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Abstract

The goal of image style transfer is to render an image
with artistic features guided by a style reference while
maintaining the original content. Owing to the locality
in convolutional neural networks (CNNs), extracting and
maintaining the global information of input images is
difficult. Therefore, traditional neural style transfer methods
face biased content representation. To address this critical
issue, we take long-range dependencies of input images into
account for image style transfer by proposing a transformer-
based approach called StyTr2. In contrast with visual
transformers for other vision tasks, StyTr2 contains two
different transformer encoders to generate domain-specific
sequences for content and style, respectively. Following the
encoders, a multi-layer transformer decoder is adopted to
stylize the content sequence according to the style sequence.
We also analyze the deficiency of existing positional encoding
methods and propose the content-aware positional encoding
(CAPE), which is scale-invariant and more suitable for
image style transfer tasks. Qualitative and quantitative
experiments demonstrate the effectiveness of the proposed
StyTr2 compared with state-of-the-art CNN-based and flow-
based approaches. Code and models are available at
https://github.com/diyiiyiii/StyTR-2.

1. Introduction

Image style transfer is an interesting and practical
research topic that can render a content image using a
referenced style image. Based on texture synthesis, tra-
ditional style transfer methods [5, 18] can generate vivid
stylized images, but are computationally complex due to
the formulation of stroke appearance and painting process.
Afterward, researchers focus on neural style transfer based
on convolutional neural networks (CNNs). Optimization-
based style transfer methods [19, 31, 47] render the input
content images with learned style representation iteratively.
Following the encoder-transfer-decoder pipeline, arbitrary
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Figure 1. Comparisons of intermediate layers using the leftmost
image as the input content and the style reference in a style transfer
task. (a) Feature visualizations of a pretrained VGG based on Gatys
et al. [19]. (b) Feature visualizations of our transformer decoder.

style transfer networks [2, 3, 22, 29, 30, 33, 38, 52, 54] are
optimized by aligning second-order statistics of content
images to style images and can generate stylized results in
a feed-forward manner efficiently. However, these methods
cannot achieve satisfactory results in some cases due to the
limited ability to model the relationship between content
and style. To overcome this issue, several recent methods
[13, 14, 35, 39, 63] apply a self-attention mechanism for
improved stylization results.

The aforementioned style transfer methods utilize CNNs
to learn style and content representations. Owing to the
limited receptive field of convolution operation, CNNs
cannot capture long-range dependencies without sufficient
layers. However, the increment of network depth could
cause the loss of feature resolution and fine details [24]. The
missing details can damage the stylization results in aspects
of content structure preservation and style display. As shown
in Fig. 1(a), some details are omitted in the process of
convolutional feature extraction. An et al. [1] recently show
that typical CNN-based style transfer methods are biased
toward content representation by visualizing the content leak
of the stylization process, i.e., after repeating several rounds
of stylization operations, the extracted structures of input
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content will change drastically.
With the success of transformer [51] in natural language

processing (NLP), transformer-based architectures have been
adopted in various vision tasks. The charm of applying
transformer to computer vision lies in two aspects. First,
it is free to learn the global information of the input with
the help of the self-attention mechanism. Thus, a holistic
understanding can be easily obtained within each layer.
Second, the transformer architecture models relationships
in input shapes [41], and different layers extract similar
structural information [46] (see Fig. 1(b)). Therefore,
transformer has a strong representation capability to capture
precise content representation and avoid fine detail missing.
Thus, the generated structures can be well-preserved.

In this work, we aim to eliminate the biased representation
issue of CNN-based style transfer methods and propose a
novel image Style Transfer Transformer framework called
StyTr

2. Different from the original transformer, we design
two transformer-based encoders in our StyTr2 framework to
obtain domain-specific information. Following the encoders,
the transformer decoder is used to progressively generate the
output sequences of image patches. Furthermore, towards
the positional encoding methods that are proposed for NLP,
we raise two considerations: (1) different from sentences
ordered by logic, the image sequence tokens are associated
with semantic information of the image content; (2) for the
style transfer task, we aim to generate stylized images of any
resolution. The exponential increase in image resolution will
lead to a significant change of positional encoding, leading
to large position deviation and inferior output quality. In
general, a desired positional encoding for vision tasks should
be conditioned on input content while being invariant to
image scale transformation. Therefore, we propose a content-
aware positional encoding scheme (CAPE) which learns the
positional encoding based on image semantic features and
dynamically expands the position to accommodate different
image sizes.

In summary, our main contributions include:

• A transformer-based style transfer framework called
StyTr2, to generate stylization results with well-preserved
structures and details of the input content image.

• A content-aware positional encoding scheme that is scale-
invariant and suitable for style transfer tasks.

• Comprehensive experiments showing that StyTr2 outper-
forms baseline methods and achieves outstanding results
with desirable content structures and style patterns.

2. Related Work

Image style transfer. Gatys et al. [19] find that hierarchi-
cal layers in CNNs can be used to extract image content
structures and style texture information and propose an

optimization-based method to generate stylized images itera-
tively. Some approaches [25, 28] adopt an end-to-end model
to achieve real-time style transfer for one specific style. For
more efficient applications, [7, 17, 32] combine multiple
styles in one model and achieve outstanding stylization
results. More generally, arbitrary style transfer gains more
attention in recent years. Huang et al. [22] propose an
adaptive instance normalization (AdaIN) to replace the mean
and variance of content with that of style. AdaIN is widely
adopted in image generation tasks [2,21,26,33,52] to fuse the
content and style features. Li et al. [29] design a whiten and
colorization transformation (WCT) to align the second-order
statistics of content and style features. Moreover, many
methods [1, 50, 57] also aim at promoting the generation
effect in the premise of efficiency. Based on the CNNs
model, [13, 14, 35, 39, 56] introduce self-attention to the
encoder-transfer-decoder framework for better feature fusion.
Chen et al. [9] propose an Internal-External Style Transfer
algorithm (IEST) containing two types of contrastive loss,
which can produce a harmonious and satisfactory stylization
effect. However, existing encoder-transfer-decoder style
transfer methods cannot handle the long-range dependencies
and may lead to missing details.

Transformer for vision tasks. As an alternative to recur-
rent and convolutional neural networks, transformer [51]
is first proposed for machine translation tasks and has
been widely used in various NLP tasks [4, 11, 15, 36, 43,
44]. Inspired by the breakthrough of transformer in NLP,
many researchers have developed vision transformers for
various image/video related tasks [60], including object
detection [6, 12, 65], semantic segmentation [53, 64], image
classification [10, 16, 37, 55, 61], image processing and
generation [8, 10, 24]. Compared with fully convolutional
networks, transformer-based networks can capture long-term
dependencies of the input image by using self-attention
mechanisms. In this paper, we introduce transformer-based
structures for style transfer tasks which can be seen as
sequence-to-sequence generation of image patches.

Positional encoding. Positional encoding is commonly
used in transformer-based models to provide position in-
formation. There are two types of positional encoding
are used: functional and parametric positional encoding.
Functional positional encoding is calculated by pre-defined
functions, such as sinusoidal functions [51]. Parametric
positional encoding is learned via model training [15]. To
ensure translational-invariance for the transformers, relative
positional encoding [20, 45, 48, 62] considers the distance
between tokens in the image sequence. [59] and [23] further
include positional encoding in CNN-based models as spatial
inductive. In this paper, we propose a content-aware
positional encoding mechanism that is scale-invariant and
more suitable for image generation tasks.
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Figure 2. Overall pipeline of our StyTr2 framework. We split the content and style images into patches and use a linear projection to obtain
patch sequences. Then, the content sequences added with CAPE are fed into a content transformer encoder, while the style sequences are fed
into a style transformer encoder. Following the two transformer encoders, a multi-layer transformer decoder is adopted to stylize the content
sequences according to the style sequences. Finally, we use a progressive upsampling decoder to obtain the final output.

3. Our Method

To leverage the capability of transformers to capture long-
range dependencies of image features for style transfer, we
formulate the problem as a sequential patch generation task.
Given a content image Ic 2 RH⇥W⇥3 and a style image
Is 2 RH⇥W⇥3, we split both images into patches (similar
to tokens in NLP tasks) and use a linear projection layer to
project input patches into a sequential feature embedding E
in a shape of L ⇥ C, where L = H⇥W

m⇥m
is the length of E ,

m = 8 is the patch size and C is the dimension of E . The
overall structure of our framework is shown in Fig. 2.

3.1. Content-Aware Positional Encoding

When using a transformer-based model, the positional
encoding (PE) should be included in the input sequence
to acquire structural information. According to [51], the
attention score of the i-th patch and the j-th patch is
computed as:

Ai,j =((Ei + Pi)Wq)
T ((Ej + Pj)Wk)

=W
T

q
ET

i
EjWk +W

T

q
ET

i
PjWk

+W
T

q
PT

i
EjWk +W

T

q
PT

i
PjWk,

(1)

where Wq and Wk are parameter matrices for query and key
calculation, and Pi presents the i-th one-dimensional PE. In
2D cases, the positional relative relation between the patch
at a pixel (xi, yi) and the patch at a pixel (xj , yj) is:

P(xi, yi)
TP(xj , yj)

=

d
4�1X

k=0

[cos(wk(xj � xi)) + cos(wk(yj � yi))],
(2)

where wk = 1/100002k/128, d = 512. The positional
relative relation between two patches only depends on
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Figure 3. Schematic diagram of content-aware positional encoding.

their spatial distance. Accordingly, we raise two important
questions. First, for an image generation task, should
we take image semantics into account when calculating
PE? Traditional PE is designed for sentences ordered
by logic, but image patches are organized based on the
content. We denote the distance between two patches as
d(·, ·). On the right-hand side of Fig. 3(a), the difference
between d((x0, y3), (x1, y3)) (the red and green patches)
and d((x0, y3), (x3, y3)) (the red and cyan patches) should
be small because we expect similar content patches to
have similar stylization results. Second, is the traditional
sinusoidal positional encoding still suitable for vision tasks
when the input image size expands exponentially? As shown
in Fig. 3(a), when an image is resized, the relative distance
between patches (depicted by small blue rectangles) in the
same locations can change dramatically, which may be not
suitable for multi-scale methods in vision tasks.

To this end, we propose content-aware positional encod-
ing (CAPE), which is scale-invariant and more suitable for
style transfer tasks. Different from sinusoidal PE which
only considers the relative distance of patches, CAPE is
conditioned on the semantics of image content. We assume
that using n⇥n positional encodings is adequate to represent
the semantics of an image. For an image I 2 RH⇥W⇥3, we
rescale the fixed n ⇥ n positional encoding to H

m
⇥ W

m
, as
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shown in Fig. 3(b). In this way, various image scales will
not influence the spatial relation between two patches. The
CAPE of patch (x, y), namely, PCA(x, y), is formulated as

PL = Fpos(AvgPool
n⇥n

(E)),

PCA(x, y) =
sX

k=0

sX

l=0

(aklPL(xk, yl)),
(3)

where AvgPool
n⇥n

is the average pooling function, Fpos is
1⇥1 convolution operation used as a learnable positional en-
coding function, PL is learnable PE following the sequence
E , n is set to 18 in our experiments, akl is the interpolation
weight, and s is the number of neighboring patches. Lastly,
we add PCAi to Ei as the final feature embedding of the i-th
patch at a pixel location (x, y).

3.2. Style Transfer Transformer

Transformer encoder. We capture long-range dependen-
cies of image patches by using transformer based structure
to learn sequential visual representations. Different from
other vision tasks [6,8,12], the input of the style transfer task
comes from two different domains, corresponding to natural
images and artistic paintings, respectively. Therefore, StyTr2
has two transformer encoders to encode domain-specific
features, which are used to translate a sequence from one
domain to another in the next stage.

Given the embedding of an input content sequence Zc =
{Ec1 + PCA1, Ec2 + PCA2, ..., EcL + PCAL}, we first feed
it into the transformer encoder. Each layer of the encoder
consists of a multi-head self-attention module (MSA) and a
feed-forward network (FFN). The input sequence is encoded
into query (Q), key (K), and value (V ):

Q = ZcWq, K = ZcWk, V = ZcWv, (4)

where Wq,Wk,Wv 2 RC⇥dhead . The multi-head attention
is then calculated by

FMSA(Q,K, V ) = Concat(Attention1(Q,K, V ),

. . . ,AttentionN (Q,K, V ))Wo,
(5)

where Wo 2 RC⇥C are learnable parameters, N is the
number of attention heads, and dhead = C

N
. The residual

connections are applied to obtain the encoded content
sequence Yc:

Y
0
c
= FMSA(Q,K, V ) +Q,

Yc = FFFN(Y
0
c
) + Y

0
c
,

(6)

where FFFN(Y 0
c
) = max(0, Y 0

c
W1 + b1)W2 + b2. Layer

normalization (LN) is applied after each block [51].
Similarly, the embedding of an input style sequence

Zs = {Es1, Es2, ..., EsL} is encoded into a sequence Ys

following the same calculation process, except that positional
encoding is not considered because we do not need to
maintain structures of the input style in the final output.

Transformer decoder. Our transformer decoder is used to
translate the encoded content sequence Yc according to the
encoded style sequence Ys in a regressive fashion. Different
from the auto-regressive process in NLP tasks, we take all
the sequential patches as input at one time to predict the
output. As shown in Fig. 3(a), each transformer decoder
layer contains two MSA layers and one FFN. The input
of our transformer decoder includes the encoded content
sequence, i.e., Ŷc = {Yc1 + PCA1, Yc2 + PCA2, ..., YcL +
PCAl}, and the style sequence Ys = {Ys1, Ys2, ..., YsL}. We
use the content sequence to generate the query Q, and use
the style sequence to generate the key K and the value V :

Q = ŶcWq, K = YsWk, V = YsWv. (7)

Then, the output sequence X of the transformer decoder can
be calculated by

X
00 = FMSA(Q,K, V ) +Q,

X
0 = FMSA(X

00 + PCA,K, V ) +X
00
,

X = FFFN(X
0) +X

0
.

(8)

Layer normalization (LN) is also applied at the end of each
block [51].

CNN decoder. The output sequence X of the transformer
is in a shape of HW

64 ⇥C. Instead of directly upsampling the
output sequence to construct the final results, we use a three-
layer CNN decoder to refine the outputs of the transformer
decoder following [64]. For each layer, we expand the scale
by adopting a series of operations including 3⇥ 3 Conv +
ReLU + 2 ⇥ Upsample. Finally, we can obtain the final
results in a resolution of H ⇥W ⇥ 3.

3.3. Network Optimization

The generated results should maintain the original content
structures and the reference style patterns. Therefore, we
construct two different perceptual loss terms to measure the
content difference between the output image Io and the input
content image Ic, as well as the style difference between Io

and the input style reference Is.
We use feature maps extracted by a pretrained VGG

model to construct the content loss and the style loss
following [1, 22]. The content perceptual loss Lc is defined
as

Lc =
1

Nl

NlX

i=0

k�i(Io)� �i(Ic)k2, (9)

where �i(·) denotes features extracted from the i-th layer in
a pretrained VGG19 and Nl is the number of layers.
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Resolution Ours StyleFormer IEST AdaAttN ArtFlow MCC MAST AAMS SANet Avatar AdaIN

256 ⇥ 256 0.116 0.013 0.065 0.104 0.142 0.013 0.030 2.074 0.015 0.260 0.007

512 ⇥ 512 0.661 0.026 0.092 0.213 0.418 0.015 0.096 2.173 0.019 0.470 0.008

Table 1. Average inference time (in seconds) of different methods at two output resolutions.

The style perceptual loss Ls is defined as

Ls =
1

Nl

NlX

i=0

kµ(�i(Io))� µ(�i(Is))k2

+ k�(�i(Io))� �(�i(Is))k2,

(10)

where µ(·) and �(·) denote the mean and variance of
extracted features, respectively.

We also adopt identity loss [39] to learn richer and more
accurate content and style representations. Specifically, we
take two of the same content (style) images into StyTr2, and
the generated output Icc(Iss) should be identical to the input
Ic(Is). Therefore, we compute two identity loss terms to
measure the differences between Ic(Is) and Icc(Iss):

Lid1 = kIcc � Ick2+kIss � Isk2,

Lid2 =
1

Nl

NlX

i=0

k�i(Icc)� �i(Ic)k2+k�i(Iss)� �i(Is)k2.

(11)

The entire network is optimized by minimizing the following
function:

L = �cLc + �sLs + �id1Lid1 + �id2Lid2. (12)

We set �c, �s, �id1, and �id2 to 10, 7, 50, and 1 to alleviate
the impact of magnitude differences.

4. Experiments

4.1. Implementation Details

MS-COCO [34] is used as the content dataset and
WikiArt [42] is used as the style dataset. In the training stage,
all the images are randomly cropped into a fixed resolution
of 256 ⇥ 256, while any image resolution is supported at
the test time. We adopt the Adam optimizer [27] and the
learning rate is set to 0.0005 using the warm-up adjustment
strategy [58]. We set the batch size to be 8 and train our
network with 160, 000 iterations.

4.2. Comparisons with SOTA Methods

We compare our method with AdaIN [22], Avater [49],
SANet [39], AAMS [63], MAST [14], MCC [13], Art-
Flow [1], AdaAttN [35], IEST [9], and StyleFormer [56].
AdaIN, Avater, SANet, AAMS, and MAST are typical CNN-
based image stylization approaches. MCC [13] is a video

style transfer method but can be applied to images without
damaging the generated results. ArtFlow [1] designs a flow-
based network to minimize image reconstruction error and
recovery bias. AdaAttN [35] performs attentive normaliza-
tion on a per-point basis for feature distribution alignment.
IEST [9] takes advantage of contrastive learning and external
memory to boost visual quality. StyleFormer [56] adopts
the transformer mechanism into the traditional CNN-based
encoder-decoder pipeline. By contrast, we present a pure
transformer-based architecture to solve the issue of missing
content details caused by convolutions.

Timing information. Our model is trained on two
NVIDIA Tesla P100 GPUs and two NVIDIA GeForce
RTX 3090 GPUs for approximately one day. In Table 1,
we compare the inference time of different style transfer
methods under two output resolutions using one Tesla P100.

Qualitative evaluation. Fig. 4 shows the visual results of
qualitative comparisons. Owing to the simplified alignment
of mean and variance, the results of AdaIN [22] have
insufficient style patterns. The stylized images present crack
artifacts that affect the overall transfer quality. AAMS [63]
focuses on the main structure (referring to salient regions
in the attention map) of the content image but ignores the
other parts. Therefore, the secondary structures are not
well maintained. The patch-swap-based method leads to
artifacts of over-blurry output. MCC [13] uses a transform
formulation of self-attention, but the absence of non-linear
operation limiting the maximum value of network output
results in an overflow issue around object boundaries.
The flow-based model has limited capability of feature
representation, thus the results of ArtFlow [1] generally have
the problem of insufficient or inaccurate style. The border
of stylized images may present undesirable patterns due to
numerical overflow. The per-point basis of AdaAttN [35]
leads to style degeneration, thus the stylized patterns in
the generated results are not consistent with the input
reference. The visual quality of IEST [9] outperforms other
approaches. However, the style of generated results may
not be consistent with the input style reference (the 1st and
3rd rows). Following the CNN-based “encoder-decoder”
pipeline, results of StyleFormer [56] still tend to missing
details. By contrast, StyTr2 leverages a transformer-based
network, which has better feature representation to capture
long-range dependencies of input image features and to avoid
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StyleFormerContentStyle AdaINAvatarSANetAAMSOurs MASTMCCArtFlowAdaAttNIEST

Figure 4. Qualitative comparisons of style transfer results using different methods.

Ours StyleFormer IEST AdaAttN ArtFlow MCC MAST AAMS SANet Avatar AdaIN

Lc # 1.91 2.86 1.97 2.29 2.13 2.38 2.46 2.44 2.44 2.84 2.34

Ls # 1.47 2.91 3.47 2.45 3.08 1.56 1.55 3.18 1.18 2.86 1.91

Table 2. Quantitative comparisons. We compute the average content and style loss values of results by different methods to measure how
well the input content and style are preserved.The best results are in bold while the second-best results are marked with an underline.

missing of content and style details. Therefore, our results
can achieve well-preserved content structures and desirable
style patterns.

Quantitative evaluation. We calculate the content differ-
ence between the generated results and input content images
as well as the style difference between the generated results
and input style images, as two indirect metrics of the style
transfer quality. Intuitively, the smaller the difference the
better the input content/style is preserved. We randomly
select 40 style images and 20 content images to generate 800
stylized images. For each method, we compute the content
difference based on Eq. (9) and calculate the style difference
following Eq. (10). Table 2 shows the corresponding
quantitative results. Overall, our method achieves the lowest
content losses and IEST [9] is the second-best. However, as
discussed in the qualitative evaluation above, the style loss of
IEST is the highest because the style appearance of generated
results is not far from the input style reference. In terms
of style loss, SANet [39] and StyTr2 outperform the other

methods. Therefore, our results can effectively preserve both
the input content and the reference style simultaneously.

4.3. Analysis of Content Leak

The content leak issue usually occurs in the stylization
process because CNN-based feature representation may not
sufficiently capture details in the image content. This type
of artifact is easy to spot by human eyes after repeating
several rounds of the same stylization process [1], which is
formulated by

I
i

o
= Gi(. . . G2(G1(Ic, Is), Is) . . . , Is), (13)

where Gi is the generator for the i-th round and I
i

o
is the

corresponding stylization result. To solve the content leak
problem, An et al. [1] propose a reversible network to
replace CNN-based models. However, strict reversibility
may not be suitable for generation tasks [40]. Furthermore,
the robustness and generated visual effects of ArtFlow
may be downgraded due to limited capability of feature
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Figure 5. Visualization of the content leak issue. Top/bottom: results after running the same stylization process using a certain method after
the 1st and the 20th round, respectively.

representation. By contrast, we leverage the capability
of transformer-based architecture to capture long-range
dependencies. Thus, our method can significantly alleviate
the content leak issue.

We compare StyTr2 with CNN-based methods and
flow-based model ArtFlow [1]. Fig. 5 demonstrates the
corresponding results after the 1st and the 20th rounds of
the repeating stylization process. As shown in the top row,
the content structures generated by CNN-based methods
after the first round are damaged to various degrees, but our
result still presents clear content details. Although the results
generated by ArtFlow maintain clear content structures, the
stylized effect is not satisfactory (e.g., the marginal flaws
and inappropriate style patterns). The bottom row of Fig. 5
shows that with increasing rounds of the stylization process,
the content structures generated by CNN-based methods
tend to be blurry, while the content structures generated by
our method remain distinct. The same problem applies to
StyleFormer, which also relies on the CNN-based encoder-
decoder pipeline. Therefore, our model captures precise
content representation leading to superior style transfer
results while effectively alleviating the content leak issue.

4.4. Analysis of CAPE

As described in Section 3.1, when calculating PE, we
should take the semantic information of content images into
account. To compare the proposed CAPE with sinusoidal
PE which is not semantics-aware, we show two cases where
the input content image has repetitive patterns or is simply
collaged by repeating one image four times. As shown in
Fig. 6, we can observe inconsistent stylized regions in the
final results when using sinusoidal PE. The input resolution
is set to be 256 ⇥ 256, which is the same as the image
resolution for training.

Moreover, handling input resolution different from the
training examples is generally challenging for a learning-
based method. To this end, an ideal PE for vision tasks
should be scale-invariant, but a drastic change of image
resolution leads to a significant difference in traditional
PE. We compare our CAPE with sinusoidal PE in Fig. 7.
In the third row, the input size is 512 ⇥ 512, which is
twice the image resolution for training. Consequently,
the results present vertical track artifacts due to the large

Content Style Sinusoidal PE CAPE

Figure 6. Comparisons of sinusoidal PE and CAPE using content
images with repetitive patterns.

positional deviation. In the second row, the input resolution
is 256 ⇥ 256, which is the same as the training data. The
corresponding results do not have the issue of vertical tracks
but are not satisfactory due to the small resolution. By
contrast, our method supports any input resolution with
CAPE by design. Therefore, our results in the last row
of Fig. 7 present clear content structures and proper stylized
patterns. Additional ablation studies are provided in our
supplementary materials.

To verify whether CAPE could provide position infor-
mation, we show CAPEs with different inputs in Fig. 8.
Although two CAPEs are not the same, they have similar
encoding behaviors such as highlighted diagonal, repeat,
and periodic patterns as learnable PE [16] and sinusoidal
PE. Different from learnable PE where the encoding is
conditioned on the whole dataset, our CAPE dynamically
encodes different input and thus can easily generalize to
various resolutions.

4.5. User study

We conduct a user study to further compare our method.
AdaAttN [35], ArtFlow [1], MCC [13], AAMS [63] and
AdaIN [22] are selected as baselines. We reuse the images
in the quantitative comparison and invite 100 participants to
evaluate the results of different approaches. The participants
are informed of the purpose and details of our user study. The
participants comprise 52 males and 48 females, in the age
range of 19⇠45. Given a content image and a style image,
we show the result generated by our approach and the output
from another randomly selected method for comparison and
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Figure 7. Comparisons of sinusoidal PE and CAPE using content images with two different resolutions.

Learnable PE Sinusoidal PE CAPE
Figure 8. Normalized attention scores of different types of PE.

ask the user to choose (1) which result has better stylization
effects (2) which stylization result preserves the content
structures better and (3) which stylization result transfers
the style patterns more consistently. No time limit is given
for the selection process, but the assessment time should be
longer than 30 seconds for each question. Each participant
conducts 40 rounds of comparisons and we collect 4, 000
votes for each question. We count the votes that existing
methods are preferred to ours and show the statistical results
in Table 3. Our method is superior to other approaches in
all three criteria of overall quality, content preservation, and
style consistency.

5. Conclusion

In this work, we propose a novel framework called
StyTr2, for image style transfer. Our StyTr2 includes a
content transformer encoder and a style transformer encoder
to capture domain-specific long-range information. A
transformer decoder is developed to translate the content

AdaAttN ArtFlow MCC AAMS AdaIN

Overall 44.8% 25.7% 25.5% 18.2% 23.5%

Content 45.7% 28.3% 20.6% 19.4% 31.7%

Style 23.6% 16.7% 27.8% 14.8% 13.5%

Table 3. User study results. Each number represents the percentage
of votes that the corresponding method is preferred to ours, using
the criteria of overall quality, preservation of content and style,
respectively.

sequences based on the reference style sequences. We also
propose a content-aware positional encoding scheme that is
semantics-aware and is suitable for scale-invariant visual
generation tasks. As the first baseline for style transfer
using a visual transformer, StyTr2 alleviates the content leak
problem of CNN-based models and provides fresh insight
into the challenging style transfer problem. At present, the
test-time speed of our method is not as fast as some CNN-
based approaches. Incorporating some priors from CNNs
to speed up the computation would be an interesting future
direction.
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