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Abstract

Despite most existing anomaly detection studies assume
the availability of normal training samples only, a few la-
beled anomaly examples are often available in many real-
world applications, such as defect samples identified during
random quality inspection, lesion images confirmed by radi-
ologists in daily medical screening, etc. These anomaly ex-
amples provide valuable knowledge about the application-
specific abnormality, enabling significantly improved detec-
tion of similar anomalies in some recent models. However,
those anomalies seen during training often do not illus-
trate every possible class of anomaly, rendering these mod-
els ineffective in generalizing to unseen anomaly classes.
This paper tackles open-set supervised anomaly detection,
in which we learn detection models using the anomaly ex-
amples with the objective to detect both seen anomalies
(‘gray swans’) and unseen anomalies (‘black swans’). We
propose a novel approach that learns disentangled repre-
sentations of abnormalities illustrated by seen anomalies,
pseudo anomalies, and latent residual anomalies (i.e., sam-
ples that have unusual residuals compared to the normal
data in a latent space), with the last two abnormalities de-
signed to detect unseen anomalies. Extensive experiments
on nine real-world anomaly detection datasets show supe-
rior performance of our model in detecting seen and unseen
anomalies under diverse settings. Code and data are avail-
able at: https://github.com/choubo/DRA

1. Introduction
Anomaly detection (AD) aims at identifying excep-

tional samples that do not conform to expected patterns

[35]. It has broad applications in diverse domains, e.g., le-

sion detection in medical image analysis [48, 56, 70], in-

specting micro-cracks/defects in industrial inspection [3,4],

crime/accident detection in video surveillance [11, 20, 51,

69], and unknown object detection in autonomous driv-

ing [10, 55]. Most of existing anomaly detection methods
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Figure 1. t-SNE visualization of features learned by SotA unsu-

pervised (KDAD [46]) and supervised (DevNet [34, 36]) models,

and our open-set supervised model (DRA) on the test data of two

MVTec AD datasets, Leather and Tile. KDAD is trained with nor-

mal data only, learning less discriminative features than DevNet

and DRA that are trained using ten samples from the seen anomaly

classes, in addition to the normal data. DevNet is prone to over-

fitting the seen anomalies, failing to distinguish unseen anomalies

from the normal data, while DRA effectively mitigates this issue.

[2,8,11,13,32,38,38,41,43,45,46,48,57–59,68,73] are un-

supervised, which assume the availability of normal train-

ing samples only, i.e., anomaly-free training data, because it

is difficult, if not impossible, to collect large-scale anomaly

data. However, a small number of (e.g., one to multiple)

labeled anomaly examples are often available in many rel-

evant real-world applications, such as some defect sam-

ples identified during random quality inspection, lesion im-

ages confirmed by radiologists in daily medical screening,

etc. These anomaly examples provide valuable knowledge

about application-specific abnormality [29, 34, 36, 44], but

the unsupervised detectors are unable to utilize them. Due

to the lack of knowledge about anomalies, the learned fea-

tures in unsupervised models are not discriminative enough

to distinguish anomalies (especially some challenging ones)

from normal data, as illustrated by the results of KDAD

[46], a recent state-of-the-art (SotA) unsupervised method,

on two MVTec AD defect detection datasets [3] in Fig. 1.

In recent years, there have been some studies [29, 34,

36,44] exploring a supervised detection paradigm that aims

at exploiting those small, readily accessible anomaly data—

rare but previously occurred exceptional cases/events, a.k.a.
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gray swans [22] – to train anomaly-informed detection

models. The current methods in this line focus on fitting

these anomaly examples using one-class metric learning

with the anomalies as negative samples [29,44] or one-sided

anomaly-focused deviation loss [34,36]. Despite the limited

amount of the anomaly data, they achieve largely improved

performance in detecting anomalies that are similar to the

anomaly examples seen during training. However, these

seen anomalies often do not illustrate every possible class

of anomaly because i) anomalies per se are unknown and

ii) the seen and unseen anomaly classes can differ largely

from each other [35], e.g., the defective features of color

stains are very different from that of folds and cuts in leather

defect inspection. Consequently, these models can overfit

the seen anomalies, failing to generalize to unseen/unknown

anomaly classes—rare and previously unknown exceptional

cases/events, a.k.a. black swans [54], as shown by the re-

sult of DevNet [34, 36] in Fig. 1 where DevNet improves

over KDAD in detecting the seen anomalies but fails to

discriminate unseen anomalies from normal samples. In

fact, these supervised models can be biased by the given

anomaly examples and become less effective in detecting

unseen anomalies than unsupervised detectors (see DevNet

vs. KDAD on the Tile dataset in Fig. 1).

To address this issue, this paper tackles open-set su-

pervised anomaly detection, in which detection models

are trained using the small anomaly examples in an open-

set environment, i.e., the objective is to detect both seen

anomalies (‘gray swans’) and unseen anomalies (‘black

swans’). To this end, we propose a novel anomaly de-

tection approach, termed DRA, that learns disentangled
representations of abnormalities to enable the generalized

detection. Particularly, we disentangle the unbounded ab-

normalities into three general categories: anomalies similar

to the limited seen anomalies, anomalies that are similar to

pseudo anomalies created from data augmentation or exter-

nal data sources, and unseen anomalies that are detectable

in some latent residual-based composite feature spaces. We

further devise a multi-head network, with separate heads

enforced to learn each type of these three disentangled ab-

normalities. In doing so, our model learns diversified ab-

normality representations rather than only the known ab-

normality, which can discriminate both seen and unseen

anomalies from the normal data, as shown in Fig. 1.

In summary, we make the following main contributions:

• To tackle open-set supervised AD, we propose to

learn disentangled representations of abnormalities il-

lustrated by seen anomalies, pseudo anomalies, and

latent residual-based anomalies. This learns diversi-

fied abnormality representations, extending the set of

anomalies sought to both seen and unseen anomalies.

• We propose a novel multi-head neural network-based

model DRA to learn the disentangled abnormality rep-

resentations, with each head dedicated to capturing one

specific type of abnormality.

• We further introduce a latent residual-based abnor-

mality learning module that learns abnormality upon

the residuals between the intermediate feature maps

of normal and abnormal samples. This helps learn

discriminative composite features for the detection of

hard anomalies (e.g., unseen anomalies) that cannot be

detected in the original non-composite feature space.

• We perform comprehensive experiments on nine real-

application datasets from industrial inspection, rover-

based planetary exploration and medical image analy-

sis. The results show that our model substantially out-

performs five SotA competing models in diverse set-

tings. The results also establish new baselines for fu-

ture work in this important emerging direction.

2. Related Work
Unsupervised Approaches. Most existing anomaly de-

tection methods, such as autoencoder-base methods [13,

18, 38, 71, 73], GAN-base methods [39, 45, 48, 68], self-

supervised methods [2, 11, 12, 25, 50, 56, 60], and one-class

classification methods [7,8,40,43], assume that only normal

data can be accessed during training. Although they do not

have the risk of biasing towards the seen anomalies, they

are difficult to distinguish anomalies from normal samples

due to the lack of knowledge about true anomalies.

Supervised Approaches. A recently emerging direction

focuses on supervised (or semi-supervised) anomaly detec-

tion that alleviates the lack of anomaly information by lever-

aging small anomaly examples to learn anomaly-informed

models. This is achieved by one-class metric learning with

the anomalies as negative samples [14, 29, 33, 44] or one-

sided anomaly-focused deviation loss [34,36,70]. However,

these models rely heavily on the seen anomalies and can

overfit the known abnormality. A reinforcement learning

approach is introduced in [37] to mitigate this overfitting is-

sue, but it assumes the availability of large-scale unlabeled

data and the presence of unseen anomalies in those data.

Supervised anomaly detection is similar to imbalanced clas-

sification [6,15,30] in that they both detect rare classes with

a few labeled examples. However, due to the unbound na-

ture and unknowingness of anomalies, anomaly detection is

inherently an open-set task, while the imbalanced classifi-

cation task is typically formulated as a closed-set problem.

Learning In- and Out-of-distribution. Out-of-

distribution (OOD) detection [16, 17, 19, 28, 42, 67] and

open-set recognition [1, 29, 47, 65, 72] are related tasks to

ours. However, they aim at guaranteeing accurate multi-

class inlier classification while detecting OOD/uncertain

samples, whereas our task is focused on anomaly detection

exclusively. Further, despite the use of pseudo anomalies
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Figure 2. Overview of our proposed framework. (a) presents the high-level procedure of learning three disentangled abnormalities, (b)

shows the abnormality feature learning in the plain (non-composite) feature space for the seen and pseudo abnormality learning heads, and

(c) shows the framework of our proposed latent residual abnormality learning in a composite feature space.

like outlier exposure [17, 19] shows effective performance,

the current models in these two tasks are also assumed to be

inaccessible to any true anomalous samples.

3. Proposed Approach
Problem Statement The studied problem, open-set su-

pervised AD, can be formally stated as follows. Given a

set of training samples X = {xi}N+M
i=1 , in which Xn =

{x1,x2, · · · ,xN} is the normal sample set and Xa =
{xN+1,xN+2, · · · ,xN+M} (M � N ) is a very small set

of annotated anomalies that provide some knowledge about

true anomalies, and the M anomalies belong to the seen

anomaly classes S ⊂ C, where C = {ci}|C|i=1 denotes the

set of all possible anomaly classes, and then the goal is to

detect both seen and unseen anomaly classes by learning

an anomaly scoring function g : X → R that assigns larger

anomaly scores to both seen and unseen anomalies than nor-

mal samples.

3.1. Overview of Our Approach

Our proposed approach DRA is designed to learn dis-

entangled representations of diverse abnormalities to effec-

tively detect both seen and unseen anomalies. The learned

abnormality representations include the seen abnormality il-

lustrated by the limited given anomaly examples, and the

unseen abnormalities illustrated by pseudo anomalies and

latent residual anomalies (i.e., samples that have unusual

residuals compared to normal examples in a learned fea-

ture space). In doing so, DRA mitigates the issue of bias-

ing towards seen anomalies and learns generalized detection

models. The high-level overview of our proposed frame-

work is provided in Fig. 2a, which is composed of three

main modules, including seen, pseudo, and latent residual

abnormality learning heads. The first two heads learn ab-

normality representations in a plain (non-composite) fea-

ture space, as shown in Fig. 2b, while the last head learns

composite abnormality representations by looking into the

deviation of the residual features of input samples to some

reference (i.e., normal) images in a learned feature space,

as shown in Fig. 2c. Particularly, given a feature extrac-

tion network f : X → M for extracting the intermediate

feature map M ∈ M ⊂ R
c′×h′×w′

from a training im-

age x ∈ X ⊂ R
c×h×w, and a set of abnormality learning

heads G = {gi}|G|i=1, where each head g : M → R learns an

anomaly score for one type of abnormality, then the overall

objective of DRA can be given as follows:

argmin
Θ

|G|∑
i=1

�i
(
gi(f(x; Θf ); Θi), yx

)
, (1)

where Θ contains all weight parameters, yx denotes the su-

pervision information of x, and �i denotes a loss function

for one head. The feature network f is jointly optimized by

all the downstream abnormality learning heads, while these

heads are independent from each other in learning the spe-

cific abnormality. Below we introduce each head in detail.

3.2. Learning Disentangled Abnormalities

Abnormality Learning with Seen Anomalies. Most

real-world anomalies have only some subtle differences

from normal images, sharing most of the common fea-

tures with normal images. Patch-wise anomaly learning

[4, 34, 59, 64] that learns anomaly scores for each small

image patch has shown impressive performance in tack-

ling this issue. Motivated by this, DRA utilizes a top-K
multiple-instance-learning (MIL) -based method in [34] to

effectively learn the seen abnormality. As shown in Fig. 2b,

for the feature map Mx of each input image x, we generate

pixel-wise vector representations D = {di}h
′×w′

i=1 , each of

which corresponds to the feature vector of a small patch of

the input image. These patch-wise representations are then

mapped to learn the anomaly scores of the image patches

by an anomaly classifier gs : D → R. Since only selective

image patches contain abnormal features, we utilize an op-
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timization using top-K MIL to learn an anomaly score for

an image based on the K most anomalous image patches,

with the loss function defined as follows:

�s(x, yx) = �
(
gs(Mx; Θs), yx

)
, (2)

where � is a binary classification loss function; yx = 1 if

x is a seen anomaly, and yx = 0 if x is a normal sample

otherwise; and

gs(Mx; Θs) = max
ΨK(Mx)⊂D

1

K

∑
di∈ΨK(Mx)

gs(di; Θs) (3)

where ΨK(Mx) is a set of K vectors that have the largest

anomaly scores among all vectors in Mx. Abnormality
Learning with Pseudo Anomalies. We further design a

separate head to learn abnormalities that are different from

the seen anomalies and simulate some possible classes of

unseen anomaly. There are two effective methods to create

such pseudo anomalies, including data augmentation-based

methods [25,53] and outlier exposure [17,41]. Particularly,

for the data augmentation-based method, we adapt the pop-

ular method CutMix [66] to generate pseudo anomalies x̃
from normal images xn for training, which is defined as

follows:

x̃ = T ◦ C(R� xn) +
(
1− T (R)

)� xn (4)

where R ∈ {0, 1}h×w denotes a binary mask of random

rectangle, 1 is an all-ones matrix, � is element-wise multi-

plication, T (·) is a randomly translate transformation, and

C(·) is a random color jitter. As shown in Fig. 2a, the

pseudo abnormality learning uses the same architecture and

anomaly scoring method as the seen abnormality learning

to learn fine-grained pseudo abnormal features:

�p(x, yx) = �
(
gp(Mx; Θp), yx

)
, (5)

where yx = 1 if x is a pseudo anomaly, i.e., x = x̃, and

yx = 0 if x is a normal sample otherwise; and gp(Mx; Θp)
is exactly the same as gs in Eq. (3), but gp is trained in a

separate head with different anomaly data and parameters

from gs to learn the pseudo abnormality. As discussed in

Secs. 4.1 and 4.6, the outlier exposure method [17] is used

in anomaly detection on medical datasets. In such cases,

the pseudo anomalies x̃ are samples randomly drawn from

external data instead of creating from Eq. (4).

Abnormality Learning with Latent Residual Anoma-
lies. Some anomalies, such as previously unknown anoma-

lies that share no common abnormal features with the seen

anomalies and have only small difference to the normal

samples, are difficult to detect by using only the features of

the anomalies themselves, but they can be easily detected

in a high-order composite feature space provided that the

composite features are more discriminative. As anomalies

are characterized by their difference from normal data, we

utilize the difference between the features of the anomalies

and normal feature representations to learn such discrimi-

native composite features. More specifically, we propose

the latent residual abnormality learning that learns anomaly

scores of samples based on their feature residuals compar-

ing to the features of some reference images (normal im-

ages) in a learned feature space. As shown in Fig. 2c, to

obtain the latent feature residuals, we first use a small set of

images randomly drawn from the normal data as the refer-

ence data, and compute the mean of their feature maps to

obtain the reference normal feature map:

Mr =
1

Nr

Nr∑
i=1

f(xri ; Θf ), (6)

where xri is a reference normal image, and Nr is a hyper-

parameter that represents the size of the reference set. For a

given training image x, we perform element-wise subtrac-

tion between its feature map Mx and the reference normal

feature map Mr that is fixed for all training and testing sam-

ples, resulting in a residual feature map Mr�x for x:

Mr�x = Mr �Mx, (7)

where � denotes element-wise subtraction. We then per-

form an anomaly classification upon these residual features:

�r(x, yx) = �
(
gr(Mr�x; Θr), yx

)
, (8)

where yx = 1 if x is a seen/pseudo anomaly, and yx = 0 if

x is a normal sample otherwise. Again, gr uses exactly the

same method to obtain the anomaly score as gs in Eq. 3, but

it is trained in a separate head with the parameters Θr using

different training inputs, i.e., residual feature map Mr�x.

Since the gs, gp and gr heads focus on learning the ab-

normality representations, the jointly learned feature map in

f does not well model the normal features. To address this

issue, we add a separate normality learning head as follows:

�n(x, yx) = �
(
gn

( 1

h′ × w′

h′×w′∑
i=1

di; Θn

)
, yx

)
, (9)

where gn : D → R is a fully-connected binary anomaly

classifier that discriminates normal samples from all seen

and pseudo anomalies. Unlike abnormal features that are

often fine-grained local features, normal features are holis-

tic global features. Hence, gn does not use the top-K MIL-

based anomaly scoring as in other heads and learns holistic

normal scores instead.

Training and Inference. During training, the feature

mapping network f is shared and jointly trained by all the

four heads gs, gp, gr and gn. These four heads are indepen-

dent from each other, and so their parameters are not shared
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and independently optimized. A loss function called devia-

tion loss [34,36] is used to implement the loss function � in

all our heads by default, as it enables generally more stable

and effective performance than other loss functions such as

cross entropy loss or focal loss (see Appendix C.2). Dur-

ing inference, given a test image, we sum of all the scores

from the abnormality learning heads (gs, gp and gr) and

minus the score from the normality head gn to obtain its

anomaly score.

4. Experiments
Datasets Many studies evaluate their models on syn-

thetic anomaly detection datasets converted from popu-

lar image classification benchmarks, such as MNIST [24],

Fashion-MNIST [63], CIFAR-10 [23], using one-vs-all or

one-vs-one protocols. This conversion results in clearly dis-

parate anomalies from normal samples. However, anoma-

lies and normal samples in real-world applications, such as

industrial defect inspection and lesion detection in med-

ical images, typically have only subtle/small difference.

Motivated by this, following [25, 34, 64], we focus on

datasets with natural anomalies rather than one-vs-all/one-

vs-one based synthetic anomalies. Particularly, nine di-

verse datasets with real anomalies are used in our experi-

ments, including five industrial defect inspection datasets:

MVTec AD [3], AITEX [49], SDD [52], ELPV [9] and

Optical [62], in which we aim to inspect defective image

samples; one planetary exploration dataset: Mastcam [21]

in which we aim to identify geologically-interesting/novel

images taken by Mars exploration rovers; and three med-

ical image datasets for detecting lesions on different or-

gans: BrainMRI [46], HeadCT [46] and Hyper-Kvasir
[5]. These datasets are popular benchmarks in the respec-

tive research domains and recently emerging as important

benchmarks for anomaly detection [4, 18, 34, 46, 64] (see

Appendix A for detailed introduction of these datasets).

4.1. Implementation Details

DRA uses ResNet-18 as the feature learning backbone.

All its heads are jointly trained using 30 epochs, with 20

iterations per epoch and a batch size of 48. Adam is used

for the parameter optimization using an initial learning rate

10−3 with a weight decay of 10−2. The top-K MIL in DRA

is the same as that in DevNet [34], i.e., K in the top-K
MIL is set to 10% of the number of all scores per score

map. Nr = 5 is used by default in the residual anomaly

learning (see Sec. 4.6). The pseudo abnormality learning

uses CutMix [66] to create pseudo anomaly samples on all

datasets except the three medical datasets, on which DRA

uses external data from another medical dataset LAG [26]

as the pseudo anomaly source (see Sec. 4.6).

Our model DRA is compared to five recent and closely

related state-of-the-art (SotA) methods, including MLEP

[29], deviation network (DevNet) [34, 36], SAOE (com-

bining data augmentation-based Synthetic Anomalies [25,

31, 53] with Outlier Exposure [17, 41]), unsupervised

anomaly detector KDAD [46], and focal loss-driven classi-

fier (FLOS) [27] (See Appendix C.1 for comparison with

two other methods [44,61]). MLEP and DevNet address the

same open-set AD problem as ours. KDAD is a recent un-

supervised AD method that works on normal training data

only. It is commonly assumed that unsupervised detectors

are more preferable than the supervised ones in detecting

unseen anomalies, as the latter may bias towards the seen

anomalies. Motivated by this, KDAD is used as a base-

line. The implementation of DevNet and KDAD is taken

from their authors. MLEP is adapted to the image task with

the same setting as DRA. SAOE utilizes pseudo anomalies

from both data augmentation-based and outlier exposure-

based methods, outperforming the individuals that use one

of these anomaly creation methods. FLOS is an imbalanced

classifier trained with focal loss. For a fair comparison, all

competing methods use the same network backbone (i.e.,

ResNet-18) as DRA except KDAD that requires its own

special network architecture to perform training and infer-

ence. Further implementation details of DRA and its com-

peting methods are provided in Appendix B.

4.2. Experiment Protocols

We use the following two experiment protocols:

General setting simulates a general scenario of open-set

AD, where the given anomaly examples are a few samples

randomly drawn from all possible anomaly classes in the

test set per dataset. These sampled anomalies are then re-

moved from the test data. This is to replicate real-world

applications where we cannot determine which anomaly

classes are known and how many anomaly classes the given

anomaly examples span. Thus, the datasets can contain both

seen and unseen anomaly classes, or only the seen anomaly

classes, depending on the underlying complexity of the ap-

plications (e.g., the number of all possible anomaly classes).

Hard setting is designed to exclusively evaluate the

performance of the models in detecting unseen anomaly

classes, which is the very key challenge in open-set AD.

To this end, the anomaly example sampling is limited to be

drawn from one single anomaly class only, and all anomaly

samples in this anomaly class are removed from the test

set to ensure that the test set contains only unseen anomaly

classes. Note that this setting is only applicable to datasets

with no less than two anomaly classes.

As labeled anomalies are difficult to obtain due to their

rareness and unknowingness, in both settings we use only

very limited labeled anomalies, i.e., with the number of the

given anomaly examples respectively fixed to one and ten.

The popular performance metric, Area Under ROC Curve

(AUC), is used. Each model yields an anomaly ranking,
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Table 1. AUC results (mean±std) on nine real-world AD datasets under the general setting. The first 15 datasets are data subsets of MVTec

AD whose results are the averaged results over these subsets. The supervised methods are trained using one or ten random anomaly

examples, with the best results in red and the second-best in blue. KDAD is treated as a baseline. |C| is the number of anomaly classes.

Dataset |C| Baseline One Training Anomaly Example Ten Training Anomaly Examples
KDAD DevNet FLOS SAOE MLEP DRA (Ours) DevNet FLOS SAOE MLEP DRA (Ours)

Carpet 5 0.774±0.005 0.746±0.076 0.755±0.026 0.766±0.098 0.701±0.091 0.859±0.023 0.867±0.040 0.780±0.009 0.755±0.136 0.781±0.049 0.940±0.027

Grid 5 0.749±0.017 0.891±0.040 0.871±0.076 0.921±0.032 0.839±0.028 0.972±0.011 0.967±0.021 0.966±0.005 0.952±0.011 0.980±0.009 0.987±0.009

Leather 5 0.948±0.005 0.873±0.026 0.791±0.057 0.996±0.007 0.781±0.020 0.989±0.005 0.999±0.001 0.993±0.004 1.000±0.000 0.813±0.158 1.000±0.000

Tile 5 0.911±0.010 0.752±0.038 0.787±0.038 0.935±0.034 0.927±0.036 0.965±0.015 0.987±0.005 0.952±0.010 0.944±0.013 0.988±0.009 0.994±0.006

Wood 5 0.940±0.004 0.900±0.068 0.927±0.065 0.948±0.009 0.660±0.142 0.985±0.011 0.999±0.001 1.000±0.000 0.976±0.031 0.999±0.002 0.998±0.001

Bottle 3 0.992±0.002 0.976±0.006 0.975±0.023 0.989±0.019 0.927±0.090 1.000±0.000 0.993±0.008 0.995±0.002 0.998±0.003 0.981±0.004 1.000±0.000

Capsule 5 0.775±0.019 0.564±0.032 0.666±0.020 0.611±0.109 0.558±0.075 0.631±0.056 0.865±0.057 0.902±0.017 0.850±0.054 0.818±0.063 0.935±0.022

Pill 7 0.824±0.006 0.769±0.017 0.745±0.064 0.652±0.078 0.656±0.061 0.832±0.034 0.866±0.038 0.929±0.012 0.872±0.049 0.845±0.048 0.904±0.024

Transistor 4 0.805±0.013 0.722±0.032 0.709±0.041 0.680±0.182 0.695±0.124 0.668±0.068 0.924±0.027 0.862±0.037 0.860±0.053 0.927±0.043 0.915±0.025

Zipper 7 0.927±0.018 0.922±0.018 0.885±0.033 0.970±0.033 0.856±0.086 0.984±0.016 0.990±0.009 0.990±0.008 0.995±0.004 0.965±0.002 1.000±0.000

Cable 8 0.880±0.002 0.783±0.058 0.790±0.039 0.819±0.060 0.688±0.017 0.876±0.012 0.892±0.020 0.890±0.063 0.862±0.022 0.857±0.062 0.909±0.011

Hazelnut 4 0.984±0.001 0.979±0.010 0.976±0.021 0.961±0.042 0.704±0.090 0.977±0.030 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

Metal nut 4 0.743±0.013 0.876±0.007 0.930±0.022 0.922±0.033 0.878±0.038 0.948±0.046 0.991±0.006 0.984±0.004 0.976±0.013 0.974±0.009 0.997±0.002

Screw 5 0.805±0.021 0.399±0.187 0.337±0.091 0.653±0.074 0.675±0.294 0.903±0.064 0.970±0.015 0.940±0.017 0.975±0.023 0.899±0.039 0.977±0.009

Toothbrush 1 0.863±0.029 0.753±0.027 0.731±0.028 0.686±0.110 0.617±0.058 0.650±0.029 0.860±0.066 0.900±0.008 0.865±0.062 0.783±0.048 0.826±0.021

MVTec AD - 0.861±0.009 0.794±0.014 0.792±0.014 0.834±0.007 0.744±0.019 0.883±0.008 0.945±0.004 0.939±0.007 0.926±0.010 0.907±0.005 0.959±0.003

AITEX 12 0.576±0.002 0.598±0.070 0.538±0.073 0.675±0.094 0.564±0.055 0.692±0.124 0.887±0.013 0.841±0.049 0.874±0.024 0.867±0.037 0.893±0.017

SDD 1 0.888±0.005 0.881±0.009 0.840±0.043 0.781±0.009 0.811±0.045 0.859±0.014 0.988±0.006 0.967±0.018 0.955±0.020 0.983±0.013 0.991±0.005

ELPV 2 0.744±0.001 0.514±0.076 0.457±0.056 0.635±0.092 0.578±0.062 0.675±0.024 0.846±0.022 0.818±0.032 0.793±0.047 0.794±0.047 0.845±0.013

Optical 1 0.579±0.002 0.523±0.003 0.518±0.003 0.815±0.014 0.516±0.009 0.888±0.012 0.782±0.065 0.720±0.055 0.941±0.013 0.740±0.039 0.965±0.006

Mastcam 11 0.642±0.007 0.595±0.016 0.542±0.017 0.662±0.018 0.625±0.045 0.692±0.058 0.790±0.021 0.703±0.029 0.810±0.029 0.798±0.026 0.848±0.008

BrainMRI 1 0.733±0.016 0.694±0.004 0.693±0.036 0.531±0.060 0.632±0.017 0.744±0.004 0.958±0.012 0.955±0.011 0.900±0.041 0.959±0.011 0.970±0.003

HeadCT 1 0.793±0.017 0.742±0.076 0.698±0.092 0.597±0.022 0.758±0.038 0.796±0.105 0.982±0.009 0.971±0.004 0.935±0.021 0.972±0.014 0.972±0.002

Hyper-Kvasir 4 0.401±0.002 0.653±0.037 0.668±0.004 0.498±0.100 0.445±0.040 0.690±0.017 0.829±0.018 0.773±0.029 0.666±0.050 0.600±0.069 0.834±0.004

and its AUC is calculated based on the ranking. All reported

AUCs are averaged results over three independent runs.

4.3. Results under the General Setting

Tab. 1 shows the comparison results under the general

setting protocol. Below we discuss the results in details.

Application Domain Perspective. Despite the datasets

from diverse application domains, including industrial de-

fect inspection, rover-based planetary exploration and med-

ical image analysis, our model achieves the best AUC per-

formance on across nearly all of the datasets, i.e., eight

(seven) out of nine datasets in the one-shot (ten-shot) set-

ting, with the second-best results on the other datasets. On

challenging datasets, such as MVTec AD, AITEX, Mast-

cam and Hyper-Kvasir, where a larger number of possi-

ble anomaly classes is presented, our model obtains con-

sistently better AUC results, increasing by up to 5% AUC.

Sample Efficiency. The reduction of training anomaly

examples generally decreases the performance of all the su-

pervised models. Compared to the competing detectors, our

model shows better sample efficiency in that i) with reduced

anomaly examples, our model has a much smaller decrease

of AUC, i.e., an average of 15.1% AUC decrease across the

nine datasets, which is much better than DevNet (22.3%),

FLOS (21.6%), SAOE (19.7%), and MLEP (21.6%), and

ii) our model trained with one anomaly example can largely

outperform the strong competing methods trained with ten

anomaly examples, such as DevNet, FLOS and MLEP on

Optical, and SAOE and MLEP on Hyper-Kvasir.

Comparison to Unsupervised Baseline. Compared to

the unsupervised model KDAD, our model and other super-

vised models demonstrate consistently better performance

when using ten training anomaly examples (i.e., less open-

set scenarios). In more open-set scenarios where only one

anomaly example is used, our method is the only model

that is still clearly better than KDAD on most datasets, even

on challenging datasets which have many anomaly classes,

such as MVTec AD, AITEX, and Mastcam.

4.4. Results under the Hard Setting

The detection performance on six datasets applicable un-

der the hard setting is presented in Tab. 2.

Application Domain Perspective. In both one-shot and

ten-shot settings of the diverse application datasets, com-

pared to the competing methods, our method is the best per-

former on most of the individual data subsets; at the dataset-

level performance, our model achieves about 2%-10% mean

AUC increase compared to the best contender on most of

the six datasets, with close to the best performance on the

other datasets. This shows substantially better generaliz-

ability of our model in detecting unseen anomaly classes

than the other supervised detectors.

Sample Efficiency. Compared to one-shot scenarios to

the ten-shot ones, our model, on average, has 5.5% AUC

decrease at the dataset level, which is better than that of the

competing methods: DevNet (9.8%), FLOS (7.1%), SAOE

(7.8%), and MLEP (10%). More impressively, our model

trained with one anomaly example outperforms the ten-shot

competing models by a large margin on many of the indi-

vidual data subsets as well as the overall datasets.

Comparison to Unsupervised Baseline. Current super-

vised AD models are often biased towards the seen anomaly

class and fail to generalize to unseen anomaly classes,

performing less effective than the unsupervised baseline
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Table 2. AUC results under the hard setting, where models are trained with one known anomaly class and tested to detect the rest of all

other anomaly classes. Each data subset is named by the known anomaly class.

Dataset Data Subset Baseline One Training Anomaly Example Ten Training Anomaly Examples
KDAD DevNet FLOS SAOE MLEP DRA (Ours) DevNet FLOS SAOE MLEP DRA (Ours)

Carpet

Color 0.787±0.005 0.716±0.085 0.467±0.278 0.763±0.100 0.547±0.056 0.879±0.021 0.767±0.015 0.760±0.005 0.467±0.067 0.698±0.025 0.886±0.042

Cut 0.766±0.005 0.666±0.035 0.685±0.007 0.664±0.165 0.658±0.056 0.902±0.033 0.819±0.037 0.688±0.059 0.793±0.175 0.653±0.120 0.922±0.038

Hole 0.757±0.003 0.721±0.067 0.594±0.142 0.772±0.071 0.653±0.065 0.901±0.033 0.814±0.038 0.733±0.014 0.831±0.125 0.674±0.076 0.947±0.016

Metal 0.836±0.003 0.819±0.032 0.701±0.028 0.780±0.172 0.706±0.047 0.871±0.037 0.863±0.022 0.678±0.083 0.883±0.043 0.764±0.061 0.933±0.022

Thread 0.750±0.005 0.912±0.044 0.941±0.005 0.787±0.204 0.831±0.117 0.950±0.029 0.972±0.009 0.946±0.005 0.834±0.297 0.967±0.006 0.989±0.004

Mean 0.779±0.002 0.767±0.018 0.678±0.040 0.753±0.055 0.679±0.029 0.901±0.006 0.847±0.017 0.761±0.012 0.762±0.073 0.751±0.023 0.935±0.013

Metal nut

Bent 0.798±0.015 0.797±0.048 0.851±0.046 0.864±0.032 0.743±0.013 0.952±0.020 0.904±0.022 0.827±0.075 0.901±0.023 0.956±0.013 0.990±0.003

Color 0.754±0.014 0.909±0.023 0.821±0.059 0.857±0.037 0.835±0.075 0.946±0.023 0.978±0.016 0.978±0.008 0.879±0.018 0.945±0.039 0.967±0.011

Flip 0.646±0.019 0.764±0.014 0.799±0.058 0.751±0.090 0.813±0.031 0.921±0.029 0.987±0.004 0.942±0.009 0.795±0.062 0.805±0.057 0.913±0.021

Scratch 0.737±0.010 0.952±0.052 0.947±0.027 0.792±0.075 0.907±0.085 0.909±0.023 0.991±0.017 0.943±0.002 0.845±0.041 0.805±0.153 0.911±0.034

Mean 0.734±0.005 0.855±0.016 0.855±0.024 0.816±0.029 0.825±0.023 0.932±0.017 0.965±0.011 0.922±0.014 0.855±0.016 0.878±0.058 0.945±0.017

AITEX

Broken end 0.552±0.006 0.712±0.069 0.645±0.030 0.778±0.068 0.441±0.111 0.708±0.094 0.658±0.111 0.585±0.037 0.712±0.068 0.732±0.065 0.693±0.099

Broken pick 0.705±0.003 0.552±0.003 0.598±0.023 0.644±0.039 0.476±0.070 0.731±0.072 0.585±0.028 0.548±0.054 0.629±0.012 0.555±0.027 0.760±0.037

Cut selvage 0.567±0.006 0.689±0.016 0.694±0.036 0.681±0.077 0.434±0.149 0.739±0.101 0.709±0.039 0.745±0.035 0.770±0.014 0.682±0.025 0.777±0.036

Fuzzyball 0.559±0.008 0.617±0.075 0.525±0.043 0.650±0.064 0.525±0.157 0.538±0.092 0.734±0.039 0.550±0.082 0.842±0.026 0.677±0.223 0.701±0.093

Nep 0.566±0.006 0.722±0.023 0.734±0.038 0.710±0.044 0.517±0.059 0.717±0.052 0.810±0.042 0.746±0.060 0.771±0.032 0.740±0.052 0.750±0.038

Weft crack 0.529±0.006 0.586±0.134 0.546±0.114 0.582±0.108 0.400±0.029 0.669±0.045 0.599±0.137 0.636±0.051 0.618±0.172 0.370±0.037 0.717±0.072

Mean 0.580±0.004 0.646±0.034 0.624±0.024 0.674±0.034 0.466±0.030 0.684±0.033 0.683±0.032 0.635±0.043 0.724±0.032 0.626±0.041 0.733±0.009

ELPV
Mono 0.796±0.002 0.634±0.087 0.717±0.025 0.563±0.102 0.649±0.027 0.735±0.031 0.599±0.040 0.629±0.072 0.569±0.035 0.756±0.045 0.731±0.021

Poly 0.679±0.004 0.662±0.050 0.665±0.021 0.665±0.173 0.483±0.247 0.671±0.051 0.804±0.022 0.662±0.042 0.796±0.084 0.734±0.078 0.800±0.064

Mean 0.737±0.002 0.648±0.057 0.691±0.008 0.614±0.048 0.566±0.111 0.703±0.022 0.702±0.023 0.646±0.032 0.683±0.047 0.745±0.020 0.766±0.029

Mastcam

Bedrock 0.638±0.007 0.495±0.028 0.499±0.056 0.636±0.072 0.532±0.036 0.668±0.012 0.550±0.053 0.499±0.098 0.636±0.068 0.512±0.062 0.658±0.021

Broken-rock 0.590±0.007 0.533±0.020 0.569±0.025 0.699±0.058 0.544±0.088 0.645±0.053 0.547±0.018 0.608±0.085 0.712±0.052 0.651±0.063 0.649±0.047

Drill-hole 0.630±0.006 0.555±0.037 0.539±0.077 0.697±0.074 0.636±0.066 0.657±0.070 0.583±0.022 0.601±0.009 0.682±0.042 0.660±0.002 0.725±0.005

Drt 0.711±0.005 0.529±0.046 0.591±0.042 0.735±0.020 0.624±0.042 0.713±0.053 0.621±0.043 0.652±0.024 0.761±0.062 0.616±0.048 0.760±0.033

Dump-pile 0.697±0.007 0.521±0.020 0.508±0.021 0.682±0.022 0.545±0.127 0.767±0.043 0.705±0.011 0.700±0.070 0.750±0.037 0.696±0.047 0.748±0.066

Float 0.632±0.007 0.502±0.020 0.551±0.030 0.711±0.041 0.530±0.075 0.670±0.065 0.615±0.052 0.736±0.041 0.718±0.064 0.671±0.032 0.744±0.073

Meteorite 0.634±0.007 0.467±0.049 0.462±0.077 0.669±0.037 0.476±0.014 0.637±0.015 0.554±0.021 0.568±0.053 0.647±0.030 0.473±0.047 0.716±0.004

Scuff 0.638±0.006 0.472±0.031 0.508±0.070 0.679±0.048 0.492±0.037 0.549±0.027 0.528±0.034 0.575±0.042 0.676±0.019 0.504±0.052 0.636±0.086

Veins 0.621±0.007 0.527±0.023 0.493±0.052 0.688±0.069 0.489±0.028 0.699±0.045 0.589±0.072 0.608±0.044 0.686±0.053 0.510±0.090 0.620±0.036

Mean 0.644±0.003 0.511±0.013 0.524±0.013 0.689±0.037 0.541±0.007 0.667±0.012 0.588±0.011 0.616±0.021 0.697±0.014 0.588±0.016 0.695±0.004

Hyper-Kvasir

Barretts 0.405±0.003 0.672±0.014 0.703±0.040 0.382±0.117 0.438±0.111 0.772±0.019 0.834±0.012 0.764±0.066 0.698±0.037 0.540±0.014 0.824±0.006

Barretts-short-seg 0.404±0.003 0.604±0.048 0.538±0.033 0.367±0.050 0.532±0.075 0.674±0.018 0.799±0.036 0.810±0.034 0.661±0.034 0.480±0.107 0.835±0.021

Esophagitis-a 0.435±0.002 0.569±0.051 0.536±0.040 0.518±0.063 0.491±0.084 0.778±0.020 0.844±0.014 0.815±0.022 0.820±0.034 0.646±0.036 0.881±0.035

Esophagitis-b-d 0.367±0.003 0.536±0.033 0.505±0.039 0.358±0.039 0.457±0.086 0.577±0.025 0.810±0.015 0.754±0.073 0.611±0.017 0.621±0.042 0.837±0.009

Mean 0.403±0.001 0.595±0.023 0.571±0.004 0.406±0.01 8 0.480±0.044 0.700±0.009 0.822±0.019 0.786±0.021 0.698±0.021 0.571±0.014 0.844±0.009

KDAD on most of the datasets. By contrast, our model has

significantly improved generalizability and largely outper-

forms KDAD even under the one-shot scenarios. This gen-

eralizability is further supported by our preliminary results

in cross-domain anomaly detection in Appendix C.3.

4.5. Ablation Study

Importance of Each Abnormality Learning. Tab. 3

shows the results of each abnormality learning in DRA us-

ing ten training anomaly examples.

DRA1A is the variant of DRA that only learns the known

abnormality using the seen anomalies. It performs compa-

rably well to the two best contenders, DevNet and SAOE,

but limiting to the known abnormality leads to less effective

results than the other variants, especially on the hard setting.

DRA2A builds upon DRA1A with the addition of

pseudo abnormality learning. Compared with DRA1A, the

inclusion of the pseudo abnormality largely improves the

performance on most datasets. On some datasets, such

as Hyper-Kvasir on the hard setting, the performance of

DRA2A drops, which may be due to the discrepancy be-

tween the pseudo and real anomalies.

DRA3Ar and DRA3An extend DRA2A with one ad-

ditional head. DRA3Ar attempts to learn the latent resid-

ual abnormality, without the support of the holistic normal-

ity representations that DRA3An is specifically designed

to learn. DRA3Ar and DRA3An further largely improves

DRA2A, but both of them are much less effective than our

full model DRA. This demonstrates that gr and gn need to

be fused to effectively learn the latent residual abnormality.

Importance of Disentangled Abnormalities. Fig. 3

(Left) shows the results of non-disentangled, partially, and

fully disentangled abnormality learning under the gen-

eral setting, where the non-disentangled method is multi-

class classification with normal samples, seen and pseudo

anomaly classes, the partially disentangled method is the

variant of DRA that learns disentangled seen and pseudo

abnormalities only, and the fully disentangled method is

our model DRA. The results show that disentangled abnor-

mality learning helps largely improve the detection perfor-

mance across three application domains.

4.6. Sensitivity Analysis

Sensitivity w.r.t. the Source of Pseudo Anomalies
There are diverse ways to create pseudo anomalies, as

shown in previous studies [17, 25, 41, 53] that focus on

anomaly-free training data. We instead investigate the ef-

fect of these methods under our open-set supervised AD

model DRA. We evaluate three data augmentation meth-

ods, including CutMix [66], CutPaste-Scar (CP-Scar) [25]

and CutPaste-Mix (CP-Mix) that utilizes both CutMix and

CP-Scar, and two outlier exposure methods that respectively
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Table 3. Ablation study results of DRA and its variants. ‘xA’

denotes learning of ‘x’ abnormalities. Best results are highlighted.

Module DRA1A DRA2A DRA3Ar DRA3An DRA
gs � � � � �
gp � � � �
gr � �
gn � �

General Setting
MVTecAD 0.938±0.009 0.911±0.012 0.927±0.023 0.949±0.006 0.959±0.003

AITEX 0.881±0.007 0.925±0.008 0.907±0.014 0.898±0.019 0.893±0.017

SDD 0.984±0.013 0.984±0.016 0.973±0.021 0.988±0.009 0.991±0.005

ELPV 0.831±0.011 0.794±0.014 0.834±0.039 0.823±0.005 0.845±0.013

optical 0.760±0.038 0.946±0.023 0.930±0.002 0.965±0.007 0.965±0.006

Mastcam 0.756±0.016 0.796±0.008 0.813±0.030 0.838±0.016 0.848±0.008

BrainMRI 0.965±0.004 0.964±0.007 0.958±0.015 0.886±0.030 0.970±0.003

HeadCT 0.975±0.003 0.974±0.007 0.986±0.007 0.988±0.006 0.972±0.002

Hyper-Kvasir 0.775±0.026 0.790±0.030 0.809±0.026 0.725±0.036 0.834±0.004

Hard Setting

C
ar

pe
t

Color 0.739±0.007 0.671±0.167 0.847±0.045 0.848±0.062 0.886±0.042

Cut 0.731±0.055 0.880±0.021 0.763±0.176 0.885±0.080 0.922±0.038

Hole 0.735±0.077 0.733±0.116 0.903±0.049 0.903±0.044 0.947±0.016

Metal 0.768±0.035 0.860±0.044 0.896±0.025 0.868±0.078 0.933±0.022

Thread 0.970±0.016 0.978±0.005 0.985±0.007 0.992±0.006 0.989±0.004

Mean 0.788±0.025 0.824±0.045 0.879±0.047 0.899±0.014 0.935±0.013

A
IT

E
X

Broken end 0.638±0.019 0.738±0.142 0.744±0.114 0.640±0.128 0.693±0.099

Broken pick 0.651±0.037 0.714±0.039 0.675±0.047 0.725±0.104 0.760±0.037

Cut selvage 0.710±0.019 0.724±0.048 0.766±0.035 0.702±0.032 0.777±0.036

Fuzzyball 0.714±0.019 0.676±0.038 0.654±0.102 0.631±0.014 0.701±0.093

Nep 0.775±0.027 0.745±0.036 0.759±0.047 0.784±0.034 0.750±0.038

Weft crack 0.633±0.073 0.636±0.079 0.768±0.077 0.735±0.110 0.717±0.072

Mean 0.687±0.018 0.706±0.041 0.728±0.027 0.703±0.054 0.733±0.009

E
L

PV

Mono 0.631±0.042 0.655±0.034 0.684±0.050 0.650±0.034 0.731±0.021

Poly 0.761±0.033 0.823±0.016 0.808±0.067 0.837±0.045 0.800±0.064

Mean 0.696±0.005 0.739±0.025 0.746±0.048 0.744±0.039 0.766±0.029

H
yp

er
-K

va
si

r Barretts 0.833±0.028 0.731±0.022 0.778±0.025 0.819±0.030 0.824±0.006

B.-short-seg 0.810±0.050 0.741±0.052 0.688±0.076 0.825±0.038 0.835±0.021

Esophagitis-a 0.840±0.030 0.816±0.045 0.789±0.060 0.889±0.010 0.881±0.035

E.-b-d 0.741±0.031 0.633±0.046 0.652±0.069 0.805±0.006 0.837±0.009

Mean 0.806±0.014 0.730±0.040 0.727±0.032 0.835±0.007 0.844±0.009

Figure 3. (Left) Disentangled vs. non-disentangled abnormality

learning. The results are averaged over the datasets in each do-

main. (Right) AUC results of DRA using different reference set

sizes (Nr). Each result is averaged over all data subsets per dataset.

use samples from MVTec AD [3] and medical dataset LAG

[26] as the pseudo anomalies. When using MVTec AD,

we remove the classes that overlap with the training/test

data; LAG does not have any overlapping with our datasets.

Since pseudo anomalies are used mainly to enhance the gen-

eralization to unseen anomalies, we focus on the four hard

setting datasets in our ablation study in Tab. 3.

The results are shown in Tab. 4, from which it is clear

that the data augmentation-based pseudo anomaly creation

methods are generally more stable and much better than the

external data-based methods on non-medical datasets. On

Table 4. AUC results w.r.t. methods to create pseudo anomalies.

Anomaly Category Augmentation External
CP-Scar CP-Mix CutMix MVTec AD LAG

C
ar

pe
t

Color 0.743±0.142 0.967±0.048 0.886±0.042 0.615±0.028 0.711±0.041

Cut 0.853±0.098 0.862±0.072 0.922±0.038 0.688±0.019 0.721±0.021

Hole 0.809±0.033 0.955±0.024 0.947±0.016 0.712±0.015 0.823±0.020

Metal 0.858±0.197 0.840±0.096 0.933±0.022 0.764±0.039 0.670±0.037

Thread 0.987±0.013 0.988±0.011 0.989±0.004 0.966±0.003 0.968±0.005

Mean 0.850±0.070 0.922±0.012 0.935±0.013 0.749±0.006 0.779±0.017

A
IT

E
X

Broken end 0.584±0.127 0.750±0.115 0.693±0.099 0.793±0.043 0.722±0.072

Broken pick 0.616±0.111 0.671±0.082 0.760±0.037 0.603±0.017 0.584±0.034

Cut selvage 0.676±0.032 0.653±0.091 0.777±0.036 0.690±0.013 0.683±0.035

Fuzzyball 0.639±0.056 0.582±0.067 0.701±0.093 0.743±0.053 0.588±0.112

Nep 0.679±0.060 0.706±0.096 0.750±0.038 0.774±0.029 0.739±0.012

Weft crack 0.470±0.209 0.507±0.293 0.717±0.072 0.671±0.031 0.480±0.140

Mean 0.611±0.064 0.645±0.070 0.733±0.009 0.712±0.010 0.633±0.049

E
L

PV

Mono 0.665±0.098 0.622±0.067 0.731±0.021 0.543±0.064 0.544±0.041

Poly 0.755±0.006 0.807±0.085 0.800±0.064 0.749±0.052 0.808±0.056

Mean 0.710±0.046 0.715±0.076 0.766±0.029 0.646±0.042 0.676±0.031

H
yp

er
-K

va
si

r Barretts 0.832±0.016 0.735±0.028 0.761±0.043 0.834±0.024 0.824±0.006

B.-short-seg 0.827±0.054 0.719±0.049 0.695±0.030 0.839±0.038 0.835±0.021

Esophagitis-a 0.832±0.024 0.751±0.023 0.763±0.070 0.811±0.031 0.881±0.035

E.-b-d 0.805±0.035 0.749±0.060 0.782±0.028 0.847±0.017 0.837±0.009

Mean 0.824±0.020 0.739±0.007 0.751±0.021 0.833±0.023 0.844±0.009

the other hand, the external data method is more effective

on medical datasets, since the augmentation methods often

fail to properly simulate the lesions. The LAG dataset pro-

vides more application-relevant features and enables DRA

to achieve the best results on Hyper-Kvasir.

Sensitivity w.r.t. the Reference Size in Latent Resid-
ual Abnormality Learning. Our latent residual abnormal-

ity learning head requires to sample a fixed number Nr of

normal training images as reference data. We evaluate the

sensitivity of our method using different Nr and report the

AUC results in Fig. 3 (Right). Using one reference image

is generally sufficient to learn the residual anomalies. In-

creasing the reference size to five helps further improve the

detection performance, but increasing the size to ten is not

consistently helpful. Nr = 5 is generally recommended,

which is the default setting in DRA in all our experiments.

5. Conclusions and Discussions
This paper proposes the framework of learning disen-

tangled representations of abnormalities illustrated by seen

anomalies, pseudo anomalies, and latent residual-based

anomalies, and introduces the DRA model to effectively de-

tect both seen and unseen anomalies. Our comprehensive

results in Tabs. 1 and 2 justify that these three disentangled

abnormality representations can complement each other in

detecting the largely varying anomalies, substantially out-

performing five SotA unsupervised and supervised anomaly

detectors by a large margin, especially on the challenging

cases, e.g., having only one training anomaly example, or

detecting unseen anomalies.

The studied problem is largely under-explored, but it is

very important in many relevant real-world applications. As

shown by the results in Tabs. 1 and 2, there are still a num-

ber of major challenges requiring further investigation, e.g.,

generalization from smaller anomaly examples from fewer

classes, of which our model and comprehensive results pro-

vide a good baseline and extensive benchmark results.
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