs, do
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allow specific features to be controlled, but they do so us-
ing extensive manual labor, as they require appropriately
labeled data to be available during model training. These
approaches are also influenced by the subjective opinions
of the labelers themselves. As GANs are typically trained
using anywhere from thousands to millions of examples, the
crowdsourced labeling of such datasets for specific seman-
tic features to match the personal interests of an individual
is unrealistic.

Unsupervised approaches typically involve identifying
components within the latent GAN space [7, 16]. Human
assessment is then required to filter through these discov-
ered components to determine what is and what is not se-
mantically relevant [7]. While such approaches allow for
discovery and control of semantic features, it is by no means
guaranteed to find features that are highly subjective or per-
sonal, such as faces that an individual finds attractive or
scenery that evokes particular emotions, moods, or mem-
ories.

Supervised or unsupervised, all methods of semantic
editing and how they are assessed are fundamentally in-
formed by the natural human ability to assess semantic rel-
evance and saliency. In other words, they need human judg-
ment of what semantic information is present and how no-
ticeable it is. However, the present approaches are fairly
limited as they require manual human involvement to per-
form. While replacing human judgments is not advisable,
how these judgments are collected could be significantly
improved.

Here, we propose a novel alternative: brain-supervised
semantic editing. By obtaining human judgments from nat-
ural, immediate responses recorded from the brain while an
individual perceives visual stimuli, we demonstrate that it is
possible to model semantic features of the latent space using
implicit feedback from the brain. Unlike conventional su-
pervised methods, the brain-supervised approach acquires
relevant labeling information much more rapidly, does not
require labels to be available at the time of training the GAN
models, and is not limited to features discoverable by ex-
ploratory methods such as those used in unsupervised ap-
proaches.

In detail, we ask the following research questions:

RQ1: Can brain responses be used as supervision signals
for semantic image editing?

RQ2: How does brain-supervised semantic editing per-
form compared with editing informed by manual la-
bels?

We show that semantically meaningful decision bound-
aries within the latent GAN space can be learned using
implicit feedback from the brain and that transformations
using these decision boundaries offer similar performance

as those produced by decision boundaries trained from ex-
plicit manually provided labels. More generally, we demon-
strate an intriguing new paradigm: utilizing the natural hu-
man ability to detect and assess salient semantic informa-
tion within images using signals recorded directly from the
brain. This offers a new methodology for semantic image
understanding and processing.

2. Background
2.1. Semantic image editing

The current state of the art for semantic editing features
a variety of approaches and techniques that achieve impres-
sive results, such as image in-painting [21], style transfor-
mation [23, 44], and the disentangled modification of se-
mantic features [2, 39, 43].

While the methods and techniques can vary significantly
in their implementation, how semantic features are learned,
discovered, and changed typically involves one or more of
the following: aggregating large labeled datasets, manually
inspecting the results of exploratory techniques, and/or pro-
viding some example with the salient semantic feature of
interest to the model. For example, in [32], an image clas-
sifier was trained through transfer learning to detect manu-
ally labeled facial features that are included in the CelebA
dataset1. This classifier was then used to automatically label
hundreds of thousands of randomly generated images from
a GAN, also trained from the CelebA dataset. Images with
labels in the top 10% of model confidence were then used
to learn decision boundaries within the GAN latent space,
which in turn was used to make changes to semantic fea-
tures.

Alternative methods have involved specially designing
the GAN architecture to facilitate modification [24, 39],
while others involve utilizing various mathematical tech-
niques such as principal component analysis [16] to identify
important dimensions within the latent space or even build-
ing customized models that can learn to manipulate the la-
tent space, such as in [41]. Exemplar-based methods, ones
in which an image containing the feature of interest is used
as input to modify some pre-existing image, have also been
demonstrated [40, 38, 26, 31].

The methods in which the desired transformation of
the source image are conducted can vary from sliders and
checkboxes that add or remove binary features (clouds,
no clouds; glasses, no glasses), to categorical or multi-
dimensional attributes (hair color, breed of dog) [42], addi-
tion and subtraction of scene objects using free-form drawn
inputs [27] and semantic segmentation masks [3], as well as
modifications using speech or text inputs [11]. While they

1http://mmlab.ie.cuhk.edu.hk/projects/CelebA.
html
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may vary in form, ultimately these inputs stem from direct
human interaction with the system.

2.2. Brain-computer interfacing

Brain-computer interfacing is an interaction paradigm
where brain activity is used to control software or a me-
chanical system. Typically, brain activity is measured using
a portable, wearable device located on top of or around a
user’s head. One of the most popular ways to monitor brain
activity is electroencephalography (EEG), which is a non-
invasive way to measure, at the surface of the scalp, differ-
ences in electrical potential produced by the brain. These
data in turn can be used to model brain states and user reac-
tions in real-time.

Historically, many of the applications for brain-computer
interfaces (BCIs) have involved replacements to existing in-
teraction paradigms, such as controlling a mouse [37, 45] or
keyboard [5]. However, recent work has shown that brain-
computer interfacing can be applied to a variety of other ar-
eas, such as information retrieval [13], content recommen-
dation [9], graded relevance detection [30], cognitive load
estimation [1], and even crowdsourcing tasks [8]. Prelimi-
nary work has also demonstrated the possibility of combin-
ing BCIs with GANs and other neural architectures [18, 10]
and generating images that match personal preferences [34].

Owing to the nature of EEG measurements being taken
at the surface of the scalp, rather than inside the cranial cav-
ity, the data collected are noisy and with poor spatial reso-
lution. Thus, while EEG data alone may not be of sufficient
quality to monitor very specific cognitive processes, they
nonetheless have a high temporal resolution containing fea-
tures, such as the event-related potential (ERP), that render
EEG suitable for use in real-time interaction.

ERPs are changes in voltage produced by brain activ-
ity in response to an event, such as viewing an image. The
time-locked nature of ERPs renders them particularly useful
in BCI applications, as it allows for the relatively easy asso-
ciation between a brain response and a digital event. ERPs
may consist of various components, which are identified by
their polarity (positive or negative) and time relative to the
event. For example, the N200 is a negativity that occurs ap-
proximately 200 ms after viewing a face, while the P300 is
a positivity occurring around 300 ms after being exposed to
a stimulus recognized as relevant or otherwise important to
a current task [17].

While there have been previous attempts to pair BCIs
with generative models [20, 33, 36], there is growing con-
cern that the results are not from cognitive effects, but from
confounds introduced by the block structure of the exper-
imental setup [22]. As a consequence, utilizing brain re-
sponses to guide generative models in a computer vision
context remains an unsolved problem. In [20, 33, 36], plac-
ing target stimuli at the end of an experimental block, rather

than randomly throughout the block, produces an artificial
positive classification due to the natural temporal properties
of EEG. That is, signals collected at the end of the experi-
mental block can be distinguished from signals collected at
the beginning of the experimental block, regardless of the
content of the stimuli that produced these signals.

In our experiment, we carefully control for the tempo-
ral variation of EEG signals using a randomized “oddball”
paradigm [35]. In our experimental design, we use com-
plete randomization of both target and non-target stimuli
classes within the same experimental block.

3. Neurophysiological Experiment
In this section, we provide a full description of how the

neurophysiological experiment was performed. In detail,
we describe the participants, the stimuli, the experimental
apparatus, the procedure for collecting the EEG data, and
how this data was processed and cleaned after collection.

3.1. Participants

Neurophysiological data were collected from thirty-one
participants, recruited from the University of Helsinki and
Aalto University. The nature and purpose of the experi-
ment were explained to all participants and each partici-
pant signed a statement of informed consent to acknowl-
edge understanding of their rights under the Declaration
of Helsinki. One participant chose to end the experiment
early, and so complete data were obtained for 30 partici-
pants, 13 of which self-reported as female and 17 as male,
all with normal or corrected-to-normal vision and without
any known history of neurological disease. The mean age
of the participants was 28 years (SD = 7.14, Min = 18, Max
= 45). All participants, regardless of whether or not they
completed the full experiment, received compensation for
their participation in the form of vouchers to the local cin-
ema.

3.2. Stimuli

Stimuli were generated using a pre-trained GAN archi-
tecture2 using a random process by sampling from 70,000
latent vectors drawn from a 512-dimensional multivariate
normal distribution [19]. A human assessor, who did not
participate in the neurophysiological experiment, manually
screened all stimuli to ensure they appeared human and did
not contain unrealistic artifacts. These images and the asso-
ciated 512-dimensional latent vectors used to produce them
were then sorted into one of eight groups based on the fol-
lowing visual features: smiling, not smiling, female, male,
young, old, dark hair, and light hair (blond). An elliptic grey
frame was applied to all images to mask the background and
non-facial features.

2https : / / github . com / tkarras / progressive _
growing_of_gans
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Figure 2: The experimental setup and the visualization of the RSVP task are depicted left. A participant is instructed to look
for a semantic feature, such as dark hair, and is presented with a new stimulus every 500 ms. On the right, we plot the average
brain response, measured at the Fz electrode, produced by viewing the same stimuli during different tasks. For “target”, the
responses are from viewing images of dark-haired people during task dark-haired. For “non-target” the responses are from
viewing images of dark-haired people during task blond. Thus, while the stimuli remain the same, the evoked responses
from the brain are different, as the nature of a brain response depends on whether or not a given stimulus contained a salient
semantic feature of interest.

3.3. Apparatus

The EEG data were recorded using 32 Ag/AgCl elec-
trodes, arranged according to the 10–20 system (exact posi-
tions can be found in the supplementary material). A Quick-
Amp USB (BrainProducts GmbH, Gilching, Germany) am-
plifier running at 2,000 Hz was used for amplification, fil-
tering, and digitization of the signal. Eye movements were
detected using two pairs of bipolar electrodes for artifact de-
tection — one situated 1 cm to the lateral canthi of the left
and right eye, and the other 2 cm above and below the right
pupil.

3.4. Experimental Procedure

Participants were presented with eight saliency recog-
nition tasks, each task corresponding to a predetermined
visual feature of interest as described in section 3.2. Be-
fore each iteration, participants completed a demonstration
task. For the demonstration task, they were shown four
example stimuli images and were asked to manually se-
lect the images that contained the semantic feature of in-
terest for the proceeding saliency recognition task. These
images were not used as stimuli in the actual task. All stim-
uli presented during each task were assigned a binary label
based on semantic feature saliency. For example, during the
task “smile”, participants were shown faces that were ei-
ther smiling (labeled as target) or not smiling (non-target).
Participants were instructed to only observe the presented
faces and make a mental note whenever they saw a face that
matched the task description (smile, target). No other phys-
ical inputs were required from the participants during the

saliency recognition task. Twenty stimuli of the target class
and fifty stimuli of the non-target class were shown in ran-
dom order during each iteration of the task. Stimuli were
presented in rapid serial visual presentation (RSVP) format
at a rate of one every 500 ms.

To ensure enough data were collected for each partici-
pant and the participant saw each image at least once, the
saliency recognition task and demonstration task were con-
ducted a total of four iterations for each image category, for
a total of 32 iterations.

3.5. Data Preprocessing

EEG measurements generally contain unwanted artifacts
and noise originating from a variety of sources, such as
movements of the participant and other electrical equip-
ment. Standard signal cleaning procedures were em-
ployed [25] to improve the signal-to-noise ratio.

The preprocessing step was designed to reduce signal
noise for real-time applications, so only automated oper-
ations which can be done in real-time were used for sig-
nal cleaning. To remove slow signal fluctuations caused by
respiration and high-frequency background noise produced
by electrical equipment, a band-pass filter in the frequency
range 0.2–35 Hz was applied to the signal.

After filtering, the data were split into time-locked bands
(epochs) ranging from -200 to 900 ms relative to stimulus
onset. Baseline correction was performed for each epoch
based on a pre-stimulus period of -200 to 0 ms. Epochs
containing large amounts of transient artifacts, such as those
caused by eye blinks, were removed using a threshold-based
heuristic. After pre-processing, approximately 11% of each
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participants’ epochs were removed, with an average of 2239
epochs per participant remaining.

4. Brain-Supervised Semantic Editing
Here, we explain the steps to our method, as visualized

in Figure 1.

Preliminaries We assume a generative function G(z) →
x with a latent space Z, where any given vector z can be
transformed into an image representation x and vice-versa.
The recognition tasks described above in section 3.4 yield a
tensor representation of the brain signals E for each gener-
ated image and its associated vector representation. When
a participant is tasked with identifying images containing
some semantic feature, viewing an image produces a re-
sponse E containing information related to the saliency s
of the target semantic feature.

First, we define a function SAL(E) → s, such that using
only the brain response e as input, the semantic saliency E
of some image x can be estimated. Next, we define a func-
tion SEM(Z, S) → W. Given a set of image vectors Z
and associated set of semantic saliency scores S, this func-
tion identifies a set of feature transformations W which,
when applied to any given z, correspond to change in s
for the image form x. Finally, we use the learned transfor-
mations W, scaled by a positive or negative constant α, to
modify a given representation z. The result is a transformed
vector ẑ with an image form x̂ where the saliency score s for
a specific semantic has changed while remaining disentan-
gled from other semantic features (i.e, other features are left
unchanged). The magnitude of the change is proportional to
α. This function can be written EDIT (z,W, α) → ẑ.

Saliency estimation from brain signals To construct the
saliency estimation function SAL, we used a regularized
Linear Discriminant Analysis (LDA) classifier [6]. The
classifier was trained with vectorized representations of the
brain responses using a binary label (target or non-target)
indicating if the semantic feature of interest was salient
within the associated stimulus image. Brain responses were
vectorized by taking time-series voltage data from all 32
channels for a given epoch and concatenating it into a sin-
gle array. Using leave-one-out cross-validation, the seman-
tic saliency score s for each stimulus image x was estimated
from an individual’s associated brain responses.

Mapping semantic saliency within the latent space To
identify the feature transformations W within the latent
GAN space Z, we made use of a support vector regression
(SVR) model with a linear kernel [12]. Here, we wish to
satisfy the equation 0 = W⊤Z + b. That is, to find the
hyperplane W⊤ for some set of points Z along which the

semantic saliency s for a given z and its image form x is
equal to zero.

Given a set of vector representations Z and associated
saliency scores S, the SVR model was trained for each
semantic category. SVR has the convenient property that,
upon learning to estimate s given a vector z, the unit nor-
mal vector W of the resulting hyperplane is equivalent to
W from function EDIT .

Performing semantic transformations on an image
Provided a representation z of an image x, the saliency s
for a given semantic can be changed using ẑ = z + αW
while remaining disentangled from other semantic features.
When α > 0, saliency s will increase for the target seman-
tic, and when α < 0, s will decrease.

5. Semantic Editing Experiment
After collecting the necessary neurophysiological data,

we conducted a modeling experiment using the recorded
brain responses to perform semantic transformations on
new images. In this section, we provide a detailed explana-
tion of how controls were constructed to quantify the perfor-
mance of the brain-supervised semantic editing procedure.
We then describe the evaluation procedure for quantifying
the performance of our method.

5.1. Control Conditions

To assess the performance of the brain-based model,
three control conditions were selected. For these controls,
all factors remained equal except for what signals were used
to estimate W.

For the first control, W was found through an SVR
model trained using explicit labels manually assigned to the
stimuli for the neurophysiological experiment. This control
condition, referred to as the explicit model, was selected to
compare performance between the brain-labeled model and
a model trained with explicitly defined labels.

The second control used randomly shuffled permutations
of the brain-derived labels to find W. This was done to
gauge how important label accuracy is for producing a good
hyperplane for transformations. We refer to this control as
the random label model.

The third control was to create W by sampling from
a multivariate normal distribution (512 dimensions) rather
than finding it through SVR. This control condition, called
random vector, was selected to determine a lower bound
for how much an image can be transformed to match a tar-
get label by simply moving in a random direction within the
sample space.

5.2. Evaluation

Experimental data were anonymized shortly after collec-
tion. Due to this and the timelines of the experiments, it
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Figure 3: Sample results of the transformations performed by the Brain model and three controls for tasks dark hair (left)
and smile (right), given the same source image where the semantic feature of interest is not salient. Recall that explicit refers
to transformations made using a model trained from manual labels, while brain refers to transformations made using a model
trained from classified brain responses.

was not feasible to have the original participants evaluate
the results of the transformations. To account for this, two
independent evaluators who had not participated in the neu-
rophysiological experiment were recruited to assess the re-
sults of the transformations. One evaluator performed the
primary evaluation while the second was used to calculate
the kappa statistic for inter-rater reliability.

The generated outputs were evaluated in a randomized
blind user study completed by these evaluators making use
of a graphical user interface. Given a source image, four
edited images were produced by the Brain model and three
control conditions, for a total of four image sets per source
image. Evaluators were presented with one image set at a
time in random order (thus the same source image was not
evaluated multiple times in a row). Each image set con-
sisted of the source image and four images transformed us-
ing a multiple (α = 1, 2, 3, 4) of W. The ordering of these
images was also randomized.

Evaluators were asked for a numeric rating in a five-level
Likert scale the degree to which each image matched a tar-
get visual feature, with 0 indicating no match with the label
and 4 indicating complete match. Additionally, two other
metrics were collected for each image: realism, and identity
preservation. The evaluator was asked to provide a binary
rating for each image as to whether or not it appeared real-
istic, and another binary rating if it appeared to depict the
same person as in the other images.

15 randomly selected source images were transformed
by the Brain model and 3 control conditions for each of the
8 semantic saliency tasks. In total, the primary evaluator an-
notated 9,600 images, while the second evaluator evaluated
512 of the same generated images to estimate the reliability
of the annotation process.

6. Results
In this section, we provide the evaluation results of the

semantic editing experiment. We also give a brief overview
of the neurophysiological findings.

6.1. Neurophysiological Experiment

Shown in Figure 2 is an ERP plot for average evoked re-
sponses at the Fz electrode to smiling images for two con-
ditional tasks: task “smiling” and task “not smiling”. The
P300 effect is clearly shown and confirms that although par-
ticipants were seeing the same images, their neurophysio-
logical responses to the images depended on the task. Thus,
a smiling face during task “smiling” will produce a large
positivity at the Fz electrode as it matches the task. Smil-
ing faces during the “not smiling” task, however, do not
produce this positivity, as they do not match the target de-
scription.

For the classification of brain responses across all partici-
pants and all semantic saliency tasks, the mean F1 score was
0.67 (Min=0.54, Max=0.87, SD=0.12), which is consistent
with the performance typically expected of BCIs using sim-
ilar equipment, data preprocessing, and classification tech-
niques [6].

6.2. Semantic Editing Experiment

The results of the semantic editing experiment show that
the Brain model performed similarly to the Explicit model.
The Brain and Explicit models consistently produced im-
ages where the salience of semantic features was appropri-
ately changed without significantly altering other visual fea-
tures while the random controls did not. Sample results can
be found in Figure 3 and Figure 5. Both the brain model
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(a) (b) (c)

Figure 4: Violin plots of semantic editing performance for the brain model and controls. In Figure 4a, the rating value for the
final step across all tasks is shown for each model. In Figure 4b, the difference between rating values for the final step and the
source image across all tasks are shown for each model. Both brain and explicit models performed significantly better than
the random controls. Comparing the brain and explicit model results, we see from Figure 4c slight differences in performance
between the brain and explicit models as α increases.

Task Raw Ratings Deltas Realism Identity Preservation

Brain Explicit R1 R2 Brain Explicit R1 R2 Brain Explicit R1 R2 Brain Explicit R1 R2

Blond 0.74 0.92 0.16 0.25 0.65 0.81 0.04 0.14 0.90 0.90 0.93 0.63 0.97 0.97 1.00 0.85
Female 0.68 0.84 0.13 0.18 0.62 0.79 0.06 0.13 0.80 0.87 0.93 0.80 0.98 0.91 1.00 0.94
Young 0.80 0.86 0.47 0.50 0.30 0.43 0.04 0.10 0.73 0.70 0.83 0.70 0.98 0.98 0.99 0.88

Smiling 0.54 0.73 0.12 0.93 0,23 0.64 0.03 0.13 0.87 0.97 0.87 0.63 0.99 1.00 1.00 0.83
Dark-haired 0.65 0.93 0.06 0.10 0.65 0.93 0.04 0.08 0.80 0.87 0.80 0.67 0.95 0.95 1.00 0.85

Male 0.77 0.90 0.22 0.32 0.62 0.76 0.05 0.16 0.73 0.80 0.90 0.73 0.99 0.98 1.00 0.90
Old 0.26 0.34 0.09 0.18 0.16 0.27 0.01 0.05 0.67 0.47 0.63 0.67 0.93 0.92 0.99 0.82

Not smiling 0.69 0.83 0.33 0.48 0.36 0.53 0.01 0.18 0.83 0.80 0.80 0.73 0.99 0.99 1.00 0.86

Mean 0.64 0.79 0.19 0.27 0.48 0.65 0.04 0.12 0.79 0.80 0.84 0.70 0.97 0.96 1.00 0.87

Table 1: Results for all measures, with non-target starting image, shown for the four models - brain, explicit, random labels
(R1), and random vector (R2). All measures are between 0 and 1, with 0 indicating the worst performance and 1 indicating
the best possible performance. Across all tasks, both models performed significantly better than random controls (p < 0.001)
(Bonferroni corrected) based on the deltas. For realism and identity preservation, the performance of R1 serves as an upper
bound as the target images produced by the R1 baseline were more or less indistinguishable from the source image.

and explicit control model performed better than the ran-
dom controls across all metrics: final scores, deltas, identity
preservation, and realism. However, comparing the distri-
bution of both deltas and raw scores for If , the Brain model
has a wider distribution, as shown in Figure 4. Additionally,
each step of the Brain model introduces a smaller change
than the Explicit model. The full results of the evaluation
are shown in Table 1.

Comparing the Brain model and the Explicit model,
across all tasks, differences in performance between the
Explicit model and the Brain model were statistically sig-
nificant (two-sided t-test, Bonferroni corrected p < 0.05).
However, comparing between tasks, differences in perfor-
mance were only significant for task dark-haired (Bonfer-
roni corrected p < 0.01).

For identity preservation and realism, both the Brain and
Explicit models performed similarly, with no significant dif-
ferences found between the two. The R1 model, which did

not change the source images much, maintained the iden-
tity of the source images well. The Brain and Explicit mod-
els produced images that were significantly more realistic
than the random vector model, although the effect size was
small (Bonferroni corrected p < 0.01). For the preservation
of identity, no significant differences were found between
the Brain and Explicit models. Both models performed sig-
nificantly better than the random vector model (Bonferroni
corrected p < 0.0001). Between the two evaluators, Co-
hen’s kappa was 0.88 for the performance of semantic edit-
ing, 1.00 for preserving identity, and 0.99 for synthetic im-
age realism. Therefore, all evaluated metrics present a high
inter-rater agreement.

7. Discussion and Conclusions
In this work, we sought answers for the following re-

search questions:
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Figure 5: Sample results of the transformations performed
by the Brain model for each task. The name of the task
indicates the target output description. For example, for task
young, the goal is to produce an image that looks younger.
Similarly, for task dark hair, the goal is to produce an image
with darker hair.

RQ1: Can brain responses be used as supervision sig-
nals for semantic image editing? We have shown that
brain responses can be used to detect the saliency of se-
mantic features of interest within images, and these data are
of sufficient quality to supervise the semantic editing of im-
ages.

RQ2: How does brain-supervised semantic editing
perform compared with editing informed by manual la-
bels? While the explicit model performed better than the
brain-based model, the differences in performance are small
enough to warrant further investigation in brain-based meth-
ods.

While the implementation described here involves learn-
ing the latent space over a pre-trained GAN, we believe that
brain-supervision may generalize to many other methods
for GAN control and beyond. The same P300 relevance
effect could be utilized to rapidly explore and select latent
space manipulations and features produced by unsupervised
transformation techniques. It may also be possible to in-

corporate brain signals as auxiliary information to be used
directly in training representations.

The fundamental limitation of our approach — the ac-
curacy of the semantic saliency estimation from EEG re-
sponses — stems not from limitations of the paradigm it-
self but the quality of currently available sensor technol-
ogy. EEG remains a relatively noisy and spatially inex-
act technique to capture brain activity. Thus, the typical
range of 0.65 — 0.80 classification accuracy achieved in bi-
nary classification problems using EEG signals is usually
outmatched by explicit labeling techniques. However, this
performance gap is less significant when taking into con-
sideration how rapidly brain responses can be recorded (2
stimuli presentations per second) relative to manual tech-
niques. With improved sensor technology and/or better
imaging techniques, it is not unreasonable to expect that
brain-supervised methods will surpass their manual alter-
natives sometime in the near future.

As brain-imaging sensor technology continues to im-
prove and become more affordable, the prospect that BCIs
will become a common interaction paradigm becomes in-
creasingly likely. It is therefore worthwhile to begin setting
the foundation for how information from such sensor tech-
nology could be integrated into existing and future image
processing methods. This would not be to simply augment
or complement the performance of existing models but to
fundamentally change how these models are supervised and
controlled.

Here we have demonstrated, for the first time, that se-
mantic image editing can be conducted using responses
from the brain. More broadly, this work presents a novel
paradigm: the incorporation of physiological feedback in
supervised model training and control. This paradigm ex-
tends beyond the current supervision signals used by the
computer vision and machine learning research communi-
ties by more efficiently utilizing peoples’ natural abilities
to detect semantic features and semantic saliency. Further-
more, using measurements directly from the brain allows
for the implicit identification of semantic dimensions that
may be otherwise difficult to quantify using traditional man-
ual labeling techniques. This entails a vision in which com-
puter vision systems can learn semantic saliency important
for their users, or even semantic image representations, di-
rectly from human brain responses to visual information.
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