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3 Visual Recognition Group, Faculty of Electrical Engineering, Czech Technical University in Prague

4 Centre for Mathematical Sciences, Lund University
dingyaqing@njust.edu.cn

Abstract

In this paper, we propose a new minimal and a non-
minimal solver for estimating the relative camera pose to-
gether with the unknown focal length of the second cam-
era. This configuration has a number of practical benefits,
e.g., when processing large-scale datasets. Moreover, it is
resistant to the typical degenerate cases of the traditional
six-point algorithm. The minimal solver requires four point
correspondences and exploits the gravity direction that the
built-in IMU of recent smart devices recover. We also pro-
pose a linear solver that enables estimating the pose from
a larger-than-minimal sample extremely efficiently which
then can be improved by, e.g., bundle adjustment. The meth-
ods are tested on 35654 image pairs from publicly available
real-world and new datasets. When combined with a recent
robust estimator, they lead to results superior to the tra-
ditional solvers in terms of rotation, translation and focal
length accuracy, while being notably faster.

1. Introduction

Estimating the relative pose of two cameras using a, typ-
ically, minimal set of point correspondences is a classical
computer vision problem [23]. It has a number of applica-
tions, including pose-graph initialization for global [5, 36,
50,52] and incremental [44,45,53] Structure-from-Motion,
Simultaneous Localization and Mapping algorithms [37,
38], augmented and virtual reality [33], multi-motion fitting
in videos [51], and surveillance [34, 35]. Nowadays, with
the popularity of smartphones equipped with various sen-
sors, new possibilities arise for pose estimation exploiting
the additional information provided by other built-in sen-
sors, e.g., Inertial Measurement Unit (IMU). In this paper,
we focus on exploiting the gravity direction recovered by an
IMU in the case when one of the cameras is fully calibrated,
while the focal length of the other one is unknown.

Figure 1. Almost everyone has a smartphone equipped with a cam-
era and an IMU sensor. While the y-axes of cameras can be usu-
ally aligned using the gravity direction extracted from the IMU,
the internal calibration of some cameras may be corrupted or not
available. Here, by using as little as one calibrated camera (the per-
son in red), we can estimate the relative poses and focal lengths of
the remaining cameras.

Depending on the camera configuration, there have been
a number of solutions proposed over the years. Assuming
that both cameras are calibrated and, thus, the intrinsic ma-
trices are known, one can estimate the relative pose from
five correspondences [22,27,32,40,46]. This setting is used
in many applications and is generally regarded as a solved
problem with efficient stable solutions and only a few de-
generacies. When we do not have access to an accurate cal-
ibration, jpeg-exif headers often contain useful information,
e.g., the focal length. This header is, however, sometimes
corrupted, e.g., for images from the Internet, or the included
focal length is incorrect, e.g., due to image resizing.

In the case when we are not given an accurate calibra-
tion a priori, it is safe, in practice, to assume that the pixels

12766



are square-shaped and the principal point coincides with the
image center. This implies that the only unknowns to be es-
timated are the focal lengths of the two images. When we
assume that both cameras have a common unknown focal
length, six correspondences are enough to solve the prob-
lem [22, 27, 28, 47]. The 6-point solver is, however, rarely
used in practice due to problems with degeneracies, e.g.,
when the optical axes of the cameras are parallel or inter-
secting. If the focal lengths of the two cameras are different
and unknown, at least seven correspondences are needed to
recover the relative pose and focal lengths [8, 21].

Another practically interesting case appears when one of
the cameras is fully calibrated while the focal length of the
other one is unknown. This problem requires six point cor-
respondences and was solved by the Gröbner-basis method
in [9, 28]. Such a situation often happens when processing
large-scale datasets where some of the images either have
their focal lengths available in the exif tag or the sensor type
is known. For example, state-of-the-art structure from mo-
tion algorithms [44, 50], after recognizing the sensor type
used for imaging, read the associated focal length from a
database if it is available. While clearly having practical
benefits when processing large-scale datasets, this config-
uration is also resistant to the typical degeneracies of the
6-point algorithm [46]. It works even if the optical axes of
the cameras are parallel or intersecting.

Recent devices usually are equipped with an IMU sensor
that measures the gravity direction accurately. Exploiting
this gravity prior, the vertical axes of the cameras can be
aligned, reducing their relative orientation to 1 degree of
freedom (DOF). This prior not only simplifies the geome-
try and polynomial systems that have to be solved but, also,
reduces that number of correspondences needed for the es-
timation. This is extremely important since the run-time
of RANSAC-like robust estimation depends exponentially
on the sample size. The gravity prior was used to simplify
minimal relative pose [12,15,16,31,39,43,49] including the
relative pose problem with two unknown equal or different
focal lengths [14], absolute pose [2, 26, 48], and general ra-
dial distortion homography solvers [11, 41].

In this paper, we fill the gap in existing relative pose
solvers. We propose solvers exploiting the gravity direc-
tion for two practically interesting and previously unsolved
settings. First, we propose several different minimal solvers
for estimating the relative pose together with the unknown
focal length of the second camera from a minimum of four
point correspondences 1. The proposed solvers are based
on the state-of-the-art algebraic methods for generating ef-
ficient polynomial solvers [7,22,27,30], from which the hid-
den variable method provides the solver with the best trade-
off between numerical stability and efficiency. When deriv-
ing these solutions, we provide an additional analysis of the

1The solution without the gravity [9] requires six correspondences.

Cayley parametrization used in these solvers. This allows
us simplifying both the problem equations and the solvers.
Second, we propose a solver for estimating the unknown
parameters from a larger-than-minimal sample. This step is
extremely important for state-of-the-arts RANSACs [25,42]
where the accuracy is ensured by local optimization and fi-
nal model polishing steps running non-minimal solvers.

2. Problem Statement
Let us assume two cameras observing 3D points {Xi}.

Let mi = [ui, vi, 1]
> and m′i = [u′i, v

′
i, 1]
> be the homo-

geneous coordinates of the projections of the point Xi into
the first and the second camera. The corresponding image
points mi and m′i are related as

λ′iK
−1
2 m′i = λiRK−11 mi + t, (1)

where R ∈ SO(3) and t ∈ R3 is the unknown relative rota-
tion and translation between the two cameras, λi, λ′i are the
depths of the image points mi,m

′
i, and K1,K2 are the in-

trinsic matrices of the first and second camera, respectively.
In this paper, we assume that the two cameras have a

common reference direction. This is a natural assumption,
which occurs in many image capturing scenarios where we
can extract the common reference direction from the built-
in IMUs of smartphones and tablets. Without loss of gen-
erality, let us assume that the y-axes of the two cameras
are aligned using roll and pitch angles calculated from the
common reference direction. For this alignment, IMU-to-
camera calibration is required. However, as it was shown
in previous papers [12, 20] it is usually sufficient to assume
that this calibration is known. Due to the way of how mod-
ern smart devices are constructed, the angle between the
axes of the camera and the IMU is usually either 0◦, ±90◦,
or 180◦ and, therefore, it can be considered as known.

Let the rotation matrices used for the alignment of the
y-axes of the two cameras be Ralign and R′align. After the
alignment the equation, (1) can be rewritten as

λ′iR
′
alignK−12 m′i = λiRyRalignK−11 mi + τ , (2)

where Ry is the rotation from the yaw angle (around axis
y), and τ = R′alignt is the translation after the alignment.

A common assumptions for modern cameras with CCD
and CMOS sensors are square-shaped pixels, and the prin-
cipal point coincident with the image center [22]. With this
assumption the intrinsic calibration matrix is a diagonal ma-
trix with the focal length as the only unknown parameter.

We assume that the focal length of the first camera is
known. Therefore the equation (2) can be written as

λ′iR
′
alignK−12 m′i = λiRypi + τ , (3)

where pi = RalignK−11 mi are the known homogeneous
coordinates of the calibrated image point in the first camera
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after the alignment, and K−12 = diag(1, 1, f), where f is
the unknown focal length of the second camera.

The vectors (λ′iR
′
alignK−12 m′i)× (λiRypi) are perpen-

dicular to the translation vector τ . Therefore we can write

(R′align[u
′
i, v
′
i, f ]

>)× (Rypi) · τ = 0. (4)

In this case, the depth parameters λ′i, λi are eliminated. Our
objective is to estimate the unknown relative rotation Ry ,
translation τ and the focal length f of the second camera
using equations (4).

3. Minimal 4-Point Solver
Each point correspondence mi ↔ m′i gives a single con-
straint of the form (4). Since we have 4 DOFs (one for the
unknown rotation parameter, two for the unknown transla-
tion that can be estimated only up to scale, and one for the
focal length f of the second camera), we need at least four
point correspondences to solve this problem. By stacking
the equations for N point correspondences, constraint (4)
can be written as

Aτ = 0, (5)

where A is a N × 3 polynomial matrix with the ith row of
A of the form

A(i,:) = (R′align[u
′
i, v
′
i, f ]

>)× (Rypi). (6)

The rotation matrix Ry can be parameterized using the
Cayley parametrization as

Ry =
1

1 + σ2

1− σ2 0 2σ
0 1 + σ2 0
−2σ 0 1− σ2

 , (7)

where σ = tan θ
2 , and θ is the rotation angle around the y-

axes. The Cayley parameterization introduces a degeneracy
for 180◦, however, it is frequently used in minimal solvers
since it reduces number of unknowns. Moreover, this 180◦

degeneracy is not an issue in practice [29] and can be easily
detected and filtered inside RANSAC.

Since (5) has a non-trivial solution, the matrix A must
be rank-deficient. This means that determinants of all 3× 3
submatrices of matrix A must vanish. Note, that since the
equations (6) are homogeneous, we can omit the scale factor

1
1+σ2 in the parameterization (7).

Moreover, determinants of 3× 3 submatrices of the ma-
trix A have the following property:
Property 1. Determinants of all 3 × 3 submatrices AI of
the matrix A can be written as det(AI) = (1+σ2)hI(σ, f),
where hI(σ, f) are polynomials in {σ, f}.
Here I is an index set and AI is a submatrix of the matrix
A that contains rows complementary to I . Property 1 holds
thanks to the Cayley representation used to parametrize the

rotation matrix Ry . A similar property has been recognized
in several papers [14, 49, 55], however, none of them pro-
vides an exact proof. In this paper, we provide a proof of
Property 1 by proving a stronger statement:
Property 2: Determinants of 2 × 2 submatrices
A12,A22,A32 of the matrix A = AI have 1 + σ2 as a
common factor.

Using the Laplace expansion by the second column, the
determinant of the matrix A can be expressed as det(A) =
a22 det(A22) − a12 det(A12) − a32 det(A32). Thus, by
proving Property 2, we directly obtain a proof of Property
1. The proof is in the supplementary material. Note that, a
proof for the general rotation case can be found at [54].

Thanks to Property 1, we can reduce the degrees of poly-
nomials used for solving the problem. For the minimum
number of four point correspondences, the 4 × 3 matrix A
in (5) has (43) = 4 subdeterminants of size 3 × 3 that has
to vanish. These four subdeterminants give us four polyno-
mials of degree 6 (the highest degree term is σ4f2) in two
unknowns {σ, f} as follows:

hk(σ, f) = det(Ak)/(1 + σ2). (8)

In this way, we eliminated the unknown translation τ from
our equations. The four polynomial equations hk(σ, f) =
0, k = 1, . . . , 4 can be rewritten as

Bw = 0, (9)

where B is a 4× 15 coefficient matrix and

w = [1, f, f2, σ, σf, σf2, ..., σ4f2]>, (10)

is a vector consisting of the 15 monomials.
The system of polynomial equations in (9) can be solved

using different algebraic methods [10]. In this paper, we
tested different state-of-the-art approaches for generating
efficient algebraic solvers [7, 22, 27, 30]. Next, we describe
these solutions, starting with the hidden variable solution
that provides the best trade-off between stability and effi-
ciency.

3.1. Hidden Variable solution

The polynomial system in (9) contains four polynomials
in two unknowns (σ, f), and the highest degree of the un-
known f is 2. In this case, σ can be chosen as the hidden
variable, i.e. we can consider it as a parameter. Then the
system of polynomial equations (9) can be rewritten as

M(σ)v = 0, (11)

where M(σ) is a 4 × 3 polynomial matrix parameterized
by σ, and v = [1, f, f2]> is a vector of monomials in f
without σ. M(σ) can be rewritten as

M(σ) = σ4B4 + σ3B3 + σ2B2 + σB1 + B0, (12)
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F7 E6fe E6fs E4fe E5fv H4fe H4fs H4fv E4fs E6l

Reference [23] [22, 28] [9, 28] [14] [14] [12, 13] [12, 13] [12, 13]
Different f 4 4
Pure rotation 4 4 4 4
Pure translation 4 4
Plane 4 4 4 4 4 4
Gravity prior 4 4 4 4 4 4 4
DOF 7 6 6 4 5 7 7 8 4 4
No. of points 7 6 6 4 5 3.5 3.5 4 4 6
No. of solutions 3 15 9 20 24 24 12 8 10 1

Table 1. The properties of the proposed solvers (in gray) and the state-of-the-art solvers.

where B4,B3,B2,B1,B0 are some 4 × 3 coefficient ma-
trices containing only numbers.

If the number of the rows of matrix M(σ) is equal to
the number of the columns, i.e., Nrow = Ncol, we can di-
rectly solve the system of polynomial equations (11) as a
polynomial eigenvalue problem [27] or by computing the
roots of the polynomial determinant detM(σ) = 0 [22].
If Nrow < Ncol, we can use the method from [27] to ex-
tend the system of equations to a system with square ma-
trix M(σ). In our case, we have more rows than columns,
i.e. Nrow > Ncol. In [27], the authors show that selecting
a subset of polynomials to make Nrow = Ncol can solve
such systems. However, it may happen that a subset of the
original polynomials leads to singular matrices B4 and B0,
which is a degeneracy for [27]. In [22], two different ap-
proaches for non-square systems were illustrated. One ap-
proach is based on computing the the greatest common divi-
sor of all (Ncol−1)× (Ncol−1) submatrices of M(σ), and
the second one on computing det(M(σ)>M(σ)). How-
ever, neither of these approaches are efficient.

In this paper, we use a very simple approach that is both
efficient and that also avoids possible degeneracies caused
by selecting only a subset of original equations. Since in
general, either B4 or B0 is non-singular, in this approach
we multiply (11) by B>4 (or B>0 ). This actually generates
three new polynomials that are linear combinations of the
original four ones. Let Ci = B>4 Bi, i = 1, . . . 4. Ma-
trices Ci are 3 × 3 square matrices, thus, polynomial ma-
trix B>4 M(σ) becomes a 3 × 3 square matrix. If we con-
sider (11) as a polynomial eigenvalue problem [3], the solu-
tions to σ are the eigenvalues of 12× 12 matrix

Q =


0 I 0 0
0 0 I 0
0 0 0 I

−C−14 C0 −C−14 C1 −C−14 C2 −C−14 C3

 . (13)

An efficient way to find the eigenvalues of such matrix is
to use the real Schur decomposition [24]: Q = UΛU>

where U is a real orthogonal matrix and Λ is a real quasi-
triangular matrix. A quasi-triangular matrix is a block-
triangular matrix whose diagonal consists of 1 × 1 blocks

and 2 × 2 blocks with complex eigenvalues which can be
omitted. The eigenvalues of the blocks on the diagonal of
Λ are the same as the eigenvalues of the matrix Q. Once
we have solutions to σ, the focal length f can be extracted
from the null vector of M(σ) based on (11).

In this way, we obtain 12 possible solutions. Note that
we solved a relaxed version of the original problem (11) 2,
leading to two redundant solutions which do not ensure the
elements of v to satisfy v = [1, f, f2]>.

Once {σ, f} are calculated, the translation is extracted
from the null space of the matrix A (5). In practice, we
only need to calculate the null space of one of the 3×3 sub-
matrices of the matrix A. Among the solutions we are only
interested in the real ones with positive focal length. Fi-
nally, the full relative rotation and translation can be found
as R = R

′>
alignRyRalign and T = R

′>
alignτ .

Sturm sequences solution. Another way of solving the
system in (11) is to compute the polynomial determi-
nant [22] of the 3 × 3 polynomial matrix B>4 M(σ).
Since (11) has a non-trivial solution, the matrix B>4 M(σ)
should be rank deficient, i.e. det(B>4 M(σ)) = 0. This is a
univariate polynomial of degree 12 in σ (there are also two
redundant solutions), which can be efficiently solved using
the Sturm sequences [18].

3.2. Other Solutions

We have tested two additional state-of-the-art methods
for generating efficient polynomial solvers. One is based
on u-resultants [7] and one on Gröbner bases [30]. The u-
resultant approach [7] generates a solver of size 22 × 32
with 10 solutions that can be extracted as the eigenvalues of
a 10 × 10 matrix. The state-of-the art [30] Gröbner basis
method generates a more efficient solver with a template of
size 8 × 18 for the Gauss-Jordan elimination and with 10
solution that are extracted from the eigenvalues of a 10 ×
10 matrix. In the synthetic experiments we show, that the
hidden variable solver is more stable (see Fig. 2) than this

2The original system (11) has 10 solutions as it can be shown, e.g.,
using computer algebra system Macaulay2 [19].
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Gröbner basis solver. Hence, for practical applications, we
recommend the user to use the hidden variable solver.

4. Linear Non-minimal Solver
In this section, we focus on solving the relative pose

and focal length estimation problem when having a larger-
than-minimal sample. This is particularly useful in the final
model polishing step or in the local optimization of mod-
ern RANSACs, e.g., MAGSAC++ [6]. Even when the final
model accuracy is ensured by applying bundle adjustment,
such fast non-minimal estimators are extremely important
both in the local optimization or to provide an initial esti-
mate for the numerical parameter refinement [25].

Since the vector w in (9) is of size 15×1, we need at least
15 equations for a linearization of the system (9). Equations
in the system (9) are obtained as determinants of 3× 3 sub-
matrices of N × 3 matrix A in (5). This matrix contains
(N3 ) submatrices of size 3 × 3. Therefore, for N ≥ 6, we
obtain enough equations to linearize (9), i.e. we obtain at
least 15 equations3. Such an overdetermined system can
be considered as a linear system by ignoring the monomial
dependencies in the vector w. Therefore, the values of σ
and f can be found as standard least square solutions to an
overdetermined linear system4. Note that in this case the
point normalization is important to improve the numerical
stability of the solver.

5. Comparison with Existing Solvers
In this section, we show the properties of the existing

state-of-the-art solvers including the well-known 7-point
fundamental matrix solver (F7) [23], the 6-point solver as-
suming equal and unknown focal length (E6fe) [22,28], the
6-point solver with a single known focal length (E6fs) [9,
28], the essential matrix-based solvers with known grav-
ity direction (E4fe, E5fv) [14], and the homography-
based solvers with known gravity direction (H4fs, H4fs,
H4fs) [12, 13]. All these solvers have some degenerate
configurations. For example, the standard solvers (F7,
E6fe, E6fs) can not deal with pure rotation, pure trans-
lation and planar scenes. The homography-based solvers
(H4fs, H4fs, H4fs) can solve the previously mentioned
special cases, but they require the underlying 3D points to
be co-planar which is a fairly strong assumption in practice.
The essential matrix-based solvers (E4fe, E5fv) using the
gravity prior can deal with pure rotation and planar scenes.
However, they are time consuming in practice (too many
possible solutions) and can not handle pure translation. By
contrast, the proposed methods are more efficient and do
not have any of the aforementioned degenerate configura-

3For 6 point correspondences we obtain (63) = 20 equations
4Note, that the obtained solution is not a least square solution to the

original system (9), since we are ignoring monomial dependencies in w.

tions. The comparisons of different solvers are shown in
Table 1. Note that, 4 means that the solvers can solve a
particular special case without any additional assumptions.
Circle means that the solver can solve a particular case
but only when introducing additional assumptions, e.g., co-
planar points. The proposed minimal (E4fs) and the linear
non-minimal (E6l) solver are in gray.

Complexity analysis and running times. The following
table contains the main operations performed by the pro-
posed and the state-of-the-art solvers, together with their
average running times in µs. The second column shows the
size of the matrix for the SVD which is used to extract the
null vector. The third column shows the size of the matrix
for the Gauss-Jordan elimination. The fourth one reports the
size of the matrix for the eigenvalue decomposition. The
fifth one contains the degree of the univariate polynomial
solved by Sturm sequences.

Solver SVD G-J Eigen Sturm Time (µs)

E4fs (polyeig) - 3× 12 12× 12 - 51
E4fs (GB) - 8× 18 10× 10 - 38
E4fs (Sturm) - - - 12 24
E6l 20× 15 - - - 40
F7 7× 9 - - - 11
E6fe 6× 9 21× 36 15× 15 - 72
E6fs 6× 9 6× 15 9× 9 - 37
E4fe - 6× 24 24× 24 - 110
E5fv - 12× 48 48× 48 - 310

6. Synthetic evaluation
In this section, we compare the proposed solvers with the

SOTA. We assume that the focal lengths of the cameras are
different, but one of them is known. In this case, we com-
pare with F7, E6fs and E5fv . Other solvers which need
stronger assumptions, e.g. planarity, are omitted from these
experiments. We use C++-mex implementations for all the
solvers in this evaluation. The synthetic data are generated
in the following setup. We randomly sample 200 3D points
distributed in a 3D cube of size [−3, 3] × [−3, 3] × [3, 8].
The focal lengths of cameras are uniformly randomly set to
fg ∈ [300, 3000] pixels, and the resolution of the image is
1000×1000 pixels. The parameters which were changed to
test the performance are the noise level in the image point
locations, the field of view (FOV) of cameras, the baseline
between two cameras, and the noise level in the gravity di-
rection. For the gravity noise, we noise the roll and pitch
angles of both views. The default setting was: image noise
= 1 pixel, FOV = 90◦, baseline = 5% of the average scene
depth, and the gravity vector noise = 0◦.

The performance of the solvers is tested by modify-
ing the value of a single parameter from the aforemen-
tioned ones while keeping the others constant. The ro-
tation error is defined as the angle difference between
the estimated rotation and the ground truth rotation as
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Figure 2. From top row to bottom row: performance under general motion, pure translation, pure rotation and planar structures, respec-
tively. Left column: numerical stability of the proposed solvers on noise-free data. Middle column: rotation error of the solvers w.r.t.
increasing image noise. Right column: focal length error of the solvers w.r.t. increasing image noise.

arccos
((
tr(RgR

>
e )− 1

)
/2
)
, where Rg and Re are the

ground truth and the estimated rotation, respectively. The
translation error is measured as the angle between the esti-
mated and the ground truth translation vectors, since the es-
timated translation is recovered only up to scale. The focal
length error was measured as ξf = |fe − fg|/fg , where fg
and fe are the ground truth and the estimated focal length,
respectively. We focus on four practical cases which are
very common in real applications: general motion, pure
translation, pure rotation and planar scenes.

The left column of Fig. 2 shows the numerical stabil-
ity of the proposed solvers in four different configurations

(from top row to bottom one: general motion, pure trans-
lation, pure rotation and planar scenes, respectively). The
proposed solvers are stable for all tested configurations, ex-
cept for the pure rotation, where the proposed 6-point lin-
ear non-minimal solver E6l and the minimal solver based
on Sturm sequences provide slightly unstable results on the
noise-free data. However, these solvers provide very accu-
rate results in the presence of image noise.

From three tested minimal solvers, the polynomial
eigenvalue solver is more stable than the solver based on
Sturm sequences and the Gröbner basis solver. The middle
and right columns of Fig. 2 report the rotation and the focal
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Figure 3. Rotation (top row) and focal length (bottom row) error under general motion. From left to right: the columns show the error of
the solvers w.r.t. increasing field-of-view, baseline, and gravity vector noise.

length error w.r.t. increasing image noise. Based on the ex-
perimental results, we can see that the proposed solvers out-
perform the existing methods on different configurations.
Due to the lack of space and for the better readability these
graphs contain results only for one new minimal 4-point
solver, i.e. the polynomial eigenvalue solver (E4fs). The
translation error is reported in the supplementary material.

Fig. 3 shows errors for general camera motion as a func-
tion of the field-of-view, baseline, and the gravity vector
noise. The proposed solvers (E4fs) and (E6l) lead to the
most accurate results for most of the configurations. Even
when the noise level in the roll and the pitch angle (for both
cameras) is 0.2◦, the proposed solvers are comparable to the
SOTA solvers. Note that accelerometers used in cars and
modern smartphones have noise levels around 0.06◦ [16].

7. Real-world Experiments
In order to show the practical benefits of the pro-

posed methods in real applications, we test the solvers on
the KITTI [17]5 datasets. Moreover, we collected the
new PHONE dataset. The KITTI odometry benchmark pro-
vides 22 sequences, but only 11 sequences (00–10) are pro-
vided with ground truth obtained by GPS and IMU for train-
ing. We therefore used these 11 sequences to evaluate the
compared solvers. In total, 23190 image pairs were used.
The PHONE dataset is recorded by using different smart-
phones (iPhone 6s and iPhone 11). The sequences were
captured at @30Hz with the rear camera, and the corre-
sponding IMU data were captured at @100Hz with the
built-in sensor. In addition, the sequences cover all the

5http://www.cvlibs.net/datasets/kitti

camera configurations we discussed in the synthetic eval-
uation: general motion, pure translation and rotation, and
planar scenes. To obtain a ground truth, we calibrated the
phones and use the RealityCapture [1] software to obtain
camera poses and 3D reconstructions. In total, 12464 im-
age pairs with synchronized gravity directions, ground truth
poses, calibrations and 3D reconstructions were generated.
Example images are shown in the supplementary material.

For testing the proposed solvers on real-world data,
we chose a state-of-the-art RANSAC, i.e., Graph-Cut
RANSAC6 [4] (GC-RANSAC). In GC-RANSAC (and
other locally optimized RANSACs), two different solvers
are used: (a) one for estimating the pose from a minimal
sample and (b) one for fitting to a larger-than-minimal sam-
ple when doing final pose polishing on all inliers or in the
local optimization step. We use the proposed solvers in
(a). Note that the E5fv solver is filling large matrices with
complex symbolic coefficients computed from symbolic de-
terminants. Thus, the C++ implementation, which is huge
(23.9 MB), crashed in our experiments. In this case, we
provide extra Matlab (C++-mex) tests with the E5fv solver.

The cumulative distribution functions (CDF) of the ro-
tation, translation and focal length errors, run-time, itera-
tion number, and inlier number on the KITTI dataset are
shown in Fig. 4. Being accurate is interpreted as a curve
close to the top-left corner. Both proposed solvers lead to
more accurate rotation, translation, and focal length esti-
mates than the tested SOTA ones. At the same time, the
new solvers require fewer RANSAC iterations and, thus,
they are faster. While SOTA methods provide more in-

6https://github.com/danini/graph-cut-ransac
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Figure 4. The CDFs of the (a) rotation, (b) translation (both in degrees), (c) focal length errors, (d) run-times, (e) iteration, and (f) inlier
numbers of GC-RANSAC on the KITTI datasets (23 190 images). Being accurate is interpreted as a curve close to the top-left corner.

E4fs E6l E6fs F7

ξR (◦)
MED
AVG

0.59
1.17

0.57
1.05

2.31
4.75

4.93
20.39

ξT (◦)
MED
AVG

16.55
23.10

17.84
23.16

30.65
39.10

29.81
37.81

ξf (%)
MED
AVG

0.30
0.74

0.49
1.25

0.50
1.58

1.18
11.05

# iterations AVG 101 120 150 776
# inliers AVG 1370 1345 1275 1100

Table 2. Solver comparison on the captured PHONE dataset (12 464
image pairs). The rotation (ξR), translation (ξt) and relative focal
length (ξf) errors are reported. The best results are marked bold.

liers, the pose accuracy is usually more important in most
of the real-world applications. Table 2 shows the median
and mean rotation, translation and focal length errors for the
PHONE dataset. We used every 10th frame for this dataset.
Again the proposed solvers lead to the most accurate results,
here, with more inliers and fewer iterations than the SOTA
solvers. Table 3 shows the comparison of E4fs and E5fv
(pre-compiled C++-mex implementation with Matlab) on
the first sequence from the PHONE dataset (1535 images).
Additional results are in the Supp. material.

Limitations. In this paper, we assume that the two cameras
have a common direction, which can be extracted, e.g., from
the IMU readings. Since cameras used in modern smart-
phones, tablets, and robots are usually equipped with IMUs,
we believe that this assumption is reasonable and practical.

ξR(◦) ξT(◦) ξf (%)

E4fs
MED
AVG

0.88
1.33

3.62
5.60

1.16
1.63

E5fv
MED
AVG

2.05
5.13

5.05
9.52

20.35
33.88

Table 3. Comparison of E4fs and E5fv on the first sequence from
the PHONE dataset. The best results are marked bold.

8. Conclusion
In this paper, we focus on the case when one of the cam-

eras is fully calibrated while the focal length of the other
one is unknown. Assuming a known common reference
direction, we propose new minimal solvers that estimate
the relative pose together with the unknown focal length
from a minimum of four point correspondences. We also
propose a linear solver that allows for estimating the pose
from a larger-than-minimal sample efficiently. The config-
uration with one calibrated and one camera with unknown
focal length is resistant to the typical degenerate cases of
the traditional six-point algorithm [46] and has a num-
ber of practical benefits, e.g., when processing large-scale
datasets. We demonstrate on thousands of image pairs from
publicly available datasets and on a new PHONE dataset,
that the proposed solvers are superior to the state-of-the-
art both in terms of accuracy and processing time. The
source code and the PHONE dataset are available at https:
//github.com/yaqding/relative-pose-E4f.
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