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Abstract

In this paper, we present TransMVSNet, based on our
exploration of feature matching in multi-view stereo (MVS).
We analogize MVS back to its nature of a feature match-
ing task and therefore propose a powerful Feature Match-
ing Transformer (FMT) to leverage intra- (self-) and inter-
(cross-) attention to aggregate long-range context informa-
tion within and across images. To facilitate a better adap-
tation of the FMT, we leverage an Adaptive Receptive Field
(ARF) module to ensure a smooth transit in scopes of fea-
tures and bridge different stages with a feature pathway
to pass transformed features and gradients across differ-
ent scales. In addition, we apply pair-wise feature corre-
lation to measure similarity between features, and adopt
ambiguity-reducing focal loss to strengthen the supervi-
sion. To the best of our knowledge, TransMVSNet is the
first attempt to leverage Transformer into the task of MVS.
As a result, our method achieves state-of-the-art perfor-
mance on DTU dataset, Tanks and Temples benchmark,
and BlendedMVS dataset. Code is available at https:
//github.com/MegviiRobot/TransMVSNet.

1. Introduction

Multi-view stereo (MVS) aims to recover the dense 3D
presentation with a series of calibrated images, which is an
important task of computer vision. Learning-based MVS
networks [10, 31, 32] have achieved remarkable progress in
terms of reconstruction quality and efficiency. Typically, a
MVS network extracts image features by a CNN and con-
structs cost volume via plane sweep algorithm [5] in which
source images are warped to the reference view. This cost
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Figure 1. Comparison with state-of-the-art learning-based MVS
methods [3,10,19,26,27,34] on DTU dataset [1] (lower is better)
and Tanks and Temples benchmark [12] (higher is better).

volume is regularized afterwards to estimate the final depth.
The nature of MVS is a one-to-many feature matching

task, in which each pixel of the reference image is supposed
to search along the epipolar line in all warped source images
and find an optimal depth with the lowest matching cost.
Some recent studies [22, 24] have proven the importance of
long-range global context in feature matching tasks. How-
ever, given the aforementioned MVS pipeline, there are two
main problems. (a) Local features are well captured by con-
volutions. The locality of convolved features prevents the
perception of global context information, which is essential
for robust depth estimation at challenging regions in MVS,
e.g. poor texture, repetitive patterns, and non-Lambertian
surfaces. (b) Besides, when computing matching costs, the
features to be compared are simply extracted respectively
from each image itself, which is to say, potential inter-image
correspondences are not taken into consideration.

Recently, Transformer [25], which is initially proposed
for natural language processing, has drawn considerable at-
tention from the computer vision community for their great
performance on vision tasks. Since Transformer utilizes the
mechanism of attention and positional encoding for context
aggregation, rather than convolutions, it is capable of per-
ceiving global and positionally relevant context information
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in the true sense.
To this end, we propose a novel end-to-end deep neu-

ral network, namely TransMVSNet, to which a power-
ful Feature Matching Transformer (FMT) is leveraged to
strengthen long-range global context aggregation within
and between images. To better adapt FMT into an end-to-
end learning-based MVS pipeline, we introduce an Adap-
tive Receptive Field (ARF) module to ensure a smooth tran-
sition from locally aggregated features by CNN to features
with a global receptive field by FMT. In order to lower run-
time memory requirements and train FMT with supervision
from high-resolution depth maps, we bridge different scales
with a transformed feature pathway. We apply pair-wise
feature correlation to measure the similarity between the
reference feature map and each of its source feature maps.
Afterwards, we follow the coarse-to-fine volume regular-
ization pattern [10] and adopt focal loss [16], which better
handles samples with ambiguous prediction, to end-to-end
train the network.

Thanks to the global context-aware information within
and between views, TransMVSNet achieves significant im-
provement in reconstruction accuracy and completeness si-
multaneously on DTU dataset [1] (as shown in Fig. 1(a)).
Moreover, the overwhelming performance of TransMVS-
Net can be generalized to more complex scenes, e.g. the
intermediate and advanced set of Tanks and Temples bench-
mark [12] (as shown in Fig. 1(b)). To the best of our knowl-
edge, it is the first attempt that takes advantage of Trans-
former in the task of MVS. Consequently, extensive experi-
ments indicate that our method achieves state-of-the-art per-
formance. We also conduct ablation experiments to demon-
strate the effectiveness of each proposed module. Our main
contributions are three-fold as follows.

- We propose a novel end-to-end deep neural network
based on a Feature Matching Transformer (FMT),
namely TransMVSNet, for robust long-range global
context aggregation within and across images.

- To better adapt FMT into an end-to-end MVS pipeline,
we introduce an ARF module to adaptively adjust
the receptive fields of convolved features and apply
ambiguity-aware focal loss for training.

- Our method achieves state-of-the-art results on DTU
dataset, Tanks and Temples benchmark, and Blended-
MVS dataset.

2. Related Work
2.1. Learning-based MVS

In the modern deep era, learning-based methods have
been introduced to the task of MVS for better reconstruction
accuracy and completeness. MVSNet [31] encodes camera
parameters via differentiable homography to build 3D cost
volumes, and decouples the MVS task to a per-view depth

map estimation task. However, the memory and computa-
tion costs are quite expensive due to its 3D U-Net architec-
ture for cost volume regularization. To alleviate this prob-
lem, several networks have been proposed and can be cate-
gorized into RNN-based recurrent methods [27, 29, 32] and
coarse-to-fine multi-stage methods [3,10,30,34], according
to regularization patterns, Recurrent methods regularize the
3D cost volumes recurrently, and adopt RNNs to pass fea-
tures between different depth hypotheses. Since recurrent
methods trade time for space, they are capable of handling
images with large resolution but slow in terms of inference
speed. Multi-stage methods predict a coarse depth map ini-
tially and narrow down the target depth range at a larger
resolution based on the previous prediction. Coarse-to-fine
methods are able to infer quickly while keeping a relatively
small memory consumption.

Though learning-based MVS methods have achieved
promising results, there are still challenging problems re-
maining, e.g. robust estimation at non-Lambertian and low-
texture regions or severely occluded areas.

2.2. Transformer for Feature Matching

Transformer [25] has been widely used in natural lan-
guage processing due to its effectiveness and efficiency, and
has drawn increasing attention from the computer vision
community recently [2, 8, 17, 20, 21]. Considering Trans-
former’s natural superiority to capture global context infor-
mation by leveraging attention, its ideology has been uti-
lized in the task of feature matching.

SuperGlue [22] utilizes self- and cross-attention in the
task of sparse feature matching, leveraging both spatial re-
lationships and visual appearance of the keypoints. Su-
perGlue achieves impressive performance and becomes the
new state of the art. LoFTR [24] establishes accurate dense
matches with Transformers in a coarse-to-fine manner. By
interleaving the self- and cross-attention layers multiple
times, LoFTR learns densely arranged and globally con-
sented matching priors in ground-truth matches. STTR [14]
models the task of stereo depth estimation from a sequence-
to-sequence matching perspective. Transformers with al-
ternating self- and cross-attention along intra- and inter-
epipolar line are adopted to capture long-range associations
between feature descriptors.

3. Methodology

Given a reference image I0 ∈ RH×W×3 and its neigh-
boring images {Ii}N−1

i=1 , as well as their respective camera
intrinsics and extrinsics, our method predicts a depth map
aligned with I0. Depth maps of all images are then filtered
and fused to obtain the reconstructed dense point cloud.
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Figure 2. TransMVSNet architecture. TransMVSNet extracts basic features by FPN and introduces ARF modules (Sec. 3.4) to ensure
the transit from FPN to Transformer. In the FMT (Sec. 3.2), intra-attention is performed to aggregate global context within images and
inter-attention helps feature searching and matching across images. A transformed feature pathway (Sec. 3.3) is connected to pass low-
resolution features to higher resolutions and enable back-propagating gradients of all scales to go through FMT. We then apply pixel-wise
feature correlation to generate the correlation volumes (Sec. 3.5), which are regularized with a coarse-to-fine pattern.

3.1. Network Overview

The overall architecture of our TransMVSNet is illus-
trated in Fig. 2. TransMVSNet first applies a Feature Pyra-
mid Network (FPN) [15] to extract multi-scale deep image
features at three coarse-to-fine levels of resolution. Before
handing these features to Transformer, we use the Adap-
tive Receptive Field (ARF) module, described in Sec. 3.4,
to refine the local feature extraction and ensure a smooth
transit to Transformer. To leverage global context informa-
tion within and between reference and source images, we
adopt the Feature Matching Transformer (FMT) to perform
intra- and inter-attention. The technical details of FMT are
introduced in Sec. 3.2. To effectively and efficiently propa-
gate transformed features from a low resolution to a higher
and make FMT trained with gradients from all scales, we
connect all resolutions with a feature pathway described in
Sec. 3.3. To be described in Sec. 3.5, for feature maps of
N×H ′×W ′×F processed by FMT, we build a correlation
volume of H ′×W ′×D′×1 for the following regularization
by 3D CNNs. H ′, W ′ and F denote the height, width and
channels of feature maps at current stage, N denotes the
number of views and D′ denotes the corresponding num-
ber of depth hypotheses. After obtaining the regularized
probability volume, we take the strategy of winner-take-all
to determine the final prediction. We apply focal loss with
enhanced punishment at ambiguous areas, as described in
Sec. 3.6, to train TransMVSNet end-to-end.

3.2. Feature Matching Transformer (FMT)

For most cases, learning-based MVS networks construct
cost volumes directly from extracted features, ignoring
global context information and inter-image feature interac-
tion, which have been proven to be important for improv-
ing prediction quality and reducing uncertainty of match-
ing, especially for low-textured regions and repetitive pat-
terns. Aforementioned Transformer-based matching meth-
ods handle the problem of feature matching between two
views. For MVS, whose nature is a one-to-many matching
task, we present a Feature Matching Transformer (FMT),
specially customized for MVS. Sec. 3.2.1 introduces the
preliminaries of attention; Sec. 3.2.2 further describes the
attention mechanism used in the proposed FMT, especially
its customization dedicated to MVS; Sec. 3.2.3 demon-
strates the design of FMT module as a whole.

3.2.1 Preliminaries

Scaled dot-product attention Analogous to the conven-
tions in information retrieval, features are grouped as query
Q, key K and value V. Q retrieves relevant information
from V according to the attention weight obtained from the
dot product of Q and K corresponding to each V. The at-
tention layer is formally denoted as

Attention(Q,K,V) = softmax (QK⊤)V. (1)
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The mechanism of attention measures the feature-wise sim-
ilarity between Q and K, and retrieves information from
V according to this computed weight. Following the prac-
tice in [25], we adopt multi-head attention, which splits the
channel of features into Nh groups (number of heads).

Linear attention Multi-head attention [25] calculates the
attention from the dot product of Q and K, leading the
computation cost growing quadratically with regard to the
length of the input sequence. To lower the computation cost,
we follow [11] and use Linear Transformer to compute
attention. Linear Transformer replaces the original kernel
function with

Attention(Q,K,V) = Φ(Q)
(
Φ(K⊤)V

)
, (2)

where Φ(·) = elu(·) + 1 and elu(·) represents the acti-
vation function of exponential linear units [4]. Given that
the number of channel is far smaller than the length of
input sequence, the computation complexity is reduced to
linear, making it possible to compute attention upon high-
resolution images.

3.2.2 Intra-attention and Inter-attention

When Q and K vectors are features from the same im-
age, attention layers retrieve relevant information within the
given view. This can essentially be seen as intra-image
long-range global context aggregation. In the other case
where Q and K vectors are from different views, atten-
tion layers then capture cross-relationships across these two
views and inter-image feature interaction between images is
done in this way. In FMT, we perform intra-attention upon
both the reference image I0 and source images {Ii}N−1

i=1 .
When computing inter-attention between I0 and each Ii,
only the feature of Ii is updated.

Here we explain the reason why reference feature F0

is not supposed to get updated according to source fea-
tures. When matching the reference image to its neigh-
boring source images, the reference feature should remain
invariant to provide an identical target for all source fea-
tures. The underlying intuition is that the measurement of
similarity is only valid given the same image pair, which
indicates that the matching confidence is not comparable
universally across different pairs. We also conduct ablation
experiments on this minor topic and get results to support
this assumption. Please refer to the Supplementary Mate-
rial for more information.

3.2.3 FMT Architecture

Different from a typical one-to-one matching task between
two views, MVS tackles a one-to-many matching problem,
where context information of all views should be considered

Inter-
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Figure 3. Architecture of the Feature Matching Transformer. FMT
performs positional encoding to all features maps and flattens them
at the spatial dimension. Then the attention blocks get involved
and perform intra- and inter-attention upon features. Note that the
number of attention blocks Na is set as 4 in our implementation.

simultaneously. To this end, we propose the FMT to capture
long-range context information within and across images.

The architecture of FMT is illustrated in Fig. 3. We
follow [22] and add positional encoding, which implicitly
enhances positional consistency and makes FMT robust to
feature maps with different resolutions. Each view’s cor-
responding flattened feature map F ∈ RH′W ′×F is pro-
cessed by Na attention blocks sequentially. Within each
attention block (see Fig. 3), the reference feature F0 and
each source feature Fi firstly compute intra-attention with
shared weights, where all features are updated with their re-
spective embedded global context information. Afterwards,
the unidirectional inter-attention is performed, with which
Fi is updated according to retrieved information from F0.

3.3. Transformed Feature Pathway

The Transformer we leverage only performs on feature
maps at a rather low resolution since both learning-based
MVS and Transformer acquire a massive amount of mem-
ory and computation. It remains a problem that how to ef-
fectively pass the transformed features from a low resolu-
tion to a higher. Besides, we expect the FMT to be trained
with supervision from all image scales. We therefore design
a transformed feature pathway to fulfill this job. As shown
in Fig. 2, feature maps processed by FMT are interpolated
to a higher resolution and added to the corresponding raw
feature maps at the next image scale.

3.4. Adaptive Receptive Field (ARF) Module

Transformer implicitly encodes global context informa-
tion into feature maps via positional encoding, which we
can roughly perceive as convolution layers with a global re-
ceptive field. On the contrary, FPN [15], which is adopted
as the basic feature extractor of the proposed network,
mainly focuses on the context within a relatively local
neighborhood. There is apparently a gap between these two
modules in terms of context ranges, which is detrimental to
both feature forwarding and end-to-end training.
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To this end, we insert an Adaptive Receptive Field Mod-
ule between FPN and FMT, to adaptively adjust the scope
of extracted features. The ARF module is implemented by
deformable convolution [6, 35], which learns extra offsets
for sampling position and is able to adaptively enlarge the
receptive fields according to the local context.

3.5. Correlation Volume Construction

We apply differentiable warping to align all images to
the reference view. The warping between a pixel p at the
reference view and its corresponding pixel p̂ at the source
view under depth hypothesis d is defined as

p̂ = K[R(K−1
0 pd) + t], (3)

where R and t denote the rotation and translation between
the two views. K0 and K are the intrinsic matrices of the
reference and source camera. The warped feature maps are
bilinearly interpolated to remain the original resolution. By
discretizing the known depth space into D depth values, we
are able to classify each pixel as one of these values.

Pair-wise feature correlation at position p is

c
(d)
i (p) =< F0(p), F̂ (d)

i (p) >, (4)

where F̂ (d)
i denotes the warped i-th source feature map at

depth d. In this way, the channel number is reduced to 1,
alleviating subsequent memory consumption at regulariza-
tion. To aggregate all N − 1 pair-wise correlation volumes,
we consider that each pixel in the height and width dimen-
sion of 3D correlation volume has different saliency but is
consistent in the depth dimension. We therefore assign a
pixel-wise weight map with its maximum correlation in the
depth dimension. The aggregated correlation volume is then
defined as

C(d)(p) =

N−1∑
i=1

max
d

{c(d)i (p)} · c(d)i (p). (5)

3.6. Loss Function

Previous coarse-to-fine attempts [10, 30, 34] mainly
adopt ℓ1-based depth regression loss that supervises the ab-
solute distance between prediction and ground truth. We
instead apply focal loss [16] that treats depth estimation as
a classification task to strengthen the one-hot supervision at
ambiguous areas. The focal loss at each depth estimation
stage is

L =
∑

p∈{pv}

−(1− P (d̃)(p))γ log
(
P (d̃)(p)

)
, (6)

where P (d)(p) denotes predicted probability of depth hy-
pothesis d at pixel p and d̃ represents the depth value closest

(a) RGB (b) Weight map (γ = 2)

(d) Depth map (γ = 2) (c) Depth map (γ = 0)

Figure 4. Results visualization of focal loss. (a) Raw image. (b)
Focal weight map (1 − P )γ when the γ = 2. (c) Depth map
when the network is trained with γ = 0. (d) Depth map when the
network is trained with γ = 2. Focal loss focuses on pixels with
low prediction probability, which normally appear in boundary re-
gions.

to the ground truth among all hypotheses. {pv} represents
a subset of pixels with valid ground truth. Specially, fo-
cal loss degrades to cross entropy loss when the focusing
parameter γ equals 0. Empirically, γ = 2 fits more compli-
cated scenarios and γ = 0 can produce good enough results
for relatively simple scenarios. Fig. 4 shows the effect of
focal loss on boundary regions, where focal loss helps to
estimate more accurate boundary than cross entropy loss.

4. Experiments
4.1. Datasets

DTU [1] is captured under well-controlled laboratory
conditions with a fixed camera trajectory and contains 128
scans with 49 views under 7 different lighting conditions.
Following the setting of MVSNet [31], we split the dataset
into 79 training scans, 18 validation scans, and 22 evalua-
tion scans. BlendedMVS dataset [33] is a large-scale syn-
thetic dataset for multi-view stereo training and contains
a variety of objects and scenes. The dataset is split into
106 training scans and 7 validation scans. Tanks and Tem-
ples [12] is a public benchmark acquired in realistic condi-
tions. It contains an intermediate subset of 8 scenes and an
advanced subset of 6. Different scenes have different scales,
surface reflection, and exposure conditions.

4.2. Implementation Details

We implement TransMVSNet with PyTorch and train it
on DTU training set [1]. At training phase, we set the
number of input images N = 5 and image resolution as
512×640. For coarse-to-fine regularization, depth hypothe-
ses are sampled from 425mm to 935mm; the number of
plane sweeping depth hypotheses of each stage is respec-
tively 48, 32, and 8; the corresponding depth interval de-
cays by 0.25 and 0.5 from the coarsest stage to the finest
stage. The model is trained with Adam for 10 epochs with
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Figure 5. Comparison of reconstructed results with state-of-the-art coarse-to-fine methods [3, 10] on DTU evaluation set [1].

an initial learning rate of 0.001, which decays by a factor
of 0.5 respectively after 6 and 8 epochs. We set γ = 0 for
training on DTU. The batch size is 1 on 8 NVIDIA RTX
2080Ti GPUs and in total, the training phase takes about 16
hours and occupies 10GB memory of each GPU.

For depth filtering and fusion, we follow the dynamic
checking strategy proposed in [29], in which both confi-
dence thresholding and geometric consistency are applied.

4.3. Experimental Performance

Evaluation on DTU dataset We evaluate the proposed
method on the evaluation set of DTU dataset [1] with offi-
cial evaluation metrics. We set N = 5 and the input reso-
lution as 864 × 1152 at evaluation phase. As is visualized
in Fig. 5, benefiting from the mechanism of intra- and inter-
attention in FMT, TransMVSNet is able to yield denser and
complete point clouds with more details preserved. Quan-
titative comparisons are shown in Tab. 1. Accuracy and
Completeness are the two official metrics. Accuracy mea-
sures the mean absolute point-cloud-to-point-cloud distance
from the MVS reconstruction to ground truth, while Com-
pleteness measures the opposite. The Overall is the average
of Accuracy and Completeness, which indicates the overall
performance of models. TransMVSNet achieves competi-
tive performance in Accuracy and Completeness and out-
performs all known methods in Overall by a large margin.

Benchmarking on Tanks and Temples To demonstrate
the generalization ability of our method, we test our method
on Tanks and Temples benchmark [12]. To boost the perfor-
mance on real-world scenes, we fine-tune TransMVSNet on
the training set of the BlendedMVS dataset [33] using the
original image resolution (576× 768), N = 5 and γ = 2.

For evaluation on Tanks and Temples, the camera pa-
rameters, depth ranges, and neighboring view selection are
aligned with R-MVSNet [32]. We use images of the original
resolution for inference. Quantitative comparisons on Tanks

Method Acc.(mm) Comp.(mm) Overall(mm)
Gipuma [9] 0.283 0.873 0.578
COLMAP [23] 0.400 0.664 0.532
R-MVSNet [32] 0.385 0.459 0.422
D2HC-RMVSNet [29] 0.395 0.378 0.386
AA-RMVSNet [27] 0.376 0.339 0.357
Vis-MVSNet [34] 0.369 0.361 0.365
CasMVSNet [10] 0.325 0.385 0.355
UCS-Net [3] 0.338 0.349 0.344
PatchmatchNet [26] 0.427 0.277 0.352
EPP-MVSNet [19] 0.413 0.296 0.355
TransMVSNet 0.321 0.289 0.305

Table 1. Quantitative results on DTU evaluation set [1] (lower is
better). Bold figures indicate the best and underlined figures in-
dicate the second best. Compared to non-learning methods, RNN-
based methods and coarse-to-fine methods, TransMVSNet outper-
forms all known methods by a large margin.

and Temples are shown in Tab. 2 and the metrics are mean
F-score. TransMVSNet outperforms all existing learning-
based MVS methods on both leaderboards, demonstrating
the effectiveness and generalizability of our method. Fig. 6
shows qualitative results on the scene Courtroom of ad-
vanced set and Horse of intermediate set. TransMVSNet
yields more reliable points at low-textured areas and sophis-
ticated surfaces. Specially, we visualize the process of fea-
ture evolution of a pair of views in Fig. 7. In such a typically
challenging scene with poor texture and repetitive patterns,
FMT manages to capture position-dependent features and
aggregate global context within and across different views.

Evaluation on BlendedMVS dataset Both DTU [1] and
Tanks and Temples [12] apply evaluation metrics towards
point clouds. We further demonstrate the quality of depth
maps, which are the direct outputs by TransMVSNet, on
BlendedMVS validation dataset [33]. We set N = 5 and
image resolution as 512 × 640, and apply the evaluation
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Method Int.Mean Family Francis Horse L.H. M60 Panther P.G. Train Adv.Mean Auditorium Ballroom Courtroom Museum Palace Temple
COLMAP [23] 42.14 50.41 22.25 26.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.70 41.51 18.05 27.94
ACMM [28] 57.27 69.24 51.45 46.97 63.20 55.07 57.64 60.08 54.48 34.02 23.41 32.91 41.17 48.13 23.87 34.60
DeepC-MVS [13] 59.79 71.91 54.08 42.29 66.54 55.77 67.47 60.47 59.83 34.54 26.30 34.66 43.50 45.66 23.09 34.00
AttMVS [18] 60.05 73.90 62.58 44.08 64.88 56.08 59.39 63.42 56.06 31.93 15.96 27.71 37.99 52.01 29.07 28.84
CasMVSNet [10] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11
Vis-MVSNet [34] 60.03 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07 33.78 20.79 38.77 32.45 44.20 28.73 37.70
PatchmatchNet [26] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 32.31 23.69 37.73 30.04 41.80 28.31 32.29
EPP-MVSNet [19] 61.68 77.86 60.54 52.96 62.33 61.69 60.34 62.44 55.30 35.72 21.28 39.74 35.34 49.21 30.00 38.75
R-MVSNet [32] 50.55 73.01 54.46 43.42 43.88 46.80 46.69 50.87 45.25 29.55 19.49 31.45 29.99 42.31 22.94 31.10
AA-RMVSNet [27] 61.51 77.77 59.53 51.53 64.02 64.05 59.47 60.85 54.90 33.53 20.96 40.15 32.05 46.01 29.28 32.71

TransMVSNet 63.52 80.92 65.83 56.94 62.54 63.06 60.00 60.20 58.67 37.00 24.84 44.59 34.77 46.49 34.69 36.62

Table 2. Benchmarking results on the Tanks and Temples [12]. The evaluation metric is mean F-score (higher is better). Bold figures
indicate the best and underlined figures indicate the second best. TransMVSNet achieves state-of-the-art performance on both the interme-
diate and the advanced leaderboards of Tanks and Temples benchmark (Nov. 12, 2021).

CasMVSNet EPP-MVSNet AA-RMVSNet Ours

Figure 6. Comparison of reconstructed results with several state-of-the-art methods [3,10,27] on Tanks and Temples benchmark [12]. τ is
the scene-relevant distance threshold determined officially and darker regions indicate larger error encountered with regard to τ . The first
row shows Recall on the scene of Courtroom (τ = 10mm); the second row shows Precision on the scene of Horse (τ = 3mm).

metrics described in [7].
Some quantitative results are illustrated in Tab. 3. EPE

stands for the endpoint error, which is the average ℓ-1 dis-
tance between the prediction and the ground truth depth;
e1 and e3 represent the proportion in % of pixels with
depth error larger than 1 and larger than 3. Compared with
other methods, TransMVSNet achieves impressive results,
demonstrating its capability of yielding high-quality depth
maps. Please refer to the Supplementary Material for more
point cloud results.

4.4. Ablation Study

We perform ablation studies to analyze the effectiveness
and costs of different modules. The implemented baseline is
basically based on CasMVSNet [10], which applies feature
correlation and is trained with ℓ-1 loss. All the experiments
are performed with the same hyperparameters.

Method EPE e1 e3
MVSNet [31] 1.49 21.98 8.32
CVP-MVSNet [30] 1.90 19.73 10.24
CasMVSNet [10] 1.43 19.01 9.77
Vis-MVSNet [34] 1.47 15.14 5.13
EPP-MVSNet [19] 1.17 12.66 6.20

TransMVSNet 0.73 8.32 3.62

Table 3. Quantitative results towards predicted depth maps on
BlendedMVS validation set [33] (lower is better).

As shown in Tab. 4, after applying focal loss, the over-
all performance improves by 1.7% while the computational
costs remain unchanged. Due to the computational effi-
ciency of Linear Transformer, we are able to leverage FMT
with little additional costs in terms of memory and MACs
but its inference speed is nearly 1.4 times slower. With
the transformed feature pathway, both Completeness and
Overall performance get boosted while there is almost no
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Reference image Untransformed feature Feature by 4� intra-attention

Source image Untransformed feature Feature by 1� intra-attention Feature by 1� inter-attention

Attention Block

×"!

Feature by 4� inter-attention
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Figure 7. Evolution of feature maps via FMT on the scene Courtroom of Tanks and Temples benchmark [12]. We apply PCA to reduce
the number of feature channels to 3 and visualize the results with RGB. Images of the first row show features of the reference view, which
are only updated by intra-attention in FMT; images of the second row represent features of a source view, which get updated by both intra-
and inter-attention layers.

Model Settings Mean Distance Mem. MACs TimeF.L. FMT Pathway ARF Acc. Comp. Overall
(a) 0.351 0.339 0.345 3244 212 0.271
(b) ✓ 0.343 0.335 0.339 3244 212 0.271
(c) ✓ ✓ 0.335 0.310 0.323 3288 235 0.638
(d) ✓ ✓ ✓ 0.332 0.298 0.315 3288 241 0.677
(e) ✓ ✓ ✓ ✓ 0.321 0.289 0.305 3778 435 0.996

Table 4. Quantitative performance with different components on
DTU evaluation dataset [1]. F.L. is short for focal loss. The unit
is MB for memory occupancy (Mem.), G for multiply–accumulate
operations (MACs) and second for inference time.

increase in its memory occupancy, indicating the effective-
ness and efficiency of the pathway. With ARF module at-
tached, the full TransMVSNet is able to achieve state-of-
the-art performance by a large margin. ARF module brings
considerable computational costs in all aspects. After all,
the inference time is still within one second, which is ac-
ceptable compared to RNN-based methods [27, 29, 32].

5. Discussions
5.1. Comparisons to Related Work

TransMVSNet vs. CasMVSNet Our architecture is
based on the coarse-to-fine regularization pattern proposed
by CasMVSNet [10]. The main difference is that we in-
troduce Transformer to capture long-range global context
for better feature matching over multiple views. Using the
coarse-to-fine manner brings more computation efficiency
while remarkable performance is also achieved.

TransMVSNet vs. LoFTR LoFTR [24] interleaves self-
and cross-attention layers multiple times along flattened
feature maps to estimate dense matching between a pair of
images. Different from one-to-one matching tasks, MVS is
actually a one-to-many matching task. We thus propose the
FMT module to adapt attention layers to MVS.

TransMVSNet vs. STTR STTR [14] performs self- and
cross-attention along intra- and inter-epipolar line to esti-
mate stereo depth, where the context range of local fea-
tures is only limited to their corresponding epipolar lines.
Note that there does not exist line-to-line correspondence
in MVS, and we thus utilize attention layers along whole
flattened feature maps, to bring global context into feature
matching over multiple views.

5.2. Limitations

- Transformer slows down the speed of inference, as is
shown in Tab. 4.

- Similar to other coarse-to-fine MVS networks, our
method is sensitive to inference hyperparameters, e.g.
number of depth hypotheses, depth interval, and decay
factor of depth interval.

6. Conclusion

In this paper, we present a novel learning-based MVS
network, termed as TransMVSNet, which aggregates global
long-range context-aware information via Transformer.
Specifically, TransMVSNet comprises an effective Fea-
ture Matching Transformer (FMT) module formulated with
intra-attention and inter-attention, which focus on retrieving
context-aware information within and across images respec-
tively. Moreover, we design the Adapative Receptive Field
(ARF) module and a transformed feature pathway to better
facilitate the function of FMT. Extensive experiments show
that TransMVSNet achieves state-of-the-art performance on
DTU dataset, Tanks and Temples benchmark, and Blended-
MVS dataset.
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