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Abstract

Real-world image manipulation has achieved fantastic
progress in recent years as a result of the exploration and
utilization of GAN latent spaces. GAN inversion is the first
step in this pipeline, which aims to map the real image to the
latent code faithfully. Unfortunately, the majority of existing
GAN inversion methods fail to meet at least one of the three
requirements listed below: high reconstruction quality, ed-
itability, and fast inference. We present a novel two-phase
strategy in this research that fits all requirements at the same
time. In the first phase, we train an encoder to map the input
image to StyleGAN2 W-space, which was proven to have
excellent editability but lower reconstruction quality. In the
second phase, we supplement the reconstruction ability in
the initial phase by leveraging a series of hypernetworks
to recover the missing information during inversion. These
two steps complement each other to yield high reconstruc-
tion quality thanks to the hypernetwork branch and excellent
editability due to the inversion done in the W-space. Our
method is entirely encoder-based, resulting in extremely
fast inference. Extensive experiments on two challenging
datasets demonstrate the superiority of our method. 1

1. Introduction

Generative adversarial networks (GANs) [13] in modern
deep learning have allowed us to synthesize expressively re-
alistic images, a trend that has continued to flourish in recent
years. GANs can now be trained to generate images of high-
resolution [22] with diverse styles [23–25] and apparently
fewer artifacts [26]. Moreover, the latent spaces learned
by these models also encode a diverse set of interpretable
semantics. These semantics provide a tool to manipulate the
synthesized images. Therefore, understanding and explor-
ing a well-trained GAN model is an important and active
research area. Several studies [7, 16, 40, 41, 50] have been
conducted to examine the latent spaces learned by GANs,

1Project page: https://di-mi-ta.github.io/HyperInverter
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Figure 1. Our end-to-end encoder-based method has more accu-
rate reconstruction while having fast inference (toward the bottom
left of each plot). As can be seen, our work outperform other
encoder-based inversion methods (pSp [37], e4e [44], ReStyle [3])
significantly. Comparing with per-image optimization inversion
technique [1], our method is on par of quality but 3000× faster.
Only PTI [38] has reconstruction quality better than our work.
However, PTI requires per-image generator fine-tuning during the
inference phase, which took a long time, 1100× longer.

which convey a wide range of interpretable semantics.
To apply the semantic directions explored from GAN la-

tent space to real-world images, the common-used practice
is the ”invert first, edit later” pipeline. GAN Inversion is a
typical line of work that aims to first map a real photograph
to a latent code of a GAN model so that the model can accu-
rately reconstruct the photograph. Then, we can manipulate
the latent code to edit different attributes of the reconstructed
picture. There are two general approaches to determining
a latent code of a GAN model given an input image: by an
iterative optimization [1, 10, 21, 25, 32] and by inference
with an encoder [35, 37, 44, 58]. The optimization-based
method tends to perform reconstruction more accurately than
encoder-based one but requires significantly more computa-

11389



tion time, hindering use cases for interactive editing.
While the goal of GAN inversion is not only to reconstruct

the input image faithfully but also to effectively perform
image editing later, there is the so-called reconstruction-
editing trade-off raised by multiple previous works [44, 59].
This trade-off is shown to depend on the embedding space
where an input image is mapped to. The native StyleGAN
W space and the extended version W+ space [1] are two
most popular embedding spaces for StyleGAN inversion.
Specifically, inverting an image to W space usually has
excellent editability, but they are proved to be infeasible to
reconstruct the input image faithfully [1]. On the contrary,
W+ space allows to obtain more accurate reconstructions
but it surfers from editing ability [44]. To mitigate the effects
of this trade-off, a diverse set of methods has been proposed.
Some of them [44, 59] introduce the ways (e.g., regularizer
or adversarial training) to select the latent code in the high
editable region of W+ space and accept a bit of sacrifice in
the reconstruction quality. Another option is to utilize a two-
stage approach. PIE [43] opts first to use an optimization
process to locate the latent code in W space to preserve the
editing ability and then optimize further the latent in the
W+ space to enhance the reconstruction quality. PTI [38]
approaches the same as PIE in the first stage. However, in the
second stage, they choose the generator fine-tuning option to
improve reconstruction results further. As can be seen, such
methods require either optimization or fine-tuning process
for each new image, leading to expensive inference time.

Motivated from above weakness, we propose a novel pure
encoder-based two-phase method for StyleGAN inversion.
Our method not only runs very fast but also obtains robust
reconstruction quality. Specifically, in the first phase, we
change to use a standard encoder to regress the image to
the latent code in W space instead of utilizing optimization
process as PTI and PIE. Then, in the second phase, we lever-
age the hypernetworks to predict the residual weights, which
can recover the lost details of the input image after the first
phase. We then use the residual weights to update the origi-
nal generator for synthesizing the final reconstructed image.
Our design would help migrate optimization or fine-tuning
procedures in the inference phase, significantly reducing
processing time. In summary, our contributions are:

• A completely encoder-based two-phase GAN inversion ap-
proach allows faithful reconstruction of real-world images
while keeping editability and having fast inference;

• A novel network architecture that consists of a series of
hypernetworks to update the weights of a pre-trained Style-
GAN generator, thereby improving reconstruction quality;

• An extensive benchmark of GAN inversion that demon-
strates the superior performance of our method compared
to the existing works;

• A new method for real-world image interpolation that
interpolates both latent code and generator weights.

2. Related Work
Latent Space Manipulation The latent space of a well-
trained GAN generator (e.g., StyleGAN) contains various
interpretable semantics of real-world images, which provides
a wonderful tool to perform a diverse set of semantic image
editing tasks. Therefore, understanding and exploring the
semantic directions encoded in the pre-trained GAN latent
space have been the subject of numerous studies. Some re-
searches [12, 41, 51] use complete supervision in the form of
semantic labels. Such methods require either a well-trained
attribute classifier or the images annotated with editing at-
tributes. Therefore, this condition prevents the applications
of supervised methods to a limited of known attributes. As a
result, other studies [16, 40, 46, 47] propose unsupervised
approaches to accomplish the same aim without the need for
manual annotations. These types of methods allow explor-
ing various fancy editing directions that we did not know
before. Besides, some researches [36, 53] also use the idea
of contrastive learning to analyze the GAN latent space.
GAN Inversion. To apply such latent manipulations to the
real-world image, we first need to locate the latent code rep-
resented for that image in the pre-trained GAN latent space.
This process is known as GAN inversion [58]. Existing
GAN inversion methods can be categorized into two general
groups: optimization-based and encoder-based approaches.
Optimization-based methods [1, 10, 21, 25, 32] directly opti-
mize the latent vector by minimizing the reconstruction error
for each given image. These methods usually provide high-
quality reconstructions but require too much time to perform,
and it is tough to apply on real-time applications. Encoder-
based works [35, 37, 44, 49, 58] employ an encoder to learn
a direct mapping from a given picture to its corresponding
latent vector, which allows for fast inference. However, the
reconstruction quality of encoder-based techniques is usually
worse than that of optimization-based approaches. Therefore,
some hybrid works [5, 6, 14, 57] have been proposed, which
combine both above general approaches to partly balance the
trade-off of reconstruction quality and inference time. They
first use an encoder to encode the image to the initial latent
code and then use this latent as an initial point for the later
optimization process. Hybrid methods can be considered as
the subset of the two-stage methods and they use both opti-
mization and encoder techniques in the method. In addition,
there are other two-stage approaches but are not hybrid ones.
For example, PIE [43] uses optimization methods on both
phases, while PTI [38] combines optimization process with
the generator fine-tuning technique. In comparison, our work
is also a two-stage method but differs from the above ones in
that our approach is only based purely on the encoder-based
manner in both phases.
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Figure 2. Our method contains two sequential phases: (1) We first train an encoder E1 to encode the input image x to a content code w
in W-space; w represents the main semantics of the image, therefore used in editing later. The output image of this phase is x̂w. (2) We
further regress the residual weights to update the generator to faithfully reconstruct the input details. First, we use another encoder E2 and a
fusion operator to extract the appearance code h from the input image x and the initial image x̂w, where L is the number of style layers
of StyleGAN. Then, we employ a series of hypernetworks to embed the appearance code h to the generator G by predicting the residual
weights ∆θ. The final reconstructed image x̂ is generated by G with updated weights θ̂ = θ +∆θ and w content code from Phase I.

Hypernetwork. Hypernetwork is the auxiliary neural net-
work that produces the weights for other network (often
called as primary network). They were first proposed by
Ha et al. [15] and have been used in a wide range of ap-
plications from semantic segmentation [34], 3D scene rep-
resentation [29, 42], neural architecture search (NAS) [54]
to continual learning [45]. In this study, we design the hy-
pernetworks to improve the quality of our GAN inversion
method. Specifically, we leverage hypernetworks to update
the weights of the pre-trained GAN generator instead of
fine-tuning procedure, which took a lot of processing time.
Interestingly, a concurrent work named HyperStyle [4] also
leverages the hypernetworks to solve the StyleGAN inver-
sion task at the same time as ours.

3. Method

Our method is an end-to-end encoder-based GAN inver-
sion approach with two consecutive phases. The first phase
is a standard encoder that first maps input image to the GAN
latent space (Section 3.1). The second phase then refines the
generator so that it adapts to the reconstructed latent code
to preserve original image details while allowing editability
(Section 3.2). Figure 2 provides an overview of our approach.
Let us now describe the details of each phase below.

3.1. Phase I: From image to content code

In StyleGAN, W space is empirically proven to have
excellent editing ability compared to the popular W+ space
for inversion [44, 59]. Therefore, we first choose W space
to locate our latent code. Specifically, given the input image
x, we train an encoder E1 to regress x to the corresponding
latent code w ∈ W:

w = E1(x), (1)

where w has the size of R512. This w code has a role as
the content code encoding the main semantics in the image.
For image editing task later, one could traversal this w code
on the interpretable semantic directions to manipulate the
image. The reconstructed image x̂w can be computed by
passing the latent code w to the generator:

x̂w = G(w, θ), (2)

where G is the well-trained StyleGAN generator with con-
volutional weights θ.

A typical problem of the aforementioned inversion is that
the image x̂w is perceptually different from the input x, mak-
ing the editing results less convincing. This phenomenon
is caused by the relatively low dimensionality of the latent
code w, which makes it challenging to represent all features
from the input image. To address this weakness, we propose
a novel phase II focusing on improving further the recon-
struction quality by refining generator G with new weights.

3.2. Phase II: Generator refinement via hypernet-
works from appearance code.

Our goal in this phase is to recover the missing infor-
mation of input x and thus reduce the discrepancy between
x and x̂w. Other two-stage methods use either per-image
optimization process [43] or per-image fine-tuning G [38] to
improve reconstruction quality further. However, the draw-
back of such these approaches is the slow inference time.
We instead opt for a different approach that aims to create a
single-forward pass network to learn to refine the generator
G by inspecting the current input x and the reconstruction
x̂w. Using single-forward pass network can guarantee the
very fast running time. This network first encodes x and x̂w

into intermediate features and fuses them into a common
feature tensor that can be used by a set of hypernetworks to
output a set of residual weights. We then use the residual
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Figure 3. Hypernetwork design for predicting the residual
weights ∆θj of the convolutional layer j in the StyleGAN gen-
erator. Here we assume layer j receives the style vector indexed
by i. Diagram notation: conv2d(in channels, out channels, ker-
nel size, stride, padding). For simplicity, we omit in the figure the
ReLU [2] activation layer after each conv2d layer.

weights to update the corresponding convolutional layers in
the generator G to yield a new set of weights θ̂. It is expected
that the refined reconstruction from G(·, θ̂) should be closer
to the input x than the current reconstruction x̂w.

Particularly, we first use a shared encoder E2 to transform
both image x and x̂w into the intermediate features:

hx̂w
= E2(x̂w), (3)

hx = E2(x),

where hx̂w , hx ∈ RL×512×8×8, and L is the number of
style layers from the pretrained StyleGAN generator. Re-
call that in StyleGAN generator network, each convolutional
layer receives an input that corresponds to one of L style
vectors. Therefore, we choose to regress to L feature compo-
nents rather than a common one motivated by the StyleGAN
generator’s design. Then we use a fusion operator to com-
bine these two features forming an appearance code h, with
h ∈ RL×1024×8×8.

To embed the appearance code h to the reconstructed
image, we opt to use h to update the weights of the pretrained
StyleGAN generator G. Motivated by the hypernetwork’s
idea [15], which use an small extra neural network to predict
the weights for the primary network, we leverage a series of
hypernetworks to predict the residual weights, which then
are added to refine the weights of G. Here we only consider
predicting the weights for the main convolutional layers of
G, skipping biases and other layers.

Assume that the pretrained generator G has N convolu-
tional layers with weights θ = (θ1, θ2, ..., θN ). In StyleGAN
architecture, each convolution layer j ∈ {1..N} receives a
corresponding style vector indexed by i ∈ {1..L} as input
where L is the total number of style vectors. We therefore

propose to use a small hypernetwork Hj to predict the resid-
ual weights ∆θj of each convolutional layer j, which results
in a total of N hypernetworks. The residual weights ∆θj for
convolutional layer j is computed as

∆θj = Hj(h
(i)). (4)

The details of the design of hypernetwork is illustrated in
Figure 3. Specifically, each hypernetwork contains two main
modules, which are feature transformer and linear mapper.
The feature transformer is a small convolutional neural net-
work to transform the appearance code h(i) to the hidden
features. The linear mapper is used for the final mapping
from the hidden features to the convolutional weights. We
adopt the technique proposed by Ha et al. [15] that uses
two small matrices instead of a single large matrix to the
weight mapping to keep the number of parameters in the
hypernetwork manageable.

Finally, the updated generator has the convolutional
weights as θ̂ = (θ1 +∆θ1, θ2 +∆θ2, ..., θN +∆θN ). The
final reconstructed image x̂ could be obtained from the up-
dated generator and the content code w from Phase I:

x̂ = G(w, θ̂). (5)

3.3. Loss functions

We train our network in the two phases independently.
In Phase I, we employ a set of loss functions to ensure
faithful reconstruction. Given x as the input image, x̂ is the
reconstructed image, we define our reconstruction loss Lrec

as a weighted sum of

Lrec = λpixelL2 + λpercLLPIPS + λidLID, (6)

where λpixel, λperc, λid are the hyper-parameters. Each loss
is defined as follows:

• L2 = ||x− x̂||2 measures the pixel-wise similarity,

• LLPIPS = ||FLP (x) − FLP (x̂)||2 is the perceptual
loss [56], where FLP indicates a perceptual feature
extractor [56]. We use the pre-trained AlexNet [28]
version, similar to previous GAN inversion works.

• LID = 1 − ⟨FID(x),FID(x̂)⟩, where FID is a
class-specific feature extractor network, which is a
pre-trained ArcFace [11] for human facial domain or
a ResNet-50 [17] pre-trained with MOCOv2 [9] for
Churches domain, ⟨.⟩ denotes cosine similarity between
two feature embedding vectors.

In Phase II, we further use the non-saturating GAN
loss [13] in addition to the reconstruction loss in Phase I.
This loss helps to ensure the realism of generated images
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since we modify the weights of the generator in this phase:

Lenc = Lrec + λadvLadv (7)

where

Ladv = −Ex̂∼pX̂
[log(D(x̂))], (8)

D is initialized with the weights from the well-trained Style-
GAN discriminator, λadv is the hyperparameter balancing
two losses. Discriminator D is trained along with our net-
work in a adversarial manner. We further impose R1 regu-
larization [33] to D loss. The final loss for D is:

LD = −Ex∼pX
[log(D(x))]− Ex̂∼pX̂

[log(1−D(x̂))]

(9)

+
γ

2
Ex∼pX

[||∇xD(x)||22].

4. Experiments
4.1. Experimental Settings

Datasets. We conduct the experiments on two challenging
domains, which are human faces and churches. Those are
selected because reconstructing human faces is a popular
task in GAN inversion while reconstructing churches is a
common test for generating outdoor scene images. For hu-
man facial domain, we employ the FFHQ [23] dataset as our
training set, and the official test set of CelebA-HQ [22, 31]
as our test set. For churches domain, we use the LSUN
Church [52] dataset. We adopt the official train/test split of
LSUN Church for our training and testing sets, respectively.
Baselines. We compare our method with various GAN in-
version approaches including optimization-based, encoder-
based, and two-stage methods. For optimization-based
works, we compare our method with the inversion technique
proposed by [1], denoted as SG2 W+. For encoder-based
approaches, we choose pSp [37], e4e [44], and ReStyle [3]
(apply over e4e backbone) to compare with our results. For
other two-stage methods, we compare with PTI [38]. We use
the official pre-trained weights and configurations released
from the authors to perform our evaluation experiments.
Implementation Details. In our experiments, the pre-
trained StyleGAN generators and discriminators being used
are obtained directly from StyleGAN2 [25] repository. To
implement the encoders E1 and E2, we adopt the backbone
design of [37, 44]. For E2, we modify the style block of
original backbone to output 512×8×8 tensors instead of 512
vectors. In Phase I, we follow the previous encoder-based
methods [3, 37, 44] and use the Ranger optimizer, which
combines the Lookahead [55] and the Rectified Adam [30]
optimizer, for training. In Phase II, we use Adam [27] with
standard settings, which we found to make the training of the

hypernetworks converges faster. In both phases, we set the
learning rate to a constant of 0.0001. For hyperparameters in
the loss functions, we set λpixel = 1.0 and λperc = 0.8 for
both domains. For other hyperparameters, we use λid = 0.1,
λadv = 0.005, γ = 10 for the human facial domain, and
λid = 0.5, λadv = 0.15, γ = 100 for the churches domain.
Empirically, we found that applying adversarial loss and R1

regularization later in the training process leads to better sta-
bility than using them from the beginning. Specifically, we
first train the model with batch size 8 for the first 200, 000
iterations. Then, we add the adversarial loss and R1 regular-
ization to the training process and continue the training with
batch size 4 until convergence. All evaluation experiments
are conducted using a single NVIDIA Tesla V100 GPU.

Input PTI SG2 W+ pSp e4e ReStyle Ours

Figure 4. Qualitative reconstruction comparison of our method
with the current state-of-the-art StyleGAN inversion approaches.
More examples are in supplementary. Best viewed in zoom.

4.2. Reconstruction Results

Quantitative Results. We use a diverse set of metrics to
measure the reconstruction quality of our method compared
with existing approaches. Specifically, we use the pixel-
wise L2, perceptual LPIPS [56], MS-SSIM [48], and PSNR
metrics. We also evaluate the realisticity of reconstructed
images by using KID [8] and FID [18] metrics. For the
human facial domain, we measure the ability to preserve
the subject identity of each inversion method by computing
the identity similarity between the source images and the
reconstructed ones using an off-the-shelf face recognition
model CurricularFace [19]. Besides, we also consider the
quality-time trade-off raised by [3] in our evaluation pipeline
by reporting the inference time of each approach.

The results can be found in Table 1. Our method sig-
nificantly outperforms other encoder-based methods for re-
construction quality on both domains. Compared to such
methods using optimization (and fine-tuning) technique, we
have comparable performance. On the human facial domain,
we win against SG2 W+ on L2, LPIPS, and PSNR. On the
churches domain, we significantly outmatchs other method
except PTI on all metrics. PTI still surfers from distortion-

11393



Domain Method L2 (↓) LPIPS (↓) ID (↑) FID (↓) KID(×103) (↓) PSNR (↑) MS-SSIM (↑) Time (s) (↓)

Human
Faces

SG2 W+ [1] 0.0346 0.1250 0.6669 14.39 5.41 20.8771 0.7181 270
PTI [38] 0.0084 0.0851 0.8387 13.83 5.06 25.3447 0.7799 104

pSp [37] 0.0351 0.1613 0.5596 24.20 12.13 20.3277 0.6496 0.0746
e4e [44] 0.0479 0.1992 0.4963 27.57 13.90 19.0703 0.6231 0.0797
ReStyle [3] 0.0436 0.1907 0.5036 24.16 10.80 19.4076 0.6309 0.1932
Ours 0.0243 0.1054 0.6013 15.88 5.63 21.4417 0.6725 0.0920

Churches

SG2 W+ [1] 0.1668 0.3250 / 50.00 7.32 14.8427 0.4797 181
PTI [38] 0.0506 0.0971 / 76.21 28.29 19.0105 0.6968 69

pSp [37] 0.1107 0.3590 / 57.42 14.35 15.7509 0.4070 0.0521
e4e [44] 0.1414 0.4209 / 55.40 11.03 14.7071 0.3481 0.0534
ReStyle [3] 0.1272 0.3775 / 52.16 9.04 15.1849 0.3878 0.1028
Ours 0.0910 0.2226 / 46.96 6.82 16.7152 0.5762 0.0661

Table 1. Quantitative reconstruction results with inference time of our method compared to the state-of-the-art StyleGAN inversion
approaches. The best and runner-up results within encoder-based methods are marked in bold and underline, respectively. Values in blue
and red highlight the cases that we outperform PTI [38] and SG2 W+ [1], respectively.

perception trade-off, exposed by the worst FID and KID.
Overall, while our method does not outperform optimization-
based methods completely, it is 3000× and 1100× faster
than SG2 W+ and PTI, respectively. Further reducing the
performance gap for encoder-based and optimization-based
(with generator fine-tuning) methods is left for future work.
Qualitative Results We visualize the reconstructions in Fig-
ure 4. For faces, we found that our method is particularly
robust at preserving details of the accessories, e.g., see the
cowboy hat example, and the background, e.g., see the
hand example. These curated results also highlight that
optimization-based methods do not perform well in such
cases (despite they are better overall, which is reflected in
the quantitative results in Table 1). In churches domain,
our method reconstructed images significantly better than
other methods including both PTI and SG2 W+ in terms of
both distortion and perception. Since PTI suffers from the
distortion-perception trade-off as mentioned above, so the
pictures from PTI are not completely realistic. Additional
qualitative results can be found in the supplementary.

4.3. Editing Results

Quantitative Results. We first perform a quantitative evalu-
ation for editing ability. Following previous works [38, 59],
we present an experiment to test the effect of editing op-
erator with the same editing magnitude on the latent code
inverted by different inversion methods. We opt for age and
rotation for two editing directions in this experiment. Given
the latent code w, we apply the editing operator to obtain the
new latent code as wedit = w + γ ∗ d where γ is the editing
magnitude and d is the semantic direction learned by Inter-
FaceGAN [41]. To quantitatively evaluate the editing ability,
we measure the amount of age change for age edit and yaw
angle change (in degree) for pose edit when applying the

Dir. γ e4e ReStyle SG2 W+ PTI
Ours

(W enc.)
Ours
(full)

A
ge

-3 -9.51 -4.55 -5.45 -11.17 -22.69 -20.58
-2 -5.6 -2.78 -3.79 -6.71 -15.96 -12.01
-1 -2.44 -1.2 -1.92 -3.15 -5.51 -4.56
1 2.72 1.24 2.17 2.68 6.55 4.78
2 6.82 3.47 4.15 6.08 13.04 9.8
3 11.64 5.61 6.79 10.3 20.41 14.25

Po
se

-3 7.68 5.14 5.79 8.50 13.63 11.56
-2 5.21 3.57 3.99 5.96 9.01 7.73
-1 2.75 1.85 2.00 3.15 4.64 4.01
1 -2.75 -1.77 -1.90 -2.95 -4.99 -4.17
2 -5.36 -3.50 -3.83 -5.89 -9.83 -8.39
3 -7.96 -5.14 -5.70 -8.88 -15.06 -12.93

Table 2. Quantitative evaluation of editability. We measure the
amount of age change for age edit and yaw angle change (in degree)
for pose edit when applying the same editing magnitude γ on each
method. The best and runner-up values are marked in bold and
underline, respectively.

same γ on each baseline. We employ the DEX VGG [39]
model for age regression, and a pre-trained FacePoseNet
[20] for head pose estimation. The results are shown in Ta-
ble 2. As can be seen, as we expected, the inversion done by
our Phase I W encoder achieves the most significant effects
since it works on highly editable W-space latent code. After
Phase 2 refinement, our method still preserves the capability
of editing, outperforming all previous methods despite not
being as good as the results in Phase 1.

Qualitative Results. We show the qualitative results for
editing in Figure 5. As our reconstruction is generally more
robust than other encoder-based methods (e4e, ReStyle), it
also allows better editing results. As can be seen, our work
can perform reasonable edits while still preserving faithfully
non-editing attributes, e.g., background. In comparison to
SG2 W+, our method produces significant editing effects
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Figure 5. Qualitative editing comparison of our method with existing StyleGAN inversion works. Editing directions on human facial
domain are obtained from InterFaceGAN [41], while those for church domain are from GANSpace [16]. More visual examples can be found
in supplementary material.

with fewer artifacts, e.g., beard. The reason is that our work
uses the W space, which has excellent editing ability, while
SG2 W+ uses the extension W+ space, which suffers from
a lower editability. Since PTI uses latent code on W space to
edit, so as same as our method, on the human facial domain,
they can do editing operations quite well. However, in the
church domain, as PTI suffers from the distortion-perception
trade-off, the reconstructed images are not realistic, leading
to later editing of those images is not impressive.

4.4. User survey

We further conduct a user survey to evaluate the recon-
struction and editing ability of our method through human
perceptual assessment. In this survey, we only compare our
method with other state-of-the-art encoder-based inversion
ones including e4e [44], and ReStyle [3]. We skip compar-
ing with pSp [37] since Tov et al. [44] pointed out that the
latent code inverted by pSp is not good for editing, and they
proposed e4e to fix this weakness. The setup of this user
survey can be found in the supplementary. Figure 6 demon-
strated our human evaluation results. As can be seen, our
method outperforms e4e and ReStyle by a large margin on
both reconstruction and editing quality. Notably, our method
gets favored in 71.8% of reconstruction tests, 2.5 times e4e
and ReStyle combined.

4.5. Ablation Study

Is Phase II required? Figure 7 and the row (2) in Table 3
demonstrate the importance of our phase II in improving
the reconstruction quality. As can be seen, without this
phase, the reconstruction quality is significantly dropped,
illustrated by all quantitative metrics. In Figure 7, we can
see that the reconstructed images lose various details such as
hat, shadowing, background, makeup, and more. In contrast,

e4e ReStyle Ours0%

20%

40%

60%

80%

100%

16.3%
11.8%

71.8%

Reconstruction

e4e ReStyle Ours0%

20%

40%

60%

80%

100%

20.0% 20.6%

59.4%

Editability

Ranking
3rd (Worst)
2nd

1st (Best)

Figure 6. User study results. We reported the percentage of times
testers rank the method at 1st (best), 2nd, and 3rd (worst) based on
two criteria, which are reconstruction and editing quality. As can
be seen, our method outperforms e4e and ReStyle with a large gap.

No. Method L2 (↓) LPIPS (↓) ID (↑) PSNR (↑)

(1) Ours (full) 0.0243 0.1054 0.6013 21.4417
(2) (1) w/o Phase II 0.0539 0.2145 0.3983 18.6522
(3) (1) w/o x̂w feat. 0.0313 0.1264 0.5412 20.4963
(4) (1) w/o layer-wise 0.0287 0.1173 0.5768 20.7693

(5) D = 32 0.0378 0.1492 0.5251 19.8097
(6) D = 64 0.0308 0.1285 0.5571 20.5361
(7) D = 128 0.0253 0.1103 0.5939 21.2115
(8) D = 256 0.0243 0.1054 0.6013 21.4417

Table 3. Ablation study on human faces.

with the refinement from phase II, our method can recover
the input image faithfully.
Should we fuse the appearance codes? We test the ef-
fectiveness of our design for extracting and using the ap-
pearance code in Phase II. Firstly, we compare our full ver-
sion, which uses the appearance code h in the layer-wise
design (h ∈ RL×1024×8×8), with the code-sharing version
(h ∈ R1024×8×8). Secondly, we test the effectiveness of
using both the features from the input image x and the initial
image x̂w in computing appearance code h. We compare
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Figure 7. Visual examples demonstrating the effectiveness of our
proposed second phase. Best viewed in zoom.

our method with the version using only the features from the
input image x. The results of these experiments are shown
in rows (3) and (4) in Table 3, respectively. As can be seen,
our full version significantly surpasses the simplified ones.
Different choices of hyperparameter D in hypernetwork.
We empirically find that the hidden dimension D in our
hypernetworks’s design has a remarkable effect on the model
performance. Rows (5), (6), (7), (8) in Table 3 investigates
different choices of D, proving that D = 256 is best option.
Which layers in the generator are updated? We also vi-
sualize the residual weights predicted by the hypernetworks
to analyze which StyleGAN layers change the most when
applying Phase II. Specifically, we choose to visualize the
mean absolute amount of weight change between the pa-
rameters of each layer and compare this value with other
layers. This statistic is calculated from the residual weights
predicted by our method on 2, 824 images in the CelebA-HQ
test set. Figure 8 visualizes this analysis. From this figure,
we draw two following insights. First, the convolution layers
in main generator blocks contribute more significantly than
the convolution layers in torgb blocks. Second, the weight
change for the last resolution (1024× 1024) is significantly
larger than the ones for other resolutions. As we expected,
on human faces, since the first phase reconstructed images
quite well overall, therefore in phase II, they should mainly
focus on refining the fine-grained details. This argument is
supported well by insight 2.
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Figure 8. Visualizing the statistic of residual weights.
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Figure 9. Real-world image interpolation results.

4.6. Application: Real-world Image Interpolation

In this section, we present a new approach to interpolate
between two real-world images. Given two input images,
a common-used process is first to find the corresponding
latent codes via GAN inversion, compute the linear interpo-
lated latent codes, and pass it through the GAN model to get
the interpolated images. Motivated by our two-phase inver-
sion mechanism, we propose a new interpolation approach
by interpolating both latent codes and generator weights
instead of using only latent codes as the common existing
pipeline. Figure 9 shows some qualitative results comparing
our method with the ones interpolating only latent codes. As
can be seen, our method not only reconstructed input images
with correctly fine-grained details (e.g., hat, background, and
hand) but also provided the smooth interpolated images.

5. Conclusion
This paper presented a fully encoder-based method for

solving the StyleGAN inversion problem using a two-phase
approach and the hypernetworks to refine the generator’s
weights. As a result, our method has high fidelity reconstruc-
tion, excellent editability while running almost real-time.

Despite the promising results, our work is not without
limitations. As an encoder-based method, it generates high-
quality images but appears not completely better than ap-
proaches based on per-image optimization such as SG2 W+,
PTI in terms of metrics. However, we also include some
cases in Figure 4 to show that both SG2 W+ and PTI can
yield inaccurate reconstruction. We advocate further devel-
opment of encoder-based methods to reduce such a perfor-
mance gap since encoder-based methods (including ours) run
faster at inference, which makes them more suitable for in-
teractive and video applications. Specially, our work can be
further improved by applying iterative refinement [3], multi-
layer identity loss [49], or extending to StyleGAN3 [26].

11396



References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan latent
space? In ICCV, 2019. 1, 2, 5, 6

[2] Abien Fred Agarap. Deep learning using rectified linear units
(relu). arXiv preprint arXiv:1803.08375, 2018. 4

[3] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle:
A residual-based stylegan encoder via iterative refinement. In
ICCV, 2021. 1, 5, 6, 7, 8

[4] Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and
Amit H. Bermano. Hyperstyle: Stylegan inversion with hy-
pernetworks for real image editing, 2021. 3

[5] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff,
Bolei Zhou, Jun-Yan Zhu, and Antonio Torralba. Semantic
photo manipulation with a generative image prior. TOG, 2019.
2

[6] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hen-
drik Strobelt, Bolei Zhou, and Antonio Torralba. Seeing what
a gan cannot generate. In ICCV, 2019. 2

[7] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza,
Bolei Zhou, and Antonio Torralba. Understanding the role of
individual units in a deep neural network. Proceedings of the
National Academy of Sciences, 2020. 1
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