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Figure 1. Image samples randomly generated by our method (256×256 resolution). Trained on unstructured image collections (FFHQ [25]
and Cats [67] in this figure), our method can generate view-controllable images that are of high quality (e.g., see the fine details) and strong
3D consistency (e.g., see the correct parallax when view changes). (Animations, more results and code can be found on the project page)

Abstract
3D-aware image generative modeling aims to generate

3D-consistent images with explicitly controllable camera
poses. Recent works have shown promising results by train-
ing neural radiance field (NeRF) generators on unstruc-
tured 2D images, but still cannot generate highly-realistic
images with fine details. A critical reason is that the high
memory and computation cost of volumetric representation
learning greatly restricts the number of point samples for
radiance integration during training. Deficient sampling
not only limits the expressive power of the generator to han-
dle fine details but also impedes effective GAN training due
to the noise caused by unstable Monte Carlo sampling. We
propose a novel approach that regulates point sampling and
radiance field learning on 2D manifolds, embodied as a set
of learned implicit surfaces in the 3D volume. For each
viewing ray, we calculate ray-surface intersections and ac-
cumulate their radiance generated by the network. By train-
ing and rendering such radiance manifolds, our generator
can produce high quality images with realistic fine details
and strong visual 3D consistency. 1

*Work done when YD and JX were interns at MSRA.
1Project page: https://yudeng.github.io/GRAM/

1. Introduction
Learning 3D-aware image generation with Generative

Adversarial Networks (GAN) [17] has attracted a surge of
attention in recent years [10–12,21,31,41,42,44,55]. Given
an unstructured 2D image collection, GANs are trained to
synthesize geometrically-consistent multiview imagery of
novel instances. In particular, methods [10, 21, 55] that
use the volumetric rendering paradigm [15, 24] to compos-
ite an output image have demonstrated impressive results
with more “strict” 3D consistency by virtue of an explicit,
physics-based rendering process.

Notwithstanding the promising results shown by these
methods, the image quality still lags far behind traditional
2D image synthesis, for which state-of-the-art GAN mod-
els [25, 26] can generate high-resolution and photorealis-
tic images. One prominent hurdle is the high computation
and memory requirements for training a volumetric repre-
sentation. Methods [10, 55] that use neural radiance field
(NeRF) [39] generators can greatly reduce the complexity
of voxel-based approaches [21], but the volume integrations
approximated by sampling points along viewing rays are
still costly for both training and inference.

This problem becomes even more pronounced in GAN
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training where a full image (rather than sparse pixels) needs
to be rendered to train the discriminator. One workaround
is to render patches during training [55], but using a patch
discriminator may lead to inferior image generation qual-
ity. With an image discriminator, the state-of-the art
method [10] can only afford training on smaller image res-
olution and with significantly reduced number of sampling
points per ray (typically a few dozens) compared to standard
NeRF [39]. However, we observed that radiance integration
using Monte Carlo sampling becomes unstable with insuffi-
cient samples. The integrated colors among adjacent pixels
suffer from intractable noise patterns that are detrimental to
GAN training (e.g., see Fig. 11). An even worse issue is that
optimizing a full radiance volume requires the sampling to
cover both low-frequency regions and high-frequency de-
tails, leading to even less sample budget for the latter. Con-
sequently, it is extremely difficult to generate fine details as
they simply can be missed by the sampling.

This paper presents a novel method named Generative
Radiance Manifolds (GRAM). Different from the previous
methods, we constrain our point sampling and radiance field
learning on 2D manifolds, embodied as a set of implicit sur-
faces. These implicit surfaces are shared for the trained ob-
ject category, jointly learned with GAN training, and fixed
at inference time. To generate an image, we accumulate the
radiance along each ray using ray-surface intersections as
point samples.

There are several advantages of our GRAM method.
First, by confining sampling and radiance learning in a re-
duced space rather than anywhere in the volume, it greatly
facilitates fine detail learning. The network can easily learn
to generate thin structures and texture details on the surface
manifolds which are guaranteed to have projections on the
image and receive supervision during GAN training. Be-
sides, our generated images are free from the noise pattern
caused by inadequate Monte Carlo sampling, as the ray-
surface intersections are deterministically calculated and
smoothly varying across rays. Even with very few point
samples (i.e., learning very few surfaces), our method can
still learn to generate high-quality results. As a byproduct,
at inference time we can render a generated instance in real
time by pre-extracting the surfaces with their radiance.

Our implicit surfaces are defined as a set of isosurfaces in
a scalar field predicted by a light-weight MLP network. An-
other MLP for radiance generation is employed, for which
we use a structure similar to [10]. We extract ray-surface in-
tersections in a differentiable manner, and the whole frame-
work is trained end-to-end using adversarial learning. Or-
thogonal to our novel radiance manifold design, we also
explore network architecture and training method enhance-
ments. In particular, we modify the network structure of
[10] inspired by [26] and remove the progressive growing
strategy used therein. Progressive growing not only in-

troduces additional hyperparameters to tune but may also
lead to degraded image quality shown in traditional 2D
GAN [26]. We also empirically find that our method gener-
ates better results by removing it.

Our method is evaluated on multiple datasets including
FFHQ [25], Cats [67], and CARLA [13, 55]. We show that
our 3D-aware generation method significantly outperforms
the prior art. It can synthesize highly realistic images with
geometrically-consistent fine details, which are unseen in
previous results. We believe our method makes a significant
step towards diminishing the quality gap between 3D-aware
generation and traditional 2D image generation.

2. Related Work
Neural scene representation and rendering. For scene
representation and synthesis, a large volume of works [5,
8, 14, 16, 23, 27, 29, 33, 40, 50, 59, 60, 62, 63, 71, 72] adopt
neural networks as a new type of rendering tool due to their
ability to synthesize high-quality images without requiring
excessive human labor. Among them, earlier works em-
ploy convolutional networks for a variety of applications
such as novel view synthesis [20,38,58,64], image-to-image
translation [7,49,50,65], and controllable image manipula-
tion [1, 4, 53, 68].

More recently, plenty of works [9, 37, 39, 45, 47, 54, 57,
59,66] leverage implicit neural representations to model 3D
scenes using Multi-Layer Perceptrons (MLP). The contin-
uous representation of MLPs brings them the superiority
at 3D-level control of image synthesis compared to con-
ventional CNN-based methods. Among these approaches,
NeRF [3, 39] shows promising results in capturing com-
plex scene structures and synthesizing 3D-consistent im-
ages with fine details. Most of the NeRF-based meth-
ods [32,35,46,48,52] focus on scene-specific learning tasks
where a network is trained to fit a set of posed images of a
certain scene. Only a few recent methods [10, 19, 44, 55]
work on the image generation task using unconstrained 2D
images for supervision. This paper proposes a new genera-
tive model for improving the image generation quality while
maintaining the 3D consistency of generated contents.

3D-Aware Image Generation. Given uncontrolled 2D
image collections, 3D-aware image generation methods aim
to learn a generative model that can explicitly control the
camera viewpoint of the generated content. To achieve this
goal, the literature mainly follows two directions. The first
line of works [18, 31, 41, 44, 69] utilize 3D-aware features
to represent a scene, and apply a neural renderer, typically
a CNN, on top of them for realistic image synthesis. For
example, HoloGAN [41] and BlockGAN [42] learn low-
resolution voxel features for objects, project them onto 2D
image plane, and apply a StyleGAN-like [25] CNN to gen-
erate higher-resolution images. Liao et al. [31] first gen-
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Figure 2. Overview of the GRAM method. The generator G consists of a manifold predictor M and a radiance generator Φ. M predicts
multiple isosurfaces which define the input domain of Φ. The intersections between camera rays and the isosurfaces are sent to Φ for color
and occupancy prediction. Images are then generated by compositing the color of the points along the ray.

erate 3D primitives using a 3D generator and then apply a
2D generator with an encoder-decoder structure on the pro-
jected features. Giraffe [44] and GANcraft [19] instead use
3D volumetric rendering to generate 2D feature maps for
the subsequent image generation. Following a similar idea,
some works concurrent to ours [18, 69] focus on designing
better rendering networks to enable 3D-aware image gen-
eration at very high resolution. Nevertheless, an inevitable
problem of these methods is the sacrifice of exact multi-
view consistency due to the learned black-box rendering.

Another group of works [10, 12, 43, 55, 56, 61] seek
to learn direct 3D representation of scenes and synthesize
images under physical-based rendering process to achieve
more strict 3D consistency. [61] and [56] adopt a mesh-
based representation and generate images via rasterization.
However, they cannot well handle complicated structures
with non-Lambertian reflectance such as hair and fur. Re-
cent methods [10, 12, 43, 55] use the NeRF representation
to synthesize images with high 3D consistency. Still, the
expensive computational cost of volumetric representation
learning prevents them from generating images with ade-
quate details. In this work, we propose a novel approach to
learn a generative radiance field on 2D manifolds, and we
achieve more realistic image generation with finer details
significantly outperforming the previous methods.

3. Approach
Given a collection of real images, we learn a 3D-aware

image generator G which takes a random noise z ∈ Rd ∼
pz and a camera pose θ ∈ R3 ∼ pθ as input, and outputs an
image I of a synthetic instance under pose θ:

G : (z,θ) ∈ Rd+3 → I ∈ RH×W×3. (1)

Figure 2 shows the overall structure of G, which consists of
a manifold predictor M and a radiance generator Φ. The
manifold predictor M defines a scalar field which derives a

reduced domain for radiance generation, which is composed
of multiple implicit isosurfaces (Sec. 3.1). Given a latent
code z, the radiance generator Φ generates the occupancy
and color for points on the manifolds (Sec. 3.2). Images
are then generated by integrating the color of the manifold
points along each viewing ray (Sec. 3.3). The whole method
is trained end-to-end in an adversarial learning framework
(Sec. 3.4). After training, GRAM can render high-quality
and 3D-consistent images from different viewpoints.

3.1. Manifold Predictor

Our manifold predictor M predicts a reduced space for
point sampling and radiance field learning, which is shared
across all generated instances. We implement it as a scalar
field function which determines a set of isosurfaces. Specif-
ically, M is a light-weight MLP which takes a point x as
input and predicts a scalar value s:

M : x ∈ R3 → s ∈ R. (2)

Given the predicted scalar field, we obtain N isosurfaces
{Si} with different levels {li}:

Si = {x|M(x) = li}. (3)

These levels are predefined constant values. Note that al-
though the scalar field is defined in the 3D volume of the
scene to be rendered, the scalar values per se have no phys-
ical meaning and the levels {li} can be trivially chosen.

We define the input domain of the radiance generator to
be on these surfaces. Let {xi} be the N intersections be-
tween a camera ray r = {o + td, t ∈ [tn, tf ]} and {Si}:

{xi} = {x|x = o+ td,x ∈ {Si}, t ∈ [tn, tf ]}, (4)

where o and d are ray origin and direction, and tn and tf are
the near plane and far plane parameters. We only pass {xi}
to the radiance generator Φ for radiance generation and fi-
nal rendering, as shown in Fig. 2. Since there is no prior
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Figure 3. Our differentiable ray-isosurface intersection computa-
tion, achieved by linear interpolation between two endpoints of a
small interval.

knowledge for optimal isosurfaces, we learn them jointly in
the generative adversarial training process.

Training the manifold predictor M with GAN neces-
sitates a differentiable scheme for ray-surface intersection
computation in order to backpropagate the adversarial loss.
To this end, we follow Niemeyer et al. [45]’s strategy to
calculate the intersections. As shown in Fig. 3, we evenly
sample points along a ray between the near and far planes
and feed them to M to obtain their values s. Then we search
for the first interval that a certain scalar level li falls in, and
calculate the intersection using linear interpolation between
the two endpoints of the interval via:

xi =
li − sa
sb − sa

xb +
sb − li
sb − sa

xa. (5)

We implement M as a light-weight MLP with 3 hidden lay-
ers, and thus dense points (64 points in our implementation)
can be sampled to get accurate intersections using Eq. (5).

Random initialization of M may give rise to highly ir-
regular isosurfaces which is unfavourable for the training
process. In this work, we adopt the geometric initialization
strategy proposed by Atzmon et al. [2] with which the initial
isosurfaces are close to spheres.

3.2. Radiance Generator

Given a latent code z, our radiance generator Φ gen-
erates the radiance for points lying on the learned mani-
folds. Specifically, Φ is parameterized by an MLP which
produces the occupancy α and color c = (R,G,B) for a
point x ∈ R3 with view direction d:

Φ : (z,x,d) ∈ Rd+6 → (c, α) ∈ R4. (6)

Since radiance is defined on surface manifolds instead of
the whole volume in our method, we generate occupancy α
instead of volume density σ in NeRF, following [46, 70].

The network structure of Φ is adapted from the FiLM
SIREN backbone of [10] with some modifications, as pre-
sented in Fig. 4. Inspired by StyleGAN2 [26], we use skip
connections between output layers at different levels instead
of only predicting occupancy and color at the final layer as
done in previous methods [10, 39]. In this way, different
levels of details are now predicted by different output lay-
ers and combined together to form the final results. This
change not only removes the necessity of the progressive
growing strategy used in previous methods, but also yields
better results in our method as shown in the experiments.
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Figure 4. The network structure of radiance generator Φ.

3.3. Manifold Rendering

For a camera ray r which intersects the surface man-
ifolds at points {xi} sorted from near to far following
Eq. (4), the rendering equation can be written as [46, 70]:

C(r) =

N∑
i=1

T (xi)α(xi)c(xi,d)

=

N∑
i=1

∏
j<i

(1− α(xj))α(xi)c(xi,d).

(7)

Our rendering scheme is clearly different from the orig-
inal volume rendering in NeRF which applies a hierarchi-
cal random sampling strategy (NeRF-H). NeRF-H’s sam-
pling points may vary significantly across adjacent rays due
to sampling randomness, resulting in noise patterns on the
rendered image (see Fig. 11). By contrast, we only use
intersections between camera rays and surface manifolds
which are deterministically calculated and smoothly vary-
ing across rays, instead of selecting points in the whole vol-
ume space in a Monte Carlo fashion. This helps us elimi-
nate the randomness in image generation and enable train-
ing a generator with fewer point samples per ray. Moreover,
it greatly facilitates fine detail learning as high-frequency
structures and textures can be easily generated on the sur-
face manifolds (see Table 2 and Table 3).

3.4. Training Strategy

At training stage, we randomly sample latent code z and
camera pose θ from prior distributions pz and pθ. The
generator G synthesizes images with corresponding latent
codes and poses as input. We also sample real images from
the training data with prior distribution preal. As in stan-
dard GAN [17], a discriminator D receives the generated
images as well as real images and judge if they are fake or
real, for which we use the same CNN structure as in [10].
We train all the networks, including the manifold predictor
M, the radiance generator Φ and the discriminator D, using
non-saturating GAN loss with R1 regularization [36]:
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Figure 5. Uncurated 256× 256 image samples of human face and cat generated by our method.

L(D,G) =Ez∼pz,θ∼pθ
[f(D(G(z,θ)))]

+ EI∼preal
[f(−D(I)) + λ||∇D(I)||2],

(8)

where f(u) = log(1 + exp(u)) is the Softplus function.
In addition, we find that for certain objects, the training

process with only adversarial loss is sometimes sensitive
to random initialization. In a few occasions, the learned
3D geometry of convex objects could become concave (see
suppl. material). To tackle this issue, we can optionally
add a pose regularization term to enforce the generator to
generate images under correct pose:

Lpose =Ez∼pz,θ∼pθ
||Dp(G(z,θ))− θ||2

+ EI∼preal
||Dp(I)− θ̂||2,

(9)

where Dp is an additional branch of the discriminator D

that predicts the camera pose of a given image, and θ̂ is the
pose label of a real image. We find that this loss can also
slightly improve the image generation quality for objects
without the concave geometry issue observed.

4. Experiments
Implementation details. We use three datasets for evalu-
ation: FFHQ [25], Cats [67], and CARLA [13, 55], which

contain 70K high-resolution face images, 10K cat images
with various resolutions, and 10K synthetic car images of
16 car models, respectively. For all experiments, we use the
Adam optimizer [28], and the learning rates are set to 2e−5
for the generator and 2e−4 for the discriminator. The mod-
els are trained on 8 NVIDIA Tesla V100 GPUs with 32GB
memory. More details can be found in the suppl. material.

4.1. Generation Results

Some random image samples generated by our method
are shown in Fig. 1, 5, and 9. For face and cat, the model
is trained with 2562 resolution and 24 manifold surfaces
(i.e., 24 point samples per ray). For the car images, we
train on 1282 resolution and use 48 manifold surfaces. As
we can see, GRAM is able to generate high-quality images
with fine details. Moreover, it allows an explicit control
of camera viewpoint and achieves highly consistent results
across different views. It even maintains strong visual 3D
consistency for very thin structures such as bangs of hair,
eyeglass, and whiskers of cat, which show correct parallax
corresponding to realistic 3D geometry. Note that 3D con-
sistency is best viewed with animations, which can be found
on our project page.
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Figure 6. Initial (top) and final (bottom) surface manifolds learned
on three datasets. Eight evenly-sampled surfaces are visualized
here. To show the relative position of the surfaces in the 3D object
space, we also visualize an extracted 3D shape for reference.
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Figure 7. Visualization of generated radiance on the surface mani-
folds. Eight evenly sampled surfaces from front to back are shown.

Visualization of surface manifolds. Figure 6 shows the
learned surface manifolds on the three datasets. Initially,
the surfaces have near-spherical shapes and are positioned
across the whole volume. After training, the surfaces for
face and cat are tightened and exhibit small curvatures. The
surfaces for car are also tightened but maintain a curving
structure that covers the car geometry. The face and cat im-
ages from FFHQ [25] and Cats [67] only have small angle
variations; most of them are nearly frontal. In this case,
near-planar surfaces are enough to render a generated in-
stance. In contrast, the camera viewpoints of the car images
from CARLA [55] are uniformly distributed on the upper
hemisphere (i.e., 360◦ azimuth and 90◦ elevation angles).
Such a wide viewpoint range necessities curved surfaces to
ensure good rendering results from different views.

Figure 7 shows the radiance predicted on the manifolds
with two examples. We evenly sample surfaces from front
to back and render the color patterns on them with their
contribution to the final image as opacity. As shown in the
figures, the network is able to learn high-frequency details
and thin structures (e.g. whiskers) on the manifolds.
Visualization of 3D geometry. Although our method
confines the input domain of the radiance field on 2D man-

Figure 8. Extracted proxy 3D shapes of the generated instances.

ifolds, we can still extract proxy 3D shapes of the gener-
ated objects using the volume-based marching cubes algo-
rithm [34]. Figure 8 shows the proxy 3D shapes of several
generated instances. It can be observed that our method pro-
duces high-quality geometry with detailed structures well
depicted, which is the key to achieve strong visual 3D con-
sistency across different views for not only low-frequency
regions but also fine details.

4.2. Comparison with Previous Methods

We compare GRAM with three state-of-the-art 3D-
aware image generation approaches: GRAF [55], pi-
GAN [10], and GIRAFFE [44]. Experiments are conducted
using the official implementation provided by the authors.
For GRAF and GIRAFFE, we modify the camera pose dis-
tribution according to different datasets, and leave other
configurations unchanged. For pi-GAN, we follow the au-
thors’ settings that use 24, 48, and 96 sampling points for
FFHQ, Cats, and CARLA respectively, for both training and
testing. Note that for our method, we use 24 surfaces for
FFHQ and Cats, and 48 surfaces for CARLA.

We further compare GRAM with a face-specific con-
trollable image generation approach: DiscofaceGAN [11],
which uses a 2D CNN as the generator and achieves pose
control with the guidance of a prior 3D face model [51].

Qualitative comparison. Figure 9 shows the visual com-
parison between GRAM and other methods. As we can see,
GRAF and pi-GAN struggle to generate high-frequency de-
tails such as the texture of hair and fur. GIRAFFE produces
images with finer details, but it suffers from 3D inconsis-
tency (e.g., see hair region of the woman) due to the use of
a CNN renderer . Our method achieves the best visual qual-
ity with realistic details and remarkable 3D consistency. See
the suppl. material and our project page for more results.

Figure 10 shows the qualitative comparison between
GRAM and DiscofaceGAN. While DiscofaceGAN can
generate realistic face images and explicitly control their
camera poses, it cannot well maintain the 3D consistency
(e.g., see the bangs). By contrast, GRAM achieves strong
3D consistency under comparable generation quality with-
out requiring extra 3D face priors.
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Figure 10. Qualitative comparison with a controllable face image
generation method DiscofaceGAN. (Best viewed with zoom-in)

Quantitative comparison. We evaluate the image quality
using the Fréchet Inception Distances (FID) [22] and Kernel
Inception Distances (KID) [6] between 20K randomly gen-
erated images and 20K sampled real images. Table 1 shows
that we significantly improve the two metrics compared to
GRAF and pi-GAN, which also use NeRF generators. We
even achieve lower FID and KID compare to GIRAFFE
which applies a refinement CNN after the NeRF rendering
to achieve better image quality. GIRAFFE is trained on a
single GPU following its original implementation.

4.3. Ablation Study

We further conduct ablation study to validate the efficacy
of our method designs. For efficiency, all experiments are
conducted on FFHQ with 1282 resolution. Unless otherwise
specified, we use 24 points per ray for these experiments.

Sampling methods. We compare our manifold sampling
strategy with several baseline methods as shown in Table 2.
NeRF-H is the original hierarchical sampling strategy used
in NeRF [39] and pi-GAN [10]. Planes denotes using inter-
sections between camera rays and multiple parallel planes
placed across the volume. Spherical (init) denotes sphere-

Table 1. Quantitative comparisons on three datasets using FID
and KID×100 between 20K generated images and 20K real im-
ages. Results of StyleGAN2 [26] are included for reference. †:
Evaluated using pre-trained models provided by the authors.

FFHQ 2562 Cats 2562 CARLA 1282

Methods FID KID FID KID FID KID
StyleGAN2 6.97 0.17 8.41 0.32 10.4 0.47

GRAF 73.0 5.89 59.5 4.59 32.1† 1.84†

pi-GAN 55.2 4.13 53.7 4.35 36.0† 2.08†

GIRAFFE 32.6† 2.24† 20.7 1.14 1051 7.19
Ours 17.9 0.84 14.6 0.75 26.3 1.15

like surfaces obtained from the geometric initialization [2]
and fixed during training. Compare to the alternatives, our
learnable manifolds yield the best image quality in terms
of FID metrics. NeRF-H has a large performance gap
with the others, indicating its deficiency under limited sam-
ple points. Our method outperforms Planes and Spherical
(init), which demonstrates the advantage of using learnable
surfaces that can better fit the trained object category.

Number of surface manifolds. We further evaluate the
generation quality of GRAM when training with different
number of surfaces. For a reference, we also train models
using the hierarchical sampling strategy NeRF-H with same
number of sampling points for each ray. Table 3 shows that
our method can generate high quality results using as few as
6 surfaces, and adding more gradually improves the qual-
ity. In contrast, training with NeRF-H largely fails with less
than 12 points as indicated by the high FIDs, due to the dif-
ficulty to handle high-frequency details as well as the noise

1We tried our best to train GIRAFFE on CARLA using multiple differ-
ent settings and report the best result we obtained.
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Table 2. Ablation study on different point sampling strategies (24
points used for each ray; 12 coarse and 12 fine points for NeRF-H)

NeRF-H [10, 39] Planes Spherical (init) Ours
FID 5K 35.4 28.3 27.8 25.8

Table 3. Ablation study on number of sampling points per ray.

Number of points 6 12 24 36 48

FID 5K
NeRF-H [10, 39] 117 62.6 35.4 32.9 30.0

Ours 27.4 27.0 25.8 25.8 25.2

Table 4. Ablation study on pose regularization.

Real pose NeRF-H [10, 39] Ours

FID 5K
% 44.4 26.4
! 35.4 25.8

Table 5. Ablation study on training strategy and network structure.

Base - PG + Skip (Ours)
FID 5K 30.6 28.8 25.8

brought by inadequate sampling (Fig. 11). Even using 48
points, its generation quality is still worse than ours with 6
surfaces. In addition, it tends to learn unreasonable geome-
try with concave human foreheads, which rarely happens in
our case (see the suppl. material for visual results).
Influence of pose regularization. Table 4 shows the ef-
fect of using pose labels of real images in Eq. (9) during
training. For human face, our method produces slightly bet-
ter results using the real pose regularization. In contrast, the
hierarchical sampling strategy is unstable without real pose
as guidance, leading to much worse results.
Training strategy and network structure. As shown in
Table 5, we first train our GRAM model with the net-
work structure proposed in [10] and the progressive grow-
ing strategy from 322 resolution following [10], which is the
Base setting. Then we switch to the non-progressive grow-
ing strategy by training a model from scratch using 1282

resolution. Finally, we add skip connections in the network
structure as depicted in Fig. 4. The improvements on FID
clearly demonstrate the advantages of our design.

4.4. Applications

Image embedding and editing. GAN inversion is nat-
urally supported by our GRAM method. Given an in-
put image, we can first embed it into the learned latent
space and then freely move the camera viewpoint to syn-
thesize images at novel views. As shown in Fig. 12, we
achieve 3D-consistent view manipulation of the embedded
images. Thin structures such as hair look natural under
camera movements, which has not been shown in the previ-
ous methods. See suppl. material for more details.
Real-time view synthesis. For objects generated by
GRAM, we can achieve real-time free-view rendering

NeRF‐H Ours

12 points 24 points 12 points 24 points

Figure 11. Images generated using NeRF-H [10,39] sampling con-
tain noise patterns under limited point samples whereas ours are
noise-free. (Best viewed with zoom-in)

Input Inversion Pose change ‐ Background

Figure 12. Image embedding and editing results.

thanks to our radiance manifold design. Spefically, we pre-
extract the surface manifolds using marching cubes [34] and
store the radiance on them. With an efficient mesh raster-
izer [30], we achieve 180FPS free-view rendering of 2562

images on a Nvidia Tesla V100 GPU.

5. Conclusions
We presented a novel approach for 3D-aware image gen-

eration. The core idea is to regulate point sampling and
radiance learning on 2D manifolds for the radiance genera-
tor. Extensive experiments have shown its superiority over
previous methods on both generation quality and 3D con-
sistency. We believe our method takes a large step towards
generating 3D-aware virtual contents for real applications.

Ethics consideration. Our goal is to generate images of
virtual objects. We condemn any behavior to create mis-
leading or harmful contents of real person. Our method can
be used to create training data for forgery detection.

Limitations and future works. Under constrained sam-
pling budgets, our shared surfaces across the whole class
can cause certain artifacts (see suppl. material) and limit
our method to object categories sharing similar geometry.
It may not well handle complex 3D scenes of multiple sub-
jects with diverse structures. Learning instance-specific
manifolds is a possible solution in the future. Besides, the
generation quality and speed of GRAM still falls behind tra-
ditional 2D GANs. Better representations could be explored
to further improve the fidelity and efficiency.
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[6] Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and
Arthur Gretton. Demystifying mmd gans. In International
Conference on Learning Representations, 2018. 7

[7] Konstantinos Bousmalis, Nathan Silberman, David Dohan,
Dumitru Erhan, and Dilip Krishnan. Unsupervised pixel-
level domain adaptation with generative adversarial net-
works. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 3722–3731, 2017. 2

[8] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
In International Conference on Learning Representations,
2019. 2

[9] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt,
Julian Straub, Steven Lovegrove, and Richard Newcombe.
Deep local shapes: Learning local sdf priors for detailed 3d
reconstruction. In European Conference on Computer Vi-
sion, pages 608–625, 2020. 2

[10] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-gan: Periodic implicit gener-
ative adversarial networks for 3d-aware image synthesis.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5799–5809, 2021. 1, 2, 3, 4, 6, 7, 8

[11] Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin
Tong. Disentangled and controllable face image generation
via 3D imitative-contrastive learning. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
5154–5163, 2020. 1, 6

[12] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava,
Graham W Taylor, and Joshua M Susskind. Unconstrained
scene generation with locally conditioned radiance fields. In
IEEE/CVF International Conference on Computer Vision,
2021. 1, 3

[13] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. Carla: An open urban driving

simulator. In Conference on Robot Learning, pages 1–16,
2017. 2, 5

[14] Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim
Tatarchenko, and Thomas Brox. Learning to generate
chairs, tables and cars with convolutional networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
39(4):692–705, 2016. 2

[15] Robert A Drebin, Loren Carpenter, and Pat Hanrahan. Vol-
ume rendering. ACM SIGGRAPH, 22(4):65–74, 1988. 1

[16] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse,
Fabio Viola, Ari S Morcos, Marta Garnelo, Avraham Ru-
derman, Andrei A Rusu, Ivo Danihelka, Karol Gregor,
et al. Neural scene representation and rendering. Science,
360(6394):1204–1210, 2018. 2

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
Neural Information Processing Systems, 27, 2014. 1, 4

[18] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian
Theobalt. Stylenerf: A style-based 3d-aware genera-
tor for high-resolution image synthesis. arXiv preprint
arXiv:2110.08985, 2021. 2, 3

[19] Zekun Hao, Arun Mallya, Serge Belongie, and Ming-Yu Liu.
Gancraft: Unsupervised 3d neural rendering of minecraft
worlds. In IEEE/CVF International Conference on Com-
puter Vision, 2021. 2, 3

[20] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions
on Graphics, 37(6):1–15, 2018. 2

[21] Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Es-
caping plato’s cave: 3d shape from adversarial rendering.
In IEEE/CVF International Conference on Computer Vision,
pages 9984–9993, 2019. 1

[22] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Advances in Neural Information Processing Sys-
tems, pages 6626–6637, 2017. 7

[23] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 1125–1134, 2017. 2

[24] James T Kajiya and Brian P Von Herzen. Ray tracing volume
densities. ACM SIGGRAPH, 18(3):165–174, 1984. 1

[25] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4401–4410, 2019. 1, 2, 5, 6

[26] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8110–
8119, 2020. 1, 2, 4, 7

[27] Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng
Xu, Justus Thies, Matthias Niessner, Patrick Pérez, Christian
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