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Abstract

Fitting geometric models onto outlier contaminated data
is provably intractable. Many computer vision systems rely
on random sampling heuristics to solve robust fitting, which
do not provide optimality guarantees and error bounds. It
is therefore critical to develop novel approaches that can
bridge the gap between exact solutions that are costly, and
fast heuristics that offer no quality assurances. In this pa-
per, we propose a hybrid quantum-classical algorithm for
robust fitting. Our core contribution is a novel robust fit-
ting formulation that solves a sequence of integer programs
and terminates with a global solution or an error bound.
The combinatorial subproblems are amenable to a quan-
tum annealer, which helps to tighten the bound efficiently.
While our usage of quantum computing does not surmount
the fundamental intractability of robust fitting, by provid-
ing error bounds our algorithm is a practical improvement
over randomised heuristics. Moreover, our work represents
a concrete application of quantum computing in computer
vision. We present results obtained using an actual quantum
computer (D-Wave Advantage) and via simulation1.

1. Introduction
Imperfections in sensing and processing in computer vi-

sion inevitably generate data that contain outliers. There-
fore, it is necessary for vision pipelines to be robust against
outliers in order to mitigate their harmful effects.

In 3D vision, where a major goal is to recover the scene
structure and camera motion, a basic task is to fit a geo-
metric model onto noisy and outlier prone measurements.
This is often achieved through the consensus maximisation
framework [18]: given N data points D = {pi}Ni=1 and a
target geometric model parametrised by x ∈ Rd, let PN be
the power set of index set {1, . . . , N}. We aim to solve

max
I∈PN , x∈Rd

|I|

s.t. ri(x) ≤ ϵ ∀i ∈ I,
(1)

1Source code: https://github.com/dadung/HQC-robust-fitting

where ri(x) is the residual of point pi w.r.t. x, and ϵ is a
given inlier threshold. The form of ri(x) depends on the
specific geometric model (more details in Sec. 3). A can-
didate solution (I,x) consists of a consensus set I and its
“witness” (an estimate) x, where the points in I are the in-
liers of x. Problem (1) seeks the maximum consensus set
I∗, whose witness x∗ is a robust estimate of the model2.

Many computer vision systems employ random sam-
pling heuristics, i.e., RANSAC [32] and its variants (e.g., [5,
6, 20, 57, 68, 69]), for consensus maximisation. The ba-
sic idea is to repeatedly fit the model on randomly sam-
pled minimal subsets of D, and return the x̃ with the largest
consensus set Ĩ. Such heuristics can only approximate (1)
and generally do not provide optimality guarantees or er-
ror characterisation, e.g., a tight bound on the discrepancy
|I∗| − |Ĩ|. Moreover, x̃ is subject to randomness, and post-
processing or reruns are often executed to vet the result.

Unfortunately, consensus maximisation is provably in-
tractable [4, 16], hence there is little hope in finding effi-
cient algorithms that can solve it exactly. While there has
been active research into globally optimal algorithms [13,
17, 44, 54, 55], such techniques are realistic only for small
input instances (small d, N and/or number of outliers [17]).

Bridging the gap between exact algorithms that are
costly and randomised heuristics that offer no quality as-
surances is an important research direction in robust fitting
with practical ramifications. Towards this aim, determinis-
tic approximate algorithms [14, 41, 42, 59, 73] eschew ex-
haustive search (e.g., branch-and-bound) and randomisa-
tion, and instead adopt deterministic subroutines such as
convex optimisation, proximal splitting, etc. These methods
avoid the vagaries of random sampling, and some can even
guarantee convergence [41, 42, 59]. However, none of them
provide error bounds. Indeed, complexity results [4,16] also
preclude efficient approximate solutions with error bounds.

Partly buoyed by the dominance of deep learning in com-
puter vision, learning-based solutions to robust geometric
fitting have been developed [10, 60, 70]. Such techniques
leverage statistics in large datasets to learn a mapping from

2This also depends on using a correct ϵ. The large volume of works that
apply consensus maximisation suggest setting ϵ is usually not a concern.
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the input instance to the desired solution. Despite show-
ing promising results in benchmark datasets, learning meth-
ods do not provide optimality guarantees and error bounds.
Whether the learned model can generalise is also a concern.

To summarise, existing algorithms for robust fitting, par-
ticularly those targeted at consensus maximisation, have yet
to satisfactorily solve the problem. It is thus worthwhile to
investigate novel approaches based on new insights.

Our contributions We propose a new approach that
leverages quantum computing for consensus maximisation.
Our core contribution is a consensus maximisation algo-
rithm that iteratively solves a sequence of integer programs
and terminates with either x∗ or a suboptimal solution x̃
with a known error bound |I∗| − |Ĩ| ≤ ρ. The integer pro-
grams are amenable to a quantum annealer [64, Chap. 8],
which is utilised to tighten the bound efficiently. Since our
method employs convex subroutines and random sampling,
it is a hybrid quantum-classical algorithm [11, 36, 40, 56].

We will present results using an actual quantum com-
puter, the D-Wave Advantage [23], as well as simulation.
While our technique does not yet outperform state-of-the-
art algorithms, in part due to the limitations of current quan-
tum technology, our work represents a concrete application
of quantum computing in computer vision. We hope to in-
spire future efforts on this topic in the community.

2. Related work
In Sec. 1, we have provided an overview of robust fitting

and recent algorithmic advances. We thus focus our survey
on quantum computing in computer vision.

Many quantum methods have been proposed for image
processing [15, 27, 71, 74], image recognition [26, 50, 51],
and object detection [45]. Also, several methods explored
the tasks of classification and training a deep neural net-
work [39, 52, 63]. Recently, Golyanik and Theobalt [34]
proposed a practical quantum algorithm for rotation estima-
tion to align two point sets. Their basic idea is to discretise
rotation matrices to formulate the problem to the quadratic
unconstrained binary optimization (QUBO), which can be
solved by quantum annealers. Benkner et al. [7] proposed
to solve the graph matching problem through formulating
the quadratic assignment problem (QAP) to the QUBO us-
ing the penalty approach. They conducted the experiment
and provided analysis on the quantum computer D-Wave
2000Q. However, the limitation of quantum computers pre-
cluded them from solving large problems. To address this
issue, instead of enforcing a penalty to QAP, Q-Match [65]
was proposed to iteratively select and solve subproblems
of QAP, which allows D-Wave annealers to efficiently deal
with large problems. Another interesting work is Quan-
tumSync [8], which addresses the synchronisation problem
in the context of multi-image matching. This work care-
fully formulated the synchronisation problem to the QUBO,

which was then validated on D-Wave Advantage.
The closest work to ours is [19], who proposed a quan-

tum solution for robust fitting. However, there are non-
trivial differences: first, [19] estimates per-point influences
(a measure of outlyingness) [66, 67] for outlier removal in-
stead of consensus maximisation. Second, their algorithm is
based on the gate computing model, which is fundamentally
different from the quantum annealing approach adopted in
our work. Third, the results in [19] are only based on simu-
lation; we will compare against [19] on this basis in Sec. 6.

3. Reformulating consensus maximisation
In this section, we describe our novel reformulation for

consensus maximisation and relevant theoretical results, be-
fore presenting the usage of quantum annealing in Sec. 4
and the overall algorithm in Sec. 5.

3.1. Preliminaries

Following [19], we consider residuals ri(x) that are qua-
siconvex, which encapsulates many geometric models of in-
terest in computer vision [38]. Formally, if the set

{x ∈ Rd | ri(x) ≤ α} (2)

is convex for all α ≥ 0, then ri(x) is quasiconvex. Note that
assuming quasiconvex residuals does not reduce the compu-
tational hardness of consensus maximisation [16].

For C ∈ PN , define the minimax problem

g(C) = min
x∈Rd

max
i∈C

ri(x). (3)

For quasiconvex ri(x), (3) is a quasiconvex program [3,30],
which is polynomial-time solvable. Note that g(C) ≤ ϵ
implies that C is a consensus set, since all the points in C
are within error ϵ to the extremiser of (3).

Define the “feasibility test”

f(C) =

{
0 if g(C) ≤ ϵ;

1 otherwise.
(4)

Any C such that f(C) = 0 implies that C is a consensus set.
Problem (1) can thus be restated as

max
I∈PN

|I|, s.t. f(I) = 0, (5)

with the witness x for any feasible I obtainable through
computing g(I) to evaluate f(I).

Given a consensus set I with witness x, the points in the
complement O = {1, . . . , N} \ I are the outliers to x. The
“dual” of problem (5) is therefore

min
O∈PN

|O|, s.t. f({1, . . . , N} \ O) = 0, (6)

i.e., find the model with the least number of outliers.
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Definition 1 (True inliers and true outliers). Let I∗ be the
maximum consensus set and O∗ = {1, . . . , N} \ I∗. We
call I∗ the “true inliers” and O∗ the “true outliers”.

Property 1 (Monotonicity). For (3) with quasiconvex resid-
uals, given subsets P,Q,R ∈ PN with P ⊆ Q ⊆ R, we
have g(P) ≤ g(Q) ≤ g(R). By extension, we also have
that f(P) ≤ f(Q) ≤ f(R). See [3, 30] for more details.

Intuitively, adding points to a feasible subset can only
potentially make it infeasible; the converse cannot be true.
This leads to the following crucial concept.

Definition 2 (Basis). A basis B ⊂ {1, . . . , N} is a subset
such that g(B′) < g(B) for every B′ ⊂ B.

Intuitively, removing any point from a basis B will cause
the minimax value of the subset to shrink.

Property 2 (Combinatorial dimension). The combinatorial
dimension δ of minimax problem (3) is the upper bound on
the size of bases [3,30]. For quasiconvex ri(x), δ = 2d+1.

Claim 1. If basis B is infeasible, i.e., f(B) = 1, then
|B ∩ O∗| ≥ 1, i.e., an infeasible basis B contains at least
one true outlier.

Proof. See Sec. A in supplementary material.

3.2. Hypergraph vertex cover

Define the binary N -vector

z = [z1, . . . , zN ] ∈ {0, 1}N , (7)

where the set of indices corresponding to nonzero zi’s are

Cz = {i ∈ {1, . . . , N} | zi = 1}. (8)

The outlier minimisation problem (6) can be reexpressed as

min
z∈{0,1}N

∥z∥1, s.t. f({1, . . . , N} \ Cz) = 0, (9)

where zi = 1 implies the i-th point is removed as an outlier.
Let {b(k)}Kk=1 be K binary N -vectors that correspond

to all infeasible bases of the problem, i.e., for each k,

f(Cb(k)
) = 1, ∥b(k)∥1 ≤ δ, (10)

where the latter appeals to the combinatorial dimension
(Property 2). Also, the number of infeasible bases K =
O(Nδ). Define the hypergraph H with vertex set V and
hyperedge set E respectively as

H = {V, E}, V = {1, . . . , N}, E = {Cb(k)
}Kk=1. (11)

Recall that hypergraphs are a generalisation of graphs,
where a hyperedge can be incident with more than two ver-
tices [2]. In our hypergraph (11), each hyperedge connects
vertices that form an infeasible basis; see Fig. 1.

Claim 2. A subset I ⊆ V is a consensus set iff it is an
independent set of hypergraph H .

Proof. See Sec. B in supplementary material.

Claim 2 proves that finding the maximum consensus set
I∗ is equivalent to finding the maximum independent set of
H . Since the complement of an independent set is a vertex
cover, it justifies to minimise the vertex cover

min
z∈{0,1}N

∥z∥1

s.t. bT
(k)z ≥ 1, ∀k = 1, . . . ,K,

(VC)

which is an 0-1 integer linear program (ILP). Setting zi = 1
implies removing the i-th vertex, and the constraints ensure
that all hyperedges are “covered”, i.e., at least one vertex in
each hyperedge is removed (cf. Claim 1).

The hypergraph formalism has been applied previously
in geometric fitting [2,46,47,58]. However, the target prob-
lem in [2, 46, 47, 58] was higher order clustering (e.g., via
hypergraph cuts), which is very distinct from our aims.

Formulation (VC) is impractical for two reasons:
• Hypergraph vertex cover is intractable;
• The number of hyperedges in H is exponential.
However, the form (VC) is amenable to a quantum annealer,
as we will show in Sec. 4. To deal with the number of hy-
peredges, we propose a hybrid quantum-classical algorithm
in Sec. 5 that incrementally generates hyperedges.

4. Quantum solution
We first provide a basic introduction to quantum anneal-

ing, before describing our quantum treatment of (VC).

4.1. Quantum annealing

A quantum annealer solves optimisation problems
through energy minimisation of a physical system. A
Hamiltonian defines the energy profile of a quantum sys-
tem, which is composed of a number of interacting qubits.
The system’s state is initialised at the lowest energy of the
initial Hamiltonian and annealed such that the its final state
gives the desired solution. At the end of the annealing, the
Hamiltonian can be obtained from the following model∑

n

Qnnqn +
∑
n<m

Qnmqnqm = qTQq. (12)

The measurement collapses the N -qubit quantum state into
q = [q1, q2, . . . , qN ], where qn ∈ {0, 1}, Q ∈ RN×N . The
elements of Q define the couplings between qubits and their
biases; see [64, Chap. 8] for more details.

A quantum annealer solves a problem of the form

min
q∈{0,1}N

qTQq, (13)
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(a) Data points with index set {1, . . . , 12}. Infeasi-
ble bases = {1, 5, 6}, = {2, 7, 8}, =

{3, 9, 10}, = {4, 11, 12}, = {1, 2, 3},
= {2, 3, 4}. Outlier set O = {1, 2, 3, 4}. Con-

sensus set I = {5, 6, 7, 8, 9, 10, 11, 12}.
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(b) Hypergraph with vertex set V = {1, . . . , 12}. Hyperedges = {1, 5, 6}, =

{2, 7, 8}, = {3, 9, 10}, = {4, 11, 12}, = {1, 2, 3}, = {2, 3, 4}.
Vertex cover = {1, 2, 3, 4}. Independent set = {5, 6, 7, 8, 9, 10, 11, 12}

Figure 1. (a) Suppose we fit a line x ∈ R2 on N = 12 points {(ai, bi)}Ni=1 on the plane, with residual ri(x) =
∥∥bi − x[ai, 1]

∥∥
2
. The

maximum consensus size is 8. Six infeasible bases are also plotted (colour coded, note that there are in total 281 infeasible bases). (b)
Equivalent hypergraph H for (a) based on our construction (Sec. 3.2). The infeasible basis ≡ hyperedge. Claim 2 implies the maximum
consensus set ≡ maximum independent set, and the minimum outlier set ≡ minimum vertex cover.

which is the quadratic unconstrained binary optimisation
(QUBO). QUBO is intractable on a classical machine, but
a quantum annealer, by virtue of the physical processes de-
scribed above, may solve the problem efficiently. It allows
N -qubits to evolve through superposed and entangled states
(quantum tunnelling), and q is obtained from the final mea-
surement; see Sec. 4.3 on practical limitations.

4.2. Hypergraph vertex cover as QUBO

To simplify description of the main algorithm in Sec. 5,
we first generalise (VC). Let A be a subset of the hyper-
edges E of the hypergraph H:

A = {Ca(m)
}Mm=1 ⊆ E = {Cb(k)

}Kk=1. (14)

Define the 0-1 ILP

I(A) = min
z∈{0,1}N

∥z∥1, s.t. AT z ≥ 1M , (15)

where A ∈ {0, 1}N×M is obtained by horizontally stack-
ing the binary N -vectors {a(m)}Mm=1 corresponding to the
hyperedges in A, and 1M is the vector of M ones.

We can recover (VC) from (15) by setting A = E. Mo-
roever, since A ⊆ E, it is clear that I(A) ≤ I(E).

To formulate (15) as a QUBO, we first convert the in-
equalities into equalities. Define δ′ = δ − 1. For each con-
straint aT(m)z ≥ 1 in (15), we incorporate δ′ binary slack

variables t(m) =
[
tm,1 . . . tm,δ′

]T
into the constraint

aT(m)z− tT(m)1δ′ = 1; (16)

recall that each a(m) has exactly δ elements with value 1.
All M equality constraints can be expressed in matrix form

HA

[
vT 1

]T
= 0, (17)

where v =
[
zT tT(1) . . . tT(m) . . . tT(M)

]T
∈

{0, 1}N+δ′M , HA =
[
AT −S −1M

]
∈

{0, 1}M×(N+δ′M+1), S = IM ⊗ 1T
δ′ , the M ×M identity

matrix IM , and Kronecker product ⊗. Also, the objective
∥z∥1 can be expressed in the quadratic form[

vT 1
]
J
[
vT 1

]T
, (18)

with J =

[
IN 0N×(δ′M+1)

0(δ′M+1)×N 0(δ′M+1)×(δ′M+1)

]
, where 0

is a zero matrix with the size specified in its subscript, and
IN is the N ×N identity matrix.

With penalty parameter λ > 0, we lift the con-
straints (17) into the objective to yield the QUBO

Qλ(A) = min
v∈{0,1}N+δ′M

[
vT 1

]
(J+ λHT

AHA)
[
vT 1

]T
.

(19)

Further algebraic manipulation is required to remove the
constant 1 from (19) before exactly matching (13); see
Sec. C in the supp. material for details. In the following,
we will discuss solving (19) using a quantum annealer.

4.3. Practical considerations and limitations

We frame the discussion here in the context of SOTA
quantum annealer—the D-Wave Advantage [23].

Challenges Problem (19) is an application of the
quadratic penalty method [53, Chap. 17]. While fundamen-
tal results exist that allow Qλ(A) to equal I(A), they invari-
ably require λ to approach a large value. However, the pre-
cision of D-Wave Advantage is limited to 4-5 bits [22, 28],
which precludes the usage of large penalty parameters.

Second, although there are >5000 qubits in D-Wave Ad-
vantage, the topology of quantum processing unit (QPU)
rules out a fully connected model, i.e., the Q matrix allow-
able is not dense [25,49]. Given an arbitrary Q, a minor em-
bedding step [9, 12, 62] is required to map the QUBO onto
the QPU topology. The embedding consumes extra physical
qubits reducing the number of physical qubits available.

As alluded in Sec. 4.1, the annealing process “gradually”
transitions (NB: by human scale the transition is rapid) the
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quantum system from the initial Hamiltonian to the final
Hamiltonian. Current quantum annealers are not able to
completely isolate external noise from the process, which
affects the quality of the solution.

To obtain a useful solution, during the annealing process,
the system must have a non-negligible probability of staying
in the lowest energy state. If the system jumps to a higher
energy state, it will fail in solving the QUBO (19) optimally.
The spectral gap is the minimum gap between the lowest
and the second lowest (higher) energy states, which affects
the probability of staying in the lowest energy state; see [24,
31] for details. We will investigate the spectral gap issue in
Sec. D of the supplementary material.

Why quantum annealing? The above issues limit the
scale of problems and quality of solutions attainable with
current quantum annealers. However, quantum technology
is advancing steadily, and the vision community should be
prepared for potential breakthroughs, as like-minded col-
leagues are also advocating [7, 8, 19, 34, 63, 65]. Moreover,
our main algorithm combines quantum and classical com-
putation to leverage the strengths of both paradigms.

5. Main algorithm
Alg. 1 presents our overall algorithm. At its core, our

algorithm aims to solve (VC), i.e., find the minimum outlier
set, but by incrementally generating the hyperedges A ⊆ E.
Other main characteristics of the algorithm are:
• At each iteration, the QUBO (19) based on the current

hyperedges A is solved using quantum annealing.
• The penalty λ for (19) decays following a schedule de-

fined by hyperparameters λ̄, γ and M̄ (Step 6).
• Hyperedges are sampled from a candidate vertex set V ′,

which is updated based on the current results (Sec. 5.2).
The algorithm terminates with the best estimate zbest of the
minimum outlier set and the sampled hyperedges A.

In the following, we show how the outputs of Alg. 1 can
be used to derive an error bound for consensus maximisa-
tion, and the rationale of our hyperedge sampling technique.

5.1. Error bound
Consider the relaxation of (15)

LP (A) = min
z∈[0,1]N

∥z∥1, s.t. AT z ≥ 1M (20)

which is a linear program. We must have that

LP (A) ≤ I(A) ≤ I(E). (21)

Due to the factors in Sec. 4.3, the solution z by the quantum
annealer on (19) can be suboptimal. Given the best solution
zbest, if the Ibest = V \ Czbest is a consensus set, by Claim 2,
zbest is a vertex cover of (VC). We must have that

LP (A) ≤ I(E) ≤ ∥zbest∥1. (22)

Algorithm 1 Hybrid Quantum-Classical Robust Fitting.
Note: Only Step 8 invokes the quantum annealer.
Require: Data D = {pi}Ni=1, inlier threshold ϵ, maximum

iterations M , penalty λ with decay parameters λ̄, γ, M̄ .
1: Initialise hyperedge set A ← ∅, candidate vertices
V ′ ← V , best outlier set zbest ← 1N .

2: for m = 1 to M do
3: a(m) ← Active set of V ′ (see Sec. 5.2).
4: A← A ∪ {Ca(m)

}.
5: if m mod M̄ = 0 then
6: λ← max(λ/γ, λ̄).
7: end if
8: v = [z t]← Solve (19) using quantum annealing
9: if f(V \ Cz) = 0 then

10: I ← V \ Cz (found a consensus set).
11: if ∥z∥1 < ∥zbest∥1 then
12: zbest ← z.
13: end if
14: V ′ ← Cz ∪ {random subset of I} (see Sec. 5.2).
15: else
16: V ′ ← V \ Cz (see Sec. 5.2).
17: end if
18: end for
19: return Outlier set estimate zbest and hyperedge set A.

Using the fact that |I∗| = N − I(E), we thus have

|I∗| − |Ibest| ≤ ∥zbest∥1 − LP (A). (23)

If the RHS is 0, then Ibest is the globally optimal solution.

5.2. Heuristic for sampling hyperedges
Recall that a hyperedge is an infeasible basis. A simple

way to generate hyperedges is to randomly sample δ-subsets
from V until we find an infeasible subset, which will not
be efficient. To improve efficiency, our sampling technique
maintains a candidate vertex set V ′ ⊆ V where f(V ′) = 1,
and takes the active set S of V ′ [3, 30], where

g(S) = g(V ′), (24)

as a hyperedge. Intuitively, the active set of V ′ is a basis
with equal value with V ′. To generate diverse hyperedges,
two strategies are employed to maintain V ′:
• Take V ′ = V \ Cz if it is not a consensus set (Step 16);
• If a new consensus set I = V \ Cz is found (Step 10), set
V ′ as the union of Cz with a random subset of I (Step 14).

5.3. Hyperparameter selection
The penalty value and decay schedule play important

roles in Alg. 1 to quickly find a consensus set and tighten
the error bound, see Sec. E in supplementary material for
details. The precise values for the parameters used and/or
investigated in our experiments will be provided in Sec. 6.
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6. Experiments

6.1. Synthetic data

We first examine the performance of D-Wave Advantage
(version 1.1) [23] on our robust fitting formulation via syn-
thetic data. We generated 2D points D = {(ai, bi)}Ni=1

for 1D linear regression (x ∈ R1) with residual ri(x) =
|aix − bi|, where 0 ≤ ai, bi ≤ 1. For a randomly chosen
ground truth x, a proportion of the points are corrupted with
Gaussian noise of σin = 0.1 to form inliers, with the rest
by Gaussian noise of σout = 1.5 to simulate outliers.

Due to the cost of accessing the QPU, our results in
this subsection were not derived from many data repeti-
tions. However, each QPU input instance was invoked with
10,000 anneals, which typically consumed ≈ 1.3 seconds.
Also, see Sec. F in the supp. material for details on embed-
ding (19) (e.g., number of qubits, runtime) onto the QPU.

Comparison between CPU and QPU. We first compare
CPU and QPU performance on our QUBO (19) (i.e., in-
dependent of Alg. 1), with A containing all hyperedges E.
The CPU solver used was Gurobi [35], which solves (19)
exactly via exhaustive search, hence practical only for small
instances. Fig. 2 plots the number of outliers ∥z∥1 (lower is
better) optimised by the solvers as a function of
• Penalty λ ∈ [0.1, 100], with N = 50, outlier ratio = 0.2.
• Outlier ratio ∈ [0.1, 0.6], with N = 20, λ = 1.0.
• N ∈ [10, 100], with λ = 1.0, outlier ratio = 0.2.
As expected (see Sec. 4.3), the gap in quality between the
QPU solution and the “ground truth” provided by Gurobi
increased with the examined parameters, indicating that the
QPU is more reliable on “easier” instances of (19).

Main algorithm Fig. 3 illustrates running Alg. 1 on syn-
thetic 1D linear regression instances with N = 20, 50, and
100 points, each with outlier ratio 0.2. The QUBO subrou-
tine (19) in the main algorithm was solved using the QPU
with λ = 1.0 (no λ decay was done). The values ∥z∥1
and LP (A) were plotted as a function of the size of A, i.e.,
number of hyperedges. The results mainly illustrate the fea-
sibility of solving robust fitting using quantum annealing.

Comparing to simulated annealing In the context of
Alg. 1, we compared quantum annealing (QA) and simu-
lated annealing (SA) [37] (on CPU with 10,000 anneals) in
solving the QUBO subroutine (Line 8 of Alg. 1). A syn-
thetic 1D linear regression instance with N = 20 and out-
lier ratio 0.2 was generated. The penalty λ was set to 0.5
(no λ decay was done). Fig. 4 shows the runtime of QA and
SA across the iterations of Alg. 1 (for QA, the cost of em-
bedding (19) onto the QPU was excluded; again, see Sec. F
in the supp. material for details), and the Hamming distance
between the z’s found by the methods in each iteration.
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Figure 2. Comparisons between CPU and QPU on QUBO (19).
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Figure 3. Number of outliers ∥z∥1 optimised by QPU and lower
bound LP (A), plotted across the iterations of Alg. 1.

The results illustrate that the runtime of SA (on CPU)
grew steadily as the number of sampled hyperedges A in-
creased, whereas the runtime of QA remained largely con-
stant across the iterations, which suggests that the underly-
ing physical processes of QA were not affected significantly
by problem size (as long as the problem “fits” on the QPU).
Also, Fig. 4 shows the solutions obtained by QA and SA are
largely the same; this supports using SA in place of QA to
examine the efficacy of Alg. 1 on larger sized real data.

6.2. Real data

We tested our method on real data for fundamental ma-
trix estimation and multi-view triangulation. We used SA
(on CPU) in place of QA to allow Alg. 1 to handle bigger
problems. Two variants of Alg. 1 were executed:
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Figure 4. Comparing quantum annealing (on D-Wave Advantage)
and simulated annealing (on classical computer).

• Alg. 1-E, where the algorithm was terminated as soon as
a consensus set was found (Line 10).

• Alg. 1-F, where the algorithm was run until the maximum
iterations M (300 for fund. matrix, 200 for triangulation).
We compared our method to i) random sampling meth-

ods: RANSAC (RS) [32], LO-RANSAC (LRS) [20], and
Fixing LO-RANSAC (FLRS) [43], ii) deterministic algo-
rithms: Exact penalty (EP) [41], and Iterative biconvex
optimization (IBCO) [14], and iii) quantum robust fitting
(QRF) [19]. Each method was run 100 times and average
results were reported. All experiments were conducted on a
system with 2.6 GHz processor and 16 GB of RAM.

6.2.1 Fundamental matrix estimation.
We evaluated our method on linearised fundamental ma-
trix fitting [61, Chapter 4], where x ∈ R8. We used inlier
threshold ϵ = 0.03 for the algebraic residual (convex in x,
hence also quasiconvex), and penalty parameters λ = 1.0,
γ = 0.5, M̄ = 50, and λ̄ = 0.01.

We used three image pairs from VGG [72] (Castle, Val-
bonne, and Zoom) and three image pairs from sequence 00
of KITTI odometry [33] 3 (frame indices 104-108, 198-201,
and 738-742). In each pair, SIFT features [48] were ex-
tracted and matched using VLFeat [1]; Lowe’s second near-
est neighbour test was also applied to prune matches.

Fig. 5 shows the intermediate outputs of Alg. 1-F on
Castle, KITTI 198-201 and KITTI 738-742, particularly the
lower bound of the solution. See Sec. G in the supplemen-
tary material for the plots for the other image pairs.

Table 1 compares our method with the others. Overall,
the quality of our method was comparable to the others,
with Alg. 1-F providing higher quality and tighter bound
than Alg. 1-E. Note that only our method returned error
bounds (Sec. 5.1), which allowed to deduce that Alg. 1-F
found consensus sets that were close to the optimum. As

3CC BY-NC-SA 3.0 License [21].

expected, the fastest methods were the random sampling
approaches. Our method was much slower than the others,
mainly due to the usage of SA. However, our experiments in
Sec. 6.1 shows that QA can improve the speed of SA up to
a factor of 10 without affecting solution quality (see Fig. 4).
Hence, we expect Alg. 1 to be more competitive as quantum
annealer capacity improves. Fig. 6 qualitatively illustrates
the results of Alg. 1-E.

(a) Zoom

(b) KITTI 104-108

Figure 6. Qualitative results of Alg. 1-E on fundamental matrix es-
timation. Green and red lines represent inliers and outliers found.

6.2.2 Multi-view triangulation
Points 134 & 534 from Nikolai, points 1 & 14 from Linkop-
ing, and points 3 & 132 from Tower [29] were used. In this
task, 3D coordinates of those 3D points (x ∈ R3) were esti-
mated using reprojection error (which is quasiconvex [38])
under outliers. The inlier threshold and penalty were re-
spectively ϵ = 1 pixels and λ = 5. The decay parameters
were γ = 0.5, M̄ = 50, and λ̄ = 0.03.

Fig. 7 shows the intermediate outputs of Alg. 1-F on
Nikolai point 134, Linkoping point 1 and Tower point 132,
particularly the lower bound of the solution. See Sec. G in
the supplementary material for the plots for the other points.
Interestingly, the results show that it was more difficult to
find a tight lower bound here (especially Nikolai point 134
and Linkoping point 1). This could be due to numerical
inaccuracies in solving the minimax problem (3) for quasi-
convex residuals [3, 30], which affected the efficacy of hy-
peredge sampling. Table 2 shows the quantitative results; a
similar conclusions as that of Table 1 can be drawn. In par-
ticular, note that only our method was able to provide error
bounds; in the case of Tower point 132, the global solution
was provably found by the algorithm (gap is zero).

7. Weaknesses and conclusions
There are two main shortcomings: First, Alg. 1 was val-

idated on an actual quantum computer only for small scale
synthetic data (for reasons covered in Sec. 4.3). To fully
realise the potential of the algorithm, testing with real data
on a quantum computer is needed. Second, our results re-
veal that the hyperedge sampling procedure is also crucial
to Alg. 1. Developing a more effective way of sampling
hyperedges is an interesting research direction.
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Figure 5. Fundamental matrix estimation, where number of outliers ∥z∥1 and lower bound LP (A), plotted across the iterations of Alg. 1-F.

Method RS [32] LRS [20] FLRS [43] EP [41] IBCO [14] QRF [19] Alg. 1-E Alg. 1-F
Castle |I| (Error bound) 74 (−) 74 (−) 74 (−) 70 (−) 76 (−) 73 (−) 72 (8.17) 76 (1.41)
N = 84 Time (s) 0.20 0.11 0.20 0.25 0.34 199.48 18.07 1998.87
Valbonne |I| (Error bound) 34 (−) 36 (−) 36 (−) 33 (−) 38 (−) 29 (−) 36 (6.00) 36 (4.00)
N = 45 Time (s) 0.21 0.20 0.31 0.34 0.44 110.30 6.71 1915.82

Zoom |I| (Error bound) 90 (−) 91 (−) 91 (−) 92 (−) 95 (−) 89 (−) 93 (9.91) 94 (3.64)
N = 108 Time (s) 0.31 0.29 0.14 0.21 0.35 257.03 92.35 2109.13

KITTI 104-108 |I| (Error bound) 309 (−) 313 (−) 312 (−) 318 (−) 321 (−) 256 (−) 320 (9.91) 324 (2.30)
N = 337 Time (s) 0.04 0.04 0.07 0.28 0.39 799.33 137.26 2408.04

KITTI 198-201 |I| (Error bound) 306 (−) 308 (−) 307 (−) 308 (−) 312 (−) 309 (−) 308 (10.00) 312 (1.89)
N = 322 Time (s) 0.05 0.13 0.07 0.23 0.42 774.06 36.15 2350.39

KITTI 738-742 |I| (Error bound) 481 (−) 483 (−) 483 (−) 491 (−) 492 (−) 447 (−) 492 (5.88) 493 (1.39)
N = 501 Time (s) 0.05 0.18 0.23 0.53 0.61 1160.12 22.46 2506.04

Table 1. Fundamental matrix estimation results. Alg. 1 employed simulated annealing (quantum annealing could be faster by 10 times).
Only Alg. 1 amongst all methods compared here returned error bounds.
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Figure 7. Multi-view triangulation, where number of outliers ∥z∥1 and lower bound LP (A) plotted across the iterations of Alg. 1-F.

Method RS [32] LRS [20] FLRS [43] EP [41] IBCO [14] QRF [19] Alg. 1-E Alg. 1-F
Nikolai point 134 |I| (Error bound) 21 (−) 21 (−) 21 (−) 21 (−) 21 (−) 21 (−) 21 (1.00) 21 (0.00)

N = 24 Time (s) 0.24 0.32 0.30 0.34 0.36 158.39 6.12 159.28
Nikolai point 534 |I| (Error bound) 16 (−) 16 (−) 16 (−) 15 (−) 17 (−) 17 (−) 16 (2.00) 16 (1.00)

N = 20 Time (s) 0.27 0.35 0.25 0.29 0.32 154.63 8.71 147.14
Linkoping point 1 |I| (Error bound) 15 (−) 15 (−) 15 (−) 14 (−) 16 (−) 14 (−) 13 (5.75) 13 (5.75)

N = 25 Time (s) 0.25 0.30 0.34 0.38 0.47 175.83 20.05 153.79
Linkoping point 14 |I| (Error bound) 36 (−) 36 (−) 36 (−) 35 (−) 37 (−) 32 (−) 37 (4.67) 37 (4.27)

N = 52 Time (s) 0.27 0.44 0.38 0.53 0.64 360.37 130.10 194.46
Tower point 3 |I| (Error bound) 73 (−) 73 (−) 73 (−) 73 (−) 73 (−) 73 (−) 72 (3.00) 72 (1.00)

N = 79 Time (s) 0.28 0.64 0.32 0.36 0.43 555.27 27.26 177.43
Tower point 132 |I| (Error bound) 79 (−) 79 (−) 79 (−) 79 (−) 81 (−) 81 (−) 79 (2.75) 81 (0.00)

N = 85 Time (s) 0.30 0.62 0.42 0.51 0.51 563.43 26.33 163.32

Table 2. Multi-view triangulation results. Alg. 1 employed simulated annealing (quantum annealing could be faster by 10 times). Only
Alg. 1 amongst all methods compared here returned error bounds.

Conclusions Our work illustrates the potential of quan-
tum annealing for robust fitting. It outperforms (in simula-
tion) the only other quantum approach in robust fitting [19]
as well as offers an error bound to mitigate the weakness
of current QPU. We hope that our work helps trigger fur-
ther development on applying quantum computers in robust

fitting and computer vision applications.
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[60] René Ranftl and Vladlen Koltun. Deep fundamental matrix
estimation. In Proceedings of the European conference on
computer vision, 2018.

[61] Richard Hartley and Andrew Zisserman. Multiple View Ge-
ometry in Computer Vision. Cambridge University Press,
2004.

[62] Neil Robertson and Paul D Seymour. Graph minors. xiii.
the disjoint paths problem. Journal of combinatorial theory,
Series B, 1995.

[63] Michele Sasdelli and Tat-Jun Chin. Quantum annealing for-
mulation for binary neural networks. International Confer-
ence on Digital Image Computing Techniques and Applica-
tions, 2021.

[64] Wolfgang Scherer. Mathematics of Quantum Computing.
Springer, 2019.

[65] Marcel Seelbach Benkner, Zorah Lähner, Vladislav
Golyanik, Christof Wunderlich, Christian Theobalt, and
Michael Moeller. Q-match: Iterative shape matching
via quantum annealing. In International Conference on
Computer Vision, 2021.

426



[66] David Suter, Ruwan Tennakoon, Erchuan Zhang, Tat-Jun
Chin, and Alireza Bab-Hadiashar. Monotone boolean func-
tions, feasibility/infeasibility, lp-type problems and maxcon.
arXiv preprint arXiv:2005.05490, 2020.

[67] Ruwan Tennakoon, David Suter, Erchuan Zhang, Tat-Jun
Chin, and Alireza Bab-Hadiashar. Consensus maximisation
using influences of monotone boolean functions. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021.

[68] Philip HS Torr and Andrew Zisserman. Mlesac: A new ro-
bust estimator with application to estimating image geome-
try. Computer vision and image understanding, 2000.

[69] Quoc Huy Tran, Tat-Jun Chin, Wojciech Chojnacki, and
David Suter. Sampling minimal subsets with large spans for
robust estimation. International journal of computer vision,
2014.

[70] Giang Truong, Huu Le, David Suter, Erchuan Zhang, and
Syed Zulqarnain Gilani. Unsupervised learning for robust
fitting: A reinforcement learning approach. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2021.

[71] Salvador E Venegas-Andraca and Sougato Bose. Storing,
processing, and retrieving an image using quantum mechan-
ics. In Quantum Information and Computation. International
Society for Optics and Photonics, 2003.

[72] Visual Geometry Group. https://www.robots.ox.
ac.uk/˜vgg/data/. Accessed: 2021-11-02.

[73] Fei Wen, Rendong Ying, Zheng Gong, and Peilin Liu. Ef-
ficient algorithms for maximum consensus robust fitting.
IEEE Transactions on Robotics, 2019.

[74] Fei Yan, Abdullah M Iliyasu, and Salvador E Venegas-
Andraca. A survey of quantum image representations. Quan-
tum Information Processing, 2016.

427


