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Abstract

SCENIC is an open-source' JAX library with a focus on
transformer-based models for computer vision research and
beyond. The goal of this toolkit is to facilitate rapid ex-
perimentation, prototyping, and research of new architec-
tures and models. SCENIC supports a diverse range of tasks
(e.g., classification, segmentation, detection) and facilitates
working on multi-modal problems, along with GPU/TPU
support for large-scale, multi-host and multi-device train-
ing. SCENIC also offers optimized implementations of state-
of-the-art research models spanning a wide range of modal-
ities. SCENIC has been successfully used for numerous
projects and published papers and continues serving as the
library of choice for rapid prototyping and publication of
new research ideas.

1. Introduction

It is an exciting time for research in computer vision us-
ing attention based models. With new architectures like
ViT [12] taking the world by storm, there exists a clear
demand for software and machine learning infrastructure
to support easy and extensible neural network architecture
research. As attention models [0, 12, 19, 28] and MLP-
only [30] architectures become more popular, we expect to
see even more research in the coming years pushing the field
forward.

We introduce SCENIC, an open-source JAX library for
fast and extensible research in vision and beyond. SCENIC
has been successfully used to develop classification, seg-
mentation, and detection models for images, videos, and au-
dio among other modalities, including multi-modal setups.

https://github.com/google-research/scenic
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SCENIC offers an efficient and easy to use setup for transfer
learning by providing pipelines required for upstream pre-
training, e.g., using large scale data and/or self-supervised
training objectives, as well as downstream evaluation, e.g.,
zero-shot learning, few-shot learning, linear probe, and full
fine-tuning on several tasks and datasets.

SCENIC strives to be a unified, all-in-one codebase
for modeling needs, currently offering implementations
of state-of-the-art models in various tasks like ViT [12],
DETR [£&], CLIP [22], MLP Mixer [30], T5 [23], BERT [11]
ResNet [13], and U-Net [24]. On top of that, SCENIC has
been used in numerous Google projects and research pa-
pers such as ViViT [6], OmniNet [28], TokenLearner [25],

MBT [21], PolyViT [19], MTV [31], studies on scaling
behaviour [5, 10, 29] and efficiency [9] of various models
among others [15-18, 20]. We anticipate more research

projects, with diverse flavors, to be open-sourced in the
SCENIC repository in the near future.

SCENIC is developed in JAX [7] and uses Flax [14] as the
neural network library, relies on TFDS [4] and DMVR [2]
for implementing the input pipeline of most of the tasks
and datasets, and makes use of for common training loop
functionalities offered by CLU [1]. JAX is an ultra-simple
to use library that enables automatic differentiation of na-
tive Python and NumPy functions. Moreover, it supports
multi-host and multi-device training on accelerators includ-
ing GPUs and TPUs, making it ideal for large-scale ma-
chine learning research.

In a nutshell, SCENIC is a (i) set of shared light-weight li-
braries solving commonly encountered tasks when training
large-scale (i.e. multi-device, multi-host) models in vision
and beyond; and (ii) a number of projects containing fully
fleshed out problem-specific training and evaluation loops
using these libraries.

SCENIC is designed to propose different levels of ab-
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Figure 1. The code in SCENIC is organized in project-level part, that is customized code for specific projects or baselines or library-level
part, that implements common functionalities and general patterns that are adapted by the majority of projects.

straction. It supports projects from those that only require
changing hyper-parameters, to those that need customiza-
tion on the input pipeline, model architecture, losses and
metrics, and the training loop. To make this happen, the
code in SCENIC is organized as either project-level code,
which refers to customized code for specific projects or
baselines, or library-level code, which refers to common
functionalities and general patterns that are adapted by the
majority of projects (Fig. 1). The project-level code lives in
the projects directory.

Philosophy SCENIC aims to facilitate the rapid prototyp-
ing of large-scale models. To keep the code simple to under-
stand and extend, SCENIC design prefers forking and copy-
pasting over adding complexity or increasing abstraction.
We only upstream functionality to the library-level when it
proves to be widely useful across multiple models and tasks.

Minimizing support for various use-cases in the library-
level code helps us to avoid accumulating generalizations
that result in the code being complex and difficult to under-
stand. Note that complexity or abstractions of any level can
be added to project-level code.

2. A Brief Primer on JAX and Flax

Before we give into the design of SCENIC, we provide
a quick background on JAX [7]. JAX provides compos-
able transformations of Python and NumPy programs that
offer differentiation (e.g., jax.grad), vectorization (e.g.,
jax.vmap), JIT-compilation to GPU/TPU (e.g., jax. jit),
and more. JAX is designed to operate on pure and statically

composed (PSC) functions. That means JAX transforma-
tions are only applicable to functions that (1) make no use
of a global state, (2) are deterministic, and (3) are repre-
sentable as a static data dependency graph on a set of prim-
itives (e.g., Accelerated Linear Algebra (XLA) operators).
Many machine learning systems can be implemented as a
set of PSC Python functions and using JAX transformation,
we can easily benefit high efficiency of XLA for running
compute-heavy parts of these systems.

While JAX offers the building blocks needed for devel-
oping machine learning systems in the form of function
transformations, there are other libraries on top of it to ad-
dress the higher-level needs of researchers. Most notably
Flax [14] which is a neural network library for JAX, pro-
viding neural network layers as well as utilities and patterns.
SCENIC uses JAX and Flax underneath to develop a highly
efficient framework for agile development of research ideas,
in the large-scale, yet flexible setup.

3. SCENIC Design

SCENIC offers a unified framework that is sufficiently
flexible to support projects in a wide range of needs without
having to write complex code. SCENIC contains optimized
implementations of a set of research models operating on
a wide range of modalities (video, image, audio, and text),
and supports several datasets. This again is made possible
by its flexible and low-overhead design. In this section, we
go over different parts and discuss the structure that is used
to organize projects and library code.



3.1. Library-level code

The goal is to keep the library-level code minimal and
well-tested and to avoid introducing extra abstractions to
support minor use-cases. Shared libraries provided by
SCENIC are split into:

* dataset_lib: Implements IO pipelines for loading
and pre-processing data for common tasks and bench-
marks. All pipelines are designed to be scalable and
support multi-host and multi-device setups, taking care
of dividing data among multiple hosts, incomplete
batches, caching, pre-fetching, etc.

* model_lib Provides several abstract model
interfaces  (e.g., ClassificationModel or
SegmentationModel in model_lib/base models)
with task-specific losses and metrics; neural net-
work layers in model_-lib/layers, focusing on
efficient implementation of attention and transformer
primitives; and finally accelerator-friendly imple-
mentations of bipartite matching algorithms [3] in
model_lib/matchers.

* train_lib: Provides tools for constructing training
loops and implements several optimized trainers (e.g.,
classification trainer and segmentation trainer) that can
be forked for customization.

* common_lib: General utilities, such as logging and
debugging modules, and functionalities for processing
raw data.

3.2. Project-level code

SCENIC supports the development of customized solu-
tions for specialized tasks and data via the concept of the
“project”. There is no one-fits-all recipe for how much code
should be re-used by a project.

Projects can consist of only configuration files and use
the common models, trainers, tasks/data that live in library-
level code, or they can simply fork any of the mentioned
functionalities and redefine, layers, losses, metrics, logging
methods, tasks, architectures, as well as training and evalu-
ation loops. The modularity of library-level code makes it
flexible enough to support projects falling anywhere on the
“run-as-is” to “fully-customized” spectrum.

Common baselines such as a Vision Transformer (ViT),
DETR, CLIP, T5, BERT, MLP-Mixer, ResNet, UNet, etc.,
are implemented in the projects/baselines. Forking
models in this directory is a good starting point for new
projects.

3.3. SCENIC BaseModel

A solution usually has several parts: data/task pipeline,
model architecture, losses and metrics, training and evalua-
tion, etc. Given that much of the research done in SCENIC

is trying out different architectures, SCENIC introduces the
concept of a “model”, to facilitate “plug-in/plug-out” ex-
periments. A SCENIC model is defined as the network ar-
chitecture, the losses that are used to update the weights of
the network during training, and metrics that are used to
evaluate the output of the network. This is implemented as
BaseModel.

BaseModel is an abstract class with three members: a
build_flax_model,a loss_fn, and a get metrics_fn.

build_flax.model function returns a flax.model. A
typical usage pattern is depicted below:

# Get model class:
model_cls = model_lib.models.get_model_cls(
"fully_connected_classification")
# Build the model, metrics, and losses
model = model_cls(
config, dataset.meta_data)
# Initialize the model parameters
flax_model = model.build_flax_model
dummy_input = jnp.zeros(
input_shape, model_input_dtype)
model_state, params = flax_model.init (
rng, dummy_input, train=False
) .pop ("params™)

And this is how to call the model:

variables = {

# Trainable parameters
"params":
# Model state

# (e.g., batch statistics from BatchNorm)

params,

*+*model_state

}

logits, new_model_state = flax_model.apply (
variables, inputs, ...)

Abstract classes for defining SCENIC models are
declared in model_lib/base_models. These
include the BaseModel that all models in-
herit from, as well as ClassificationModel,
MultiLabelClassificationModel,
EncoderDecoderModel and SegmentationModel
that respectively define losses and metrics for classification,
sequence-to-sequence, and segmentation tasks. Depending
on its needs, a SCENIC project can define new base class
or override an existing one for its specific tasks, losses and
metrics.

A typical model loss function in SCENIC expects predic-
tions and a batch of data:



# Loss function:
loss_fn(
logits: jnp.ndarray,
batch: Dict[str,
) —> float

jnp.ndarray]

Finally, a typical get_metrics_fn returns a callable,
metric_fn, that calculates appropriate metrics and returns
them as a Python dictionary. The metric function, for each
metric, computes f(z;,y;) on a mini-batch, where x; and
y; are inputs and labels of ith example, and returns a dictio-
nary from the metric name to a tuple of metric value and the
metric normalizer (typically, the number of examples in the
mini-batch). It has the API:

# Metric function:
metric_fn(
logits:
label: jnp.ndarry,
) —> Dict[str, Tuple[float,

jnp.ndarry,

int]]

Given metric and normalizer values collected from ex-
amples processed by all devices in all hosts, the model
trainer is then responsible for aggregating and computing
the normalized metric value for the evaluated examples.

Importantly, while the design pattern above is recom-
mended and has been found to work well for a range of
projects, it is not forced, and there is no issue deviating from
the above structure within a project.

4. Applications

SCENIC has been used in various applications and tasks.
SCENIC provides not only different metrics to evaluate
quality of different methods on task at hand, like accuracy
in classification, but also unified tools to assess efficiency
of methods in terms of training and inference throughput,
parameter size, and FLOPs.

In this Section, we present some imperial results show-
casing some of the baselines in SCENIC.

Table 1. Image classification models implemented in SCENIC.

Model Pretrain dataset ImageNet Top-1 GFLOPs Params(M)
ResNet-50 [13] - 77.08 3.97 25.5
MLP-Mixer-B/16 [30] - 76.14 12.7 59.8
ViT-B/16 [26] - 79.73 17.6 86.5
MLP-Mixer-L/16 ImageNet21K 80.23 12.7 59.8
ViT-L/16 ImageNet21K 84.30 17.6 86.5

Table 1 presents example baseline models for image
classification task that are implemented in SCENIC. The

full end-to-end upstream training and downstream fine-
tuning/evaluation code with support for data parallelism on
multi-host/multi-device is available for all SCENIC base-
lines. Note that for each of these baseline models, check-
points for different variants, in terms of size and configura-
tions, are publically available.

SCENIC contains many state-of-the-art models, along
with training/evaluation code as well as checkpoints for
tasks beyond classification and image modality. Table 2
provides a few examples showcasing the diversity of tasks
and modalities. These models are either originally de-
veloped in SCENIC and became the de facto baseline for
the task they address (e.g., ViViT), or carefully ported to
SCENIC to not only reproduce the original results but also
be efficient on different accelerators using JAX.

This has already enabled many researchers to build on
top of the existing SOTA models and try out new ideas on
different setups and modalities, which is one of the main
missions of SCENIC.

Table 2. Other models available in SCENIC. Full training and
evaluation code which reproduces the original results is publicly
available for all these models.

Model Modalities Task
DeTR [&] Image Object detection

Self-supervised pre-training,
BERT[11] Text GLUE/SuperGLUE benchmark
ViViT [6] Video Video classification
TokenLearner [25] Image, Video Image/Video classification
OmniNet [28] Image Image classification
PolyViT [19] Image, Audio, Video Image/Audio/Video classification

For each of the above methods as well as others im-
plemented in SCENIC, there is a dedicated README in the
GitHub repo of SCENIC, containing information about the
detailed configurations, experimental results, how to train,
how to evaluate, along with brief explanation of the meth-
ods and references.

5. Conclusion

Machine Learning (ML) infrastructure is a cornerstone
of ML research. Enabling researchers to quickly try out
new ideas, and to rapidly scale them up when they show
promise, accelerates research. Furthermore, history sug-
gests that methods that leverage the computation available
at the time are often the most effective [27]. SCENIC em-
bodies our experience of developing the best research in-
frastructure, and we are excited to share it with the broader
community. We hope to see many more brilliant ideas be-
ing developed using SCENIC, contributing to the amazing
progress made by the ML community for improving lives
through Al
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