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Abstract

Low-light image enhancement, a pervasive but challeng-
ing problem, plays a central role in enhancing the visi-
bility of an image captured in a poor illumination envi-
ronment. Due to the fact that not all photons can pass
the Bayer-Filter on the sensor of the color camera, in this
work, we first present a De-Bayer-Filter simulator based
on deep neural networks to generate a monochrome raw
image from the colored raw image. Next, a fully convolu-
tional network is proposed to achieve the low-light image
enhancement by fusing colored raw data with synthesized
monochrome data. Channel-wise attention is also intro-
duced to the fusion process to establish a complementary
interaction between features from colored and monochrome
raw images. To train the convolutional networks, we pro-
pose a dataset with monochrome and color raw pairs named
Mono-Colored Raw paired dataset (MCR) collected by us-
ing a monochrome camera without Bayer-Filter and a color
camera with Bayer-Filter. The proposed pipeline takes ad-
vantages of the fusion of the virtual monochrome and the
color raw images, and our extensive experiments indicate
that significant improvement can be achieved by leverag-
ing raw sensor data and data-driven learning. The project
is available at https://github.com/TCL-AILab/
Abandon_Bayer-Filter_See_in_the_Dark

1. Introduction

For a digitalized image, the quality of the image could
be severely degraded due to the color distortions and noise
under poor illumination conditions such as indoors, at night,
or under improper camera exposure parameters.

Long exposure time and high ISO (sensitivity to light)
are often leveraged in low-light environments to preserve
visual quality. However, overwhelming exposure leads to
motion blur and unbalanced overexposing, and high ISO
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Figure 1. Overview of the proposed pipeline. We propose to gen-
erate monochrome raw data by a learned De-Bayer-Filter mod-
ule. Then, a dual branch neural network is designed to bridge
monochrome and colored raw to achieve the low-light image en-
hancement task.

amplifies the noise. Though the camera’s flash provides
exposure compensation for the insufficient light, it is not
suitable for long-distance shots, and also introduces color
distortions and artifacts. On the other hand, various algo-
rithms have been reported to enhance the low-light image.
Recently, deep neural network models have been utilized
to solve the low-light image restoration problem, such as
DeepISP [22] and Seeing In the Dark (SID) [3].

However, those algorithms are restricted in the image
processing pipeline, as the photons capture rate and quan-
tum efficiency are usually overlooked. In general, high pho-
tons capture rate can improve the image’s visual quality sig-
nificantly. One of the typical examples is the RYYB-based
color filter, which can capture 40% more photons than the
Bayer-RGGB-based color filter1. Hence, the RYYB-based
color filter can achieve better performance naturally.

Bayer filter removal is another plausible way to improve
the photons capture rate. The Bayer filter is an array of

1Bayer filter, Bayer-array, Bayer-array filter are used interchangeably.
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many tiny color filters that cover the image sensor to ren-
der color information (see Fig. 1). By removing the Bayer
filter and sacrificing the color information, the image sen-
sor can capture more photons, which contributes to clearer
visibility under poor illumination conditions compared to a
camera with a Bayer filter (see Fig. 2 (a)). On the other
hand, dual-cameras are one of the trends of today’s smart
devices such as smartphones. One type of dual-camera set
is the combination of monochrome sensor and colored sen-
sor2. The monochrome sensor is usually identical to the
colored sensor but without a Bayer array filter. Such a
dual-camera setting can achieve better imaging quality in
a low-light environment due to more photons received by
the sensor. However, an additional cost is needed for the
extra camera equipped. Therefore, for most mobile phones
that are only equipped with color cameras, preserving the
same low-light image quality produced by dual-camera set
while only using a single color camera is a challenging task.

Motivated by the above discussion, we proposed a fully
end-to-end convolutional neural model that consists of two
modules (as illustrated in Fig. 1): a De-Bayer-Filter
(DBF) module and a Dual Branch Low-light Enhancement
module (DBLE). The DBF module learns to restore the
monochrome raw image from the color camera raw data
without requiring a monochrome camera. DBLE is de-
signed to fuse colored raw with synthesized monochrome
raw data and generate enhanced RGB images.

In addition, we propose a dataset to train our end-to-
end framework. To the best of our knowledge, no existing
dataset contains monochrome and colored raw image pairs
captured by an identical type of sensors. To establish such
a dataset, one camera with a Bayer filter is used to cap-
ture color-patterned raw images. Another camera without
a Bayer-filter but equipped with the same type of sensor is
utilized to capture monochrome raw images (see Fig. 2 (b)).
The dataset is collected under various scenes, and each col-
ored raw image has a corresponding monochrome raw im-
age captured with identical exposure settings.

Our contributions can be summarised as:

1. A De-Bayer-Filter model is proposed to simulate a vir-
tual monochrome camera and synthesize monochrome
raw image data from the colored raw input.The DBF
module aims at predicting the monochrome raw im-
ages, which resembles a monochrome sensor capabil-
ity. To the best of our knowledge, we are the first to ex-
plore removing the Bayer-filter using a deep learning-
based model.

2. We design a Dual Branch Low-light Enhancement
model that is used to fuse the colored raw with the
synthesized monochrome raw to produce the final
monitor-ready RGB images. To bridge the domain gap

2For example, Huawei P9, Moto Z2 Force

between colored raw and monochrome raw, a channel-
wise attention layer is adopted to build an interaction
between both domains for better restoration perfor-
mance. The experiment results indicate that state-of-
the-art performance can be achieved.

3. We propose the MCR, a dataset of colored raw and
monochrome raw image pairs, captured with the same
exposure setting. It is publicly opened as a research
material to facilitate community utilization and will be
released after publication.

2. Related Work
To achieve the low-light image enhancement task,

tremendous methods have been attempted. These methods
can be categorized as histogram equalization (HE) meth-
ods [1, 15, 29], Retinex methods [5, 26, 28, 33], defogging
model methods [4], statistical methods [16,17,23], and ma-
chine learning methods [7, 11, 30, 34]. Recently, several
works on raw image data have been proposed [3,9,22]. Our
work also falls into this category; we will mainly discuss the
existing methods of raw-based approaches in this section.

Deep neural networks have emerged as an approach to
achieve the digital camera’s image signal processing tasks.
In 2018, a fully convolutional model, namely DeepISP, was
proposed in [22] to learn mapping from the raw low-light
mosaiced image to the final RGB image with high visual
quality. To simulate the digital camera’s image signal pro-
cessing (ISP) pipeline, DeepISP first extracts low-level fea-
tures and performs local modifications, then extracts higher-
level features and performs a global correction. L1 norm
and the multi-scale structural similarity index (MS-SSIM)
loss in the Lab domain are utilized for training the Deep-
ISP to simulate the ISP pipeline. When DeepISP is only
used for low-level imaging tasks such as denoising and de-
mosaicing, L2 loss will be utilized. Hence, both low-level
tasks and higher-level tasks such as demosaicing, denois-
ing, and color correction can be achieved by DeepISP. The
results in [22] suggest superior performance compared with
manufacturer ISP.

Another parallel work similar to DeepISP, namely see-
ing in the dark (SID), was proposed in [3]. In SID, a U-
net [21] network is utilized to operate directly on raw sen-
sor data and output human visual ready RGB images. A
dataset of raw short-exposure low-light images with corre-
sponding long-exposure reference images was established
to train the model. Compared with the traditional image
processing pipeline, significant improvement can be made
as the results in [3] indicate. Later, an improved version of
SID was proposed in [27]. Using a similar U-net network as
the backbone, the authors introduced wavelet transform to
conduct down-sampling and up-sampling operations. Per-
ceptual loss [10] is used in [27] to train the network to better
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Figure 2. (a) Images captured by color and monochrome cameras under different exposure time.; (b) Monochrome and color cameras used
in our work for data collection.

restore details in the image. In DID [18], the authors pro-
posed replacing the U-net in SID with residual learning to
better preserve the information from image features. Simi-
lar raw-based approaches have also been applied to videos,
such as [2, 9].

In addition to the raw-based approach, frequency-based
decomposition has also been explored on the low-light im-
age enhancement task. In [31], the authors proposed a
pipeline, namely LDC, to achieve the low-light image en-
hancement task based on a frequency-based decomposi-
tion and enhancement model. The model first filters out
high-frequency features and learns to restore the remain-
ing low-frequency features based on an amplification op-
eration. Subsequently, high-frequency details are restored.
The results from [31] indicate that state-of-the-art perfor-
mance can be achieved by LDC.

Various research has also been done to improve the effi-
ciency of low-light image enhancement in raw domain. To
achieve a computationally fast low-light enhancement sys-
tem, the authors in [14] proposed a lightweight architecture
(RED) for extreme low-light image restoration. Besides, the
authors also proposed an amplifier module to estimate the
amplification factor based on the input raw image. In [6], a
self-guided neural network (SGN) was proposed to achieve
a balance between denoising performance and the computa-
tional cost. It aims at guiding the image restoration process
at finer scales by utilizing the large-scale contextual infor-
mation from shuffled multi-resolution inputs.

Methods discussed above generally learn to map raw
data captured by the camera to the human-visual-ready im-
age. As raw data provides full information, the reviewed
approach achieves state-of-the-art performance. However,
the performance of those methods is upper bounded by the
information contained in the raw data. While in our work,
we consider to introduce extra information beyond the raw-
RGB data.

3. The Method

Motivated by the above discussion and inspired by the
monochrome camera’s high light sensitivity, we propose

a novel pipeline to further push the raw-based approaches
forward. Specifically, our pipeline takes a raw image cap-
tured by a color camera with a Bayer-Filter as input. The
De-Bayer-Filter module in our pipeline will first generate a
monochrome image; a dual branch low-light enhancement
module then fuses the monochrome raw data and color raw
data to produce the final enhanced RGB image. Both mod-
ules work on raw images, as raw images are linearly depen-
dent on the number of photons received, which contains ad-
ditional information compared to RGB images such as the
noise distribution [2, 20]. Details of each module will be
discussed subsequently. A detailed architecture diagram of
our framework is shown in Fig. 3(a) (more details are dis-
cussed in the supplementary). Furthermore, Fig. 3(b-f) and
Fig. 3(g-k) visualize the output of each step of our model
on our dataset and the SID dataset in [3], respectively.

3.1. De-Bayer-Filter Module

Millions of tiny light cavities are designed to collect pho-
tons and activate electrical signals on the camera sensor.
However, using those light cavities alone can only produce
gray images. A Bayer color filter is therefore designed to
cover the light cavities and collect color information to pro-
duce color images. More specifically, a standard Bayer unit
is a 2×2 pixel block with two green, one red and one blue
color filters, and filters of a certain color will only allow
photons with the corresponding wavelength to pass through.

Simulating the camera imaging process using neural net-
works has been demonstrated feasible in several works
[3,20,22]. Inspired by those works, we consider the removal
of the Bayer array filter virtually by modeling the relation-
ship between input and output photons for each color filter.
Specifically, a De-Bayer-Filter (DBF) module is designed in
this work to restore the monochrome raw images Amono ∈
RH×W from the input colored raw Acolor ∈ RH

2 ×W
2 ×4:

AMono = fM (AColor) (1)

where fM (·) is a U-net-based fully convolutional net-
work (see Fig. 3). L1 distance between the ground-truth
monochrome image AGT

Mono and predicted image AMono
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(a) Architecture of the pipeline

(b) Input (c) Mono GT (d) DBF Output (e) RGB GT (f) DBLE Output

(g) Input (h) Synthetic Mono GT (i) DBF Output (j) RGB GT (k) DBLE Output

Figure 3. (a) is the architecture of the pipeline. DBF module is designed to produce a monochrome image from the input raw image. DBLE
module is proposed to fuse color and monochrome raw images to enhance the low-light input image. Each box denotes a multi-channel
feature map produced by each layer. (b)-(f) are the images of our pipeline trained on our dataset. (g)-(k) are the images of our pipeline
trained on SID [3] dataset; we convert RGB ground truth (GT) in SID dataset to gray image to replace the monochrome GT in our dataset.

is used as a loss to encourage the DBF to learn to restore
monochrome images with more details from low-light raw
images. We hypothesize that the generated monochrome
raw image can enhance the low-light image by introducing
more information into the subsequent module.

3.2. Dual Branch Low-Light Image Enhancement
Module

There are many differences between the colored raw im-
age and monochrome image: 1) colored raw images have
mosaic patterns; 2) the colored raw images consist of four
channels with a resolution of H

2 × W
2 , while their coun-

terparts consist of one channel with H × W resolution; 3)

no color information is included in the monochrome im-
ages; 4) better illuminating information is preserved on
monochrome images as the monochrome camera sensor can
better capture the light.

Based on the above observations, we propose a dual
branch low-light image enhancement (DBLE) module (see
Fig. 3), which treats the DBF generated monochrome
raw image and colored raw image separately in the down-
sampling process. Meanwhile, different level feature maps
of the two down-sampling branches are fused based on con-
catenation and followed by channel-wise attention (CA)
layer [8] in the up-sampling branch to synthesize the
human-visual ready RGB image Irgb ∈ RH×W×3. The
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DBLE module is defined as:

IRGB = fC(AColor;AMono), (2)

where fC is a specifically designed fully convolutional net-
work, which is shown in Fig. 3 (a). L1 distance between the
ground truth RGB image IGT

RGB and predicted image IRGB

is used as the loss to encourage the DBLE to learn to restore
visual-ready RGB output from low-light raw images.

As the conventional U-net network treats features from
each channel equally, directly concatenating the feature
map from the monochrome raw branch and colored raw
branch may lead to contradiction due to the domain gap.
The usage of strided convolution and transposed convolu-
tion layers will also lead to spatial information loss. Moti-
vated by [32], after the concatenation operation, a CA layer
[8] is adopted to achieve a channel-wise attention recalibra-
tion in DBLE to bridge the gap between monochrome and
color images. The CA layer can explicitly model the in-
teraction of colored raw and monochrome raw modalities
to exploit the complementariness and reduce contradiction
from both domains.

It has been reported that upsampling layers (transposed
convolutional layers) used in U-net causes images to be dis-
torted by checkerboard artifacts [13, 19, 24, 25]. We also
found such checkerboard artifacts in our settings on U-
net, especially for images with white backgrounds. In our
work, the CA layer also serves a role in avoiding checker-
board artifacts. As downscale and upscale operations are in-
cluded in the CA layer, the CA layer is similar to the resize-
convolution operation which discourages high-frequency
artifacts in a weight-tying manner [19].

3.3. Dataset Design

Mono-Colored Raw Paired (MCR) Dataset. To the best
of our knowledge, no existing dataset contains monochrome
and Bayer raw image pairs captured by the same type of
sensors. To establish the dataset, we capture image pairs of
the same scenes with two cameras, denoted as Cam-Color
and Cam-Mono3. Both cameras have the same 1/2-inch
CMOS sensor and output a 1,280H x 1,024V imaging pixel
array. However, only Cam-Color is equipped with a Bayer
color filter. Cam-Color is used to capture colored raw im-
ages in our work, and Cam-Mono captures monochrome
raw images.

We collect the data in both indoor and outdoor condi-
tions. The illuminance at the indoor scenes is between 50
lux and 2,000 lux under regular lights. The outdoor images
were captured during daytime and night, under sun light-
ing or street lighting, with an illuminance between 900 lux
and 14,000 lux. The captured scenes includes toys, books,
stationery objects, street views, and parks.

3Part Number: MT9M001C12STC/MT9M001C12STM

Table 1. Summary of the dataset

Scenes Exposure time (s) Data Pairs Fixed Settings

Indoor fixed position
1/256, 1/128, 1/64, 1/32,
1/16, 1/8, 1/4, 3/8 2744 pairs Format: .raw,

resolution:
1280*1024Indoor sliding platform

1/256, 1/128, 1/64, 1/32,
1/16, 1/8, 1/4, 3/8 800 pairs

Outdoor sliding platform
1/4096, 1/2048, 1/1024, 1/512,

1/256, 1/128, 1/64, 1/32 440 pairs

The cameras are mounted on the sliding platform on
sturdy tripods or a fixed platform on a sturdy table. When
mounted on the sliding platform, the camera is adjusted to
the same position by sliding the platform to minimize the
position displacement among images captured by two cam-
eras in the same scene. When mounted on the fixed plat-
form, the camera is attached to the same position as the
platform to minimize the position displacement. Camera
gain is set with the camera default value. Focal lengths are
adjusted to maximize the quality of the images under long
exposure. The exposure time is adjusted according to the
specific scene environment.

Position displacement is unavoidable in the capture pro-
cess. Hence, it is necessary to align the images captured
from two cameras. The best exposure colored raw and
monochrome raw is selected to align the images captured
by two cameras in the same scenes. Then, homography
feature matching is utilized to extract key points from the
selected image pair, and a brute force matcher is utilized
to find the matched key points. The extracted locations of
good matches are filtered based on an empirical threshold-
ing method. A homography matrix can be decided based on
the filtered location of good matches. Finally, the homogra-
phy transformation is applied to other images captured from
the same scene. The statistic information of the dataset is
summarized in Table 1. Fig. 2(a) demonstrates a series of
monochrome-colored raw paired images from the dataset.

Artificial Mono-Colored Raw SID Dataset. The origi-
nal SID dataset collected in [3] contains 5,094 raw short-
exposure images taken from the indoor and outdoor en-
vironments, while each short-exposure image has a corre-
sponding long-exposure reference image. The short expo-
sure time is usually between 1/30 second and 1/10 second,
and the exposure time of the corresponding long-exposure
image is 10 to 30 seconds.

However, monochrome images are not available in the
original SID dataset. To address this, we built an artificial
Mono-colored raw dataset based on SID [3] dataset in this
work. More specifically, we first convert the long-exposure
raw images in the original SID dataset to RGB images, and
these RGB images are further converted to grayscale by
forming a weighted sum of the R, G, and B channels, as
shown in Fig. 3(h). Such conversion can eliminate the hue
and saturation information while retaining the luminance
information.
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(a) Input raw (b) CSAIE (c) HE (d) SGN [6] (e) DID [18]

(f) RED [14] (g) SID [3] (h) LDC [31] (i) Ours (j) GT

(A) Input raw (B) CSAIE (C) HE (D) SGN [6] (E) DID [18]

(F) RED (G) SID [3] (H) LDC [31] (I) Ours (J) GT

Figure 4. Visual results of state-of-the-art methods and ours on low-light images RAW in our dataset. The larger boxes show the zoom-in
version of the regions in the smaller boxes of the same color. The ’CSAIE’ means ’Commercial Software Automatic Image Enhancement’.

3.4. Training

By default, we pre-process the input images similarly
to [3] where images’ pixel values are amplified with pre-
defined ratios followed by a pack raw operation. We in-
corporate the CA layer [8] to bridge the domain gap be-
tween features from monochrome and colored raw images.
The whole system is trained jointly with L1 loss to directly
output the corresponding long-exposure monochrome and
sRGB images.

The dataset is split into train and test sets without over-
lapping by the ratio of 9:1. The input patches are randomly
cropped from the original images with 512 × 512. In the
case of raw image input, the RGGB pixel position is care-
fully preserved in the cropping process. We implement our
model with Pytorch 1.7 on the RTX 3090 GPU platform,
and we train the networks from scratch using the Adam [12]
optimizer. The learning rate was set to 10−4 and 10−5 after
converging, and the weight-decay was set to 0.

4. Experiments and Results

In this section, we present a comprehensive performance
evaluation of the proposed low-light image enhancement
system. To measure the performance, we evaluate the
system performance in terms of peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM). For PSNR and
SSIM, a higher value means a better similarity between out-
put image and ground truth.

4.1. Comparison with State-of-the-Art Methods

Qualitative Comparison. We first visually compare the
results of the proposed method with other state-of-the-art
deep learning-based image enhancement methods, includ-
ing SID [3], DID [18], SGN [6], LDC [31], and RED [14].
In addition, the traditional histogram equalization (HE) ap-
proach and a Commercial Software Automatic Image En-
hancement (CSAIE) method are also included in the com-
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Table 2. Comparison with SOTA.

MCR Dataset SID Dataset
PSNR (dB) SSIM PSNR (dB) SSIM

RED [14] (21,CVPR) 25.74 0.851 28.66 0.790
SGN [6] (19,ICCV) 26.29 0.882 28.91 0.789
DID [18] (19,ICME) 26.16 0.888 28.41 0.780
SID [3] (18,CVPR) 29.00 0.906 28.88 0.787

LDC [31] (20,CVPR) 29.36 0.904 29.56 0.799
Ours 31.69 0.908 29.65 0.797

parison. Fig. 4 shows the results of different methods on
two low-light images (see more results in supplementary).

As indicated by Fig. 4, our method can achieve better en-
hancement and denoising visual performance. Specifically,
checkerboard artifacts are usually found on SID for images
with white background. This is because of the usage of up-
sampling layers in the model. Foggy artifacts are usually
observed on SGN; color distortions also are found on SGN,
DID, and RED, as are shown in Fig. 4 (A-J), where the
green plant enclosed by the yellow box becomes black af-
ter restoring by SGN, DID, and RED. Compared to LDC,
our methods can preserve more details as over-smoothing
is usually found on LDC. Note that over-smoothing may be
more visual appealing, but details will be lost, for exam-
ple, the wall crack becomes invisible on LDC as shown in
Fig. 4 (H-I). In a nutshell, Fig. 4 demonstrates the satisfy-
ing visual performance achieved by our method, with fewer
artifacts but more convincing restoration.

Quantitative Comparison. A quantitative comparison
against the state-of-the-art enhancement methods has also
been performed. For a fair comparison, SID [3], DID [18],
SGN [6], LDC [31], and RED [14] were trained on the
MCR dataset.

As Table 2 shows, our proposed method outperforms its
counterparts by a large margin. Specifically, our method can
achieve a PSNR of 31.69dB on MCR dataset, which is 7.9%
higher than the second-best method, i.e., the LDC [31]. Our
method can also achieve an SSIM of 0.908, which is the
highest among all compared methods.

Compared to other methods, we incorporate the ex-
tra monochrome information into the processing pipeline,
hence state-of-the-art performance can be achieved. As
shown in the first two data rows in Table 2, both RED [14]
and SGN [6] can only achieve a PSNR of around 26dB.
Both RED and SGN aim at reducing the computational cost
and improving efficiency. Hence it is reasonable to observe
the performance degradation. The result on DID [18] from
Table 2 suggests that replacing U-net with residual learning
cannot achieve superior performance on our dataset.

On the MCR dataset, SID [3] achieves a PSNR of
only 29.00dB. The checkerboard artifact may be the rea-
son. From Table 2, we observe that LDC [31] achieves the
second-best performance. This is because they are based on

a frequency-based decomposition and enhancement model,
which can better restore the noisy image and avoid noise
amplification. We also train our model on the modified SID
dataset to further validate our method for a fair comparison.
The performance results are shown in the SID column in Ta-
ble 2. As the results suggest, our method also outperforms
all its counterparts. Specifically, our method can achieve a
PSNR of 29.65dB, which is around 0.1dB higher than LDC,
while the SSIM can achieve similar performance.

Other methods including SID, DID, SGN, and RED can
only achieve a PSNR around 28dB. In summary, the results
show that our model is more effective in enhancing low-
light images with noise. The performance of most existing
methods is upper bounded by the information contained in
the raw data. In our proposed pipeline, we further extend
the upper bound by considering the monochrome domain.
Hence, better performance can be achieved.

4.2. Ablation Studies

In this subsection, we provide several ablation studies for
the proposed system to better demonstrate the effectiveness
of each module of our system.

Checkerboard artifacts are found in our preliminary ex-
ploration stage, especially for images with white back-
grounds. To eliminate checkerboard artifacts, we incorpo-
rate the CA layer [8] in the DBLE module. In this ablation
study, we first remove the CA layer in the DBLE module
to demonstrate the checkerboard artifacts’ elimination and
performance upgrading. Besides, we also train an original
SID [3] network on our dataset to show the visual effect
of the checkerboard artifacts of U-net. The restored im-
ages from SID, DBLE without CA layer, and DBLE with
CA layer are shown in Fig. 5. It is observed that checker-
board artifacts can be perfectly avoided by introducing the
CA layer. Besides, as per the quantitative results shown in
Table 3, CA layer can boost the image enhancement perfor-
mance as the PSNR increases to 31.69dB compared with its
counterpart of 29.23dB.

We also train the model to learn the ratio directly in-
stead of amplifying image pixel values with predefined ra-
tios. Hence, we train a model without amplifying the input
raw images with the predefined ratio. As a result, as shown
in Table 3, such a model can still achieve comparable per-
formance, with only a slight decrease in PSNR and SSIM.

As suggested by [3], we change the packraw-based input
into original one-channel raw images. As shown in the row
of baseline without packraw in Table 3, PSNR and SSIM
degradation is observed. We argue that the packing of raw
can assist the model to better process the color information.

The change of loss function from L1 to L2 cannot
achieve better performance, as shown in Table 3. We also
try to change the input raw into sRGB format. The result
in the sRGB row from Table 3 shows a significant perfor-
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(a) GT (b) SID [3] (c) Ours w/o CA [8] (d) Ours with CA [8]

Figure 5. Visual demonstration of checkerboard artifacts under different settings.

Table 3. Ablation study on the MCR dataset.

DBF DBLE
PSNR (dB) SSIM PSNR (dB) SSIM

Baseline 21.0607 0.8254 31.6905 0.9083
Baseline wo CA [8] 20.2673 0.7948 29.2350 0.8732
Baseline wo ratio 19.8978 0.7868 29.3528 0.8878
Baseline wo packraw 20.7846 0.8034 28.8728 0.8657
Baseline l1→l2 20.4587 0.8016 30.2359 0.8974
Baseline w/o DBF - - 29.9946 0.8839
Baseline raw→ sRGB 18.2369 0.7625 27.3521 0.8295

mance drop, which is consistent with other works [3, 31].
The DBF module plays a key role in our system in gen-

erating the monochrome images, which assist the DBLE
module in restoring the low-light images into monitor-ready
sRGB images. We also explore the performance of a
model without DBF module and the monochrome branch.
As the results in Table 3 show, the performance drops
to 29.99dB/0.883 in terms of PSNR/SSIM when the DBF
module is removed, hence providing a solid validation of
the DBF’s effectiveness.

5. Limitations and Future Work

There are various aspects to improve in the future. The
cameras we adopted in this work can only output 8-bit raw
images, the 16-bit cameras will be used to collect data in the
future to cover more diverse scenes and objects. Besides,
the network complexity needs to be more light-weighted to
deploy the proposed system in the real world. Extending
the proposed work to videos will also be one future direc-
tion. We hope the work presented in this paper can pro-
vide preliminary explorations for low-light image enhance-
ment research in community and industry. When it comes
to some extremely dark images on our MCR Dataset, the
existing low-light image enhancement algorithms (SID [3],
LDC [31], and ours) show unsatisfactory results sometimes.
The restored images usually lost the high-frequency edge
information compared to the ground truth image and be-
came blurred (see in supplementary). Extremely dark set-
tings sometimes yield quite weak signals in each color chan-

nel, leading to those color artifacts that commonly exist in
both SoTA and our methods and require further study.

6. Conclusion

Removing the Bayer-filter allows more photos to be cap-
tured by the sensor. Motivated by this fact, this work pro-
poses an end-to-end fully convolutional network consisting
of a DBF module and a dual branch low-light enhancement
module to achieve low-light image enhancement on a sin-
gle colored camera system. The DBF module is devised
to predict the corresponding monochrome raw image from
the color camera raw data input. The DBLE is designed
to restore the low-light raw images based on the raw input
and the DBF-predicted monochrome raw images. DBLE
treats the colored raw and monochrome raw separately by
using a dual branch network architecture. In the DBLE up-
sampling stream, features from both monochrome raw and
colored raw are fused together and a channel-wise attention
is applied to the fused features.

We also propose a Mono-Colored Raw paired dataset
(MCR) which includes color and monochrome raw image
pairs collected by a color camera with Bayer-Filter and a
monochrome camera without Bayer-Filter. The dataset is
collected in various scenes, and each colored raw image has
a corresponding monochrome raw image captured with the
same exposure settings. To better show our superiority, the
SID dataset is also adopted in the evaluation. Gray image
is generated from the corresponding ground truth color im-
age in the SID dataset to serve as the monochrome image.
Subsequently, a model is trained on the modified dataset to
verify the performance.

Our experiments prove that significant performance can
be achieved by leveraging raw sensor data and data-driven
learning. Our method can overcome the checkerboard ar-
tifact which is found on U-net, while preserving the vi-
sual quality. Our quantitative experiments indicate that our
methods can achieve the state-of-the-art performance: a
PSNR of 31.69dB on our own dataset, and 29.65dB on the
SID dataset.
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