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Abstract

Human-Object Interactions (HOI) detection, which aims
to localize a human and a relevant object while recogniz-
ing their interaction, is crucial for understanding a still im-
age. Recently, tranformer-based models have significantly
advanced the progress of HOI detection. However, the ca-
pability of these models has not been fully explored since
the Object Query of the model is always simply initialized
as just zeros, which would affect the performance. In this
paper, we try to study the issue of promoting transformer-
based HOI detectors by initializing the Object Query with
category-aware semantic information. To this end, we in-
novatively propose the Category-Aware Transformer Net-
work (CATN). Specifically, the Object Query would be ini-
tialized via category priors represented by an external ob-
ject detection model to yield a better performance. More-
over, such category priors can be further used for enhanc-
ing the representation ability of features via the attention
mechanism. We have firstly verified our idea via the Or-
acle experiment by initializing the Object Query with the
groundtruth category information. And then extensive ex-
periments have been conducted to show that a HOI detec-
tion model equipped with our idea outperforms the baseline
by a large margin to achieve a new state-of-the-art result.

1. Introduction
Human-Object Interaction (HOI) detection, serving as a

fundamental task for high-level computer vision tasks, e.g.
image captioning, visual grounding, visual question answer,
etc., has attracted enormous attention in recent years. Given
an image, HOI detection aims to localize the pair of human
and object instances and recognize the interaction between
them. A human-object interaction could be defined as the
<human, object, verb> triplet.

Many two- or one-stage methods [2, 6, 7, 12, 13, 17, 18,
20, 26, 34, 35, 38] have significantly advanced the process
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Figure 1. Black-Dotted-Box in (a) and Black-Curve in (b): The
Object Query of the first decoder layer is simply initialized as
just zeros in all previous transformer-based HOI detection meth-
ods. Red-Box in (a) and Red-Curve in (b): Our idea is to take
the category-aware information as the Object Query initialization,
where the training curve indicates that our method significantly
promotes mAP from 29.07 to 31.03 on the HICO-DET dataset.

of HOI detection, while transformer-based methods [3, 14,
19, 30, 36, 39] have been remarkably proposed recently and
achieved the new state-of-the-art result.

Thanks to the self-attention and cross-attention mecha-
nisms, Transformer [32] has a better capability of capturing
long-range dependence between different instances, which
is especially suitable for the HOI detection. HOTR [14] and
AS-Net [3] utilize two parallel branches with transformer-
decoders for performing instance detection and interaction
classification respectively. Motivated by DETR [1], HOI-
Transformer [39] and QPIC [30] adopt one transformer-
decoder with several sequential layers and automatically
group the different types of predictions from one query into
an HOI triplet in an end-to-end manner.
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Though these transformer-based methods have greatly
promoted the community by improving the performance
and efficiency without complex grouping strategies, there
is a common issue with the Object Query† regardless of
the differences in these methods. Specifically, the Ob-
ject Query of the first decoder layer of these methods is
always simply initialized as zeros since there is no previ-
ous layer for feeding semantic features (shown as Black-
Dotted-Box in Figure 1(a)). The capability of these mod-
els has not been fully explored due to the simple initial-
ization of the Object Query, which would affect the per-
formance. Meanwhile, multi-modal information, including
spatial [2], posture [5], and language [37], has been indi-
cated to be beneficial for two-stage HOI detection models.
Thus, one question remains: how semantic information
promotes a transformer-based HOI detection model? In
this paper, we try to study the issue of elevating transformer-
based HOI detectors by initializing the Object Query with
category-aware semantic information.

To this end, we present the Category-Aware Transformer
Network (CATN), consisting of two modules: the Category
Aware Module (CAM) and the Category-Level Attention
Module (CLAM). CAM can obtain category priors which
is then applied to the initialization of the Object Query.
Specifically, we use an external object detector and design a
select strategy to get the categories contained in the image.
After that, these categories would be transferred to corre-
sponding word embeddings as final category priors. More-
over, these priors could be further used for enhancing the
representation ability of features via the proposed CLAM.

We first show that category-aware semantic informa-
tion can indeed promote a transformer-based HOI detection
model by the Oracle Experiment where the category priors
are generated from the ground truth. Then we evaluate the
effectiveness of our proposed CATN on two widely used
HOI benchmarks: HICO-DET and V-COCO datasets. The
contributions of our work could be summarized as:

• We reveal that a transformer-based HOI model can be
further improved by taking category-aware semantic
information as the initialization of the Object Query
to achieve a new state-of-the-art result.

• We present the Category-Aware Transformer Network
(CATN), which obtains two modules: CAM for gener-
ating category priors of an image and CLAM for en-
hancing the representation ability of the features.

• Extensive experiments, involving discussions of differ-
ent initialization types and where to leverage the se-
mantic information, have been conducted to demon-
strate the effectiveness of the proposed idea.

†The Object Query is one input of the transformer-decoder and contains
Nq object queries without query positional embedding in this paper.

2. Related Works
Many remarkable methods have advanced the progress

of HOI detection, which could be simply categorized into
Two-, one-stage methods, and transformer-based methods.

Two-stage methods. Two-stage methods usually uti-
lize a pre-trained object detector to generate human and
object proposals in the first stage and then adopt an in-
dependent module to infer the multi-label interactions of
each human-object pair in the second stage. HO-RCNN [2]
firstly presents a multi-stream architecture. iCAN [7] pro-
poses an Instance-Centric Attention to aggregate the con-
text feature of humans and objects. In order to obtain accu-
rate interactions, some extra information, e.g. human pos-
ture [17,33] and language knowledge [37], have been intro-
duced into HOI detection. To better model the spatial rela-
tionship between the human and object, some GNN-based
methods [6, 26, 31, 38] are sequentially proposed and im-
prove the performance. Two-stage methods generally suffer
from inefficiency due to the separate architecture, where all
possible pairs of human-object proposals are predicted one
after the other and the cropped features generated from the
object detector maybe not suitable for interaction classifica-
tion in the second stage.

One-stage Methods. One-stage methods are proposed
to deal with the problems of high computational cost
and feature mismatching appearing in two-stage methods.
PPDM [20] and IPNet [34] address the task of HOI as a key-
point detection problem by regarding the interaction point
as the mid of human-object centers. Based on the feature at
the midpoint, the interactions between the human and object
are predicted in a one-stage manner. Meanwhile, Union-
Net [13] provides another alteration to perform HOI detec-
tion in a one-stage manner, which treats the union box of
human and object bounding-box as the region of each HOI
triplet. UnionNet conduct an extra branch to predict the
union box and group the final HOI triplet based on IoUs.
Despite great improvement in efficiency, the performance
of existing one-stage methods is limited by complex hand-
crafted grouping strategies to group object detection results
and the interaction predictions into final HOI triplets.

Transformer-based Methods. Recently, trans-
former [32], with a good capability of capturing the
long-range dependency, has been introduced to the HOI
detection and brings a significant performance improve-
ment. HOTR [14] and AS-Net [3] combine the advantages
of both one-stage method and transformer, and utilize two
parallel decoders to predict human-object proposals and
interactions respectively. Apart from the above methods,
HOI-Transformer [39] and QPIC [30] extend DETR [1] to
the HOI detection, which directly defines the predictions
from a query as the HOI triplet without the complex
grouping strategy.

Although significant performance is obtained by these
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Figure 2. Overall architecture of our proposed CATN. Compared with the previous, our method contains two main components: Category
Aware Module (CAM) and Category-Level Attention Module (CLAM). We propose CAM which uses an external object detector to obtain
category priors of the image and the priors are then applied for initializing the Object Query. Moreover, such priors can be further used in
the CLAM for enhancing the representation ability of features.

transformer-based methods, they have a common issue that
the Object Query is initialized with zeros as illustrated in
Figure 1(a). In this paper, we study the issue of how to pro-
mote a transformer-based HOI detector by initializing the
Object Query with category-aware semantic information.

Category Information and HOI Detection. Category
Information is a kind of semantic information indeed, which
represents the object categories in an image. The ef-
fectiveness of such information has been demonstrated in
several domains. Different from part-of-speech category
for image captioning [15] or the category shape for 3D-
Reconstruction [29], we studied object category informa-
tion since the instance has category-aware relation in HOI
detection, e.g. person-eat-apple, person-ride-bike, etc.

3. Approach

3.1. Overview

In this section, we present our Category-Aware Trans-
former Network (CATN), trying to improve the perfor-
mance of transformer-based HOI detectors with category
priors. Firstly, we start with the overall architecture of our
proposed CATN. Secondly, we detailedly introduce the Cat-
egory Aware Module (CAM) to extract category priors of an
image, which then are applied to the initialization of the Ob-
ject Query of the first decoder layer. Moreover, we propose
the Category-Level Attention Module (CLAM) to enhance
the capability of features with such priors. Finally, we mod-
ify the matching cost, used in bipartite matching, for better
matching between the ground-truths and Nq predictions.

3.2. CATN Architecture

The overall pipeline of our CATN is illustrated in Fig-
ure 2, which is similar to previous transformer-based meth-
ods except for additional proposed CAM and CLAM.
Backbone. Given an RGB image, we firstly adopt a CNN-
based backbone to extract a visual feature map denoted as
Ic ∈ RDc×h×w. Then a convolution layer with a kernel
size of 1 × 1 is utilized to reduce the channel dimension
from Dc to Dd, where Dc, Dd are 2,048 and 256 by de-
fault. Then the visual feature map is flattened and denoted
as Ivisual ∈ RDd×hw. After that, we adopt the CLAM to
enhance the features from CNN with category priors and
denote the output feature map as ICLAM ∈ RDd×hw.
Encoder. The transformer encoder aims to improve the ca-
pability of capturing long-range dependence. It is a stack of
multiple encoder layers, where each layer mainly consists
of a self-attention layer and a feed-forward (FFN) layer. To
make the flatten features spatially aware, a fixed Spatial Po-
sitional Encoding, denoted as PS ∈ RDd×hw, is conducted
and fed into each encoder layer with the features. The cal-
culation of the transformer encoder could be expressed as:

Ienc = fenc×Nenc
(ICLAM , PS) (1)

where fenc indicates the function of one encoder layer,
Nenc is the number of stacked layers, and Ienc ∈ RDd×hw

is the output feature and then fed into the following decoder.
Decoder. The transformer decoder aims to transform a set
of object queries Qzeros ∈ RNq×Dd (with query positional
embedding PQ ∈ RNq×Dd whose parameters are learnable)
to another set of output queries Qout ∈ RNq×Dd . It is also a

19540



stack of decoder layers. Apart from selt-attention and FFN,
each decoder layer contains an additional cross-attention
layer, which is used to aggregate the features Ienc output
from encoder into Nq queries.

In our CATN, Qzeros is replaced with Category Aware
Query (CAQ), denoted as QCA ∈ RNq×Dd , which is gener-
ated via category priors. The calculation of the transformer
decoder could be expressed as:

Qout = fdec×Ndec
(QCA, PQ, Ienc, PS) (2)

where fdec indicates the function of one decoder layer and
Ndec is the number of stacked decoder layers.
Prediction Head. In our experiments, an HOI triplet con-
sists of four elements: the human bounding box, the ob-
ject bounding box, the object category with its confidence,
and multiple verb categories with their confidence. Based
on the above definition, four feed-forward networks (FFNs)
are conducted on each output query as follows:

bih = σ(fh,b(Q
i
out))

bio = σ(fo,b(Q
i
out))

cio = ς(fo,c(Q
i
out))

civ = σ(fv,c(Q
i
out))

(3)

where i indicates the index of outputting queries and the
ground-truths, and σ, ς are the sigmoid and softmax func-
tions respectively.

3.3. Category Aware Module

As mentioned above, the Object Query of the first de-
coder layer is simply initialized with zeros since there is no
last layer where we argue this may affect the performance.
In this section, we detailedly introduce the Category Aware
Module (CAM) to extract the category priors of an image
which then are used for Category Aware Query and CLAM.

The Blue-Dotted-Box in Figure 2 describes the proposed
CAM. Given an image, we firstly utilize an external object
detector, e.g. Faster-RCNN, to perform object detection and
only reserve the results with confidence scores higher than
the detection threshold Tdet. Since we focus on studying the
effect of category-aware semantic information on HOI de-
tectors and avoid the influence of other factors, we directly
discard the bounding box of each prediction and only utilize
the category with its confidence score.
Select Strategy. Based on their categories, the rest results
can be divided into different sets Ω = {Ω1,Ω2, ...,ΩK},
where K is the total number of categories in the dataset and
Ωi represents a set of detection results whose category is
the i-th category denoted as ci. After that, we calculate the
confidence score as follows:

Sci =

{
max(Ωi) +

|Ωi|
2 ×mean(Ωi), |Ωi| ≠ 0

0, |Ωi| = 0
(4)

where Sci represents the probability of category ci con-
tained in the image and |.| indicates the number of the set.

With these statistics, we firstly select a threshold Tcan

for a set of candidate categories Ωcan = {ci|
∑K

i=1 Sci ≥
Tcan} and re-rank them based on Sci . Then Top(Nc−1) cat-
egories from Ωcan with a fixed category (named as ‘back-
ground’) are set as the prior categories of an image, where
the ‘background’ is used as the placeholder for matching if
no relevant instance is obtained by the detector in CAM and
the detail is discussed in Section 3.5. Note that the rest cat-
egory will be filled with ‘None’ if the number of categories
in Ωcan is lower than Nc − 1. We denote the final prior cat-
egories of the image as C∗ = {ci|ci ∈ Ccan ∪None}Nc

i .
Category Priors. We transform prior categories of an im-
age to the word embedding vectors which could be used in
the following module. To this end, we utilize a pre-trained
word2vector model, e.g. fastText [24], to generate the cate-
gory priors of an image.

Eprior = {fFC(fw2v(ci))|ci ∈ C∗} (5)

where fw2v(ci) is to obtain the embedding vector of ci cat-
egory and fFC is a fully connected layer to adjust the di-
mension of the embedding. Especially, the embeddings of
all object categories are calculated beforehand and saved
locally. Regardless of training or inference, there is only
a slight increase in computation cost due to the fully con-
nected layer. In addition, we also evaluate several different
word2vector models and the experimental results are shown
in the later section.
Category Aware Query. An image may contain more than
one HOI triplet with the same category and the number of
prior categories Nc is usually much smaller than the num-
ber of queries Nq . Thus, we generate QCA ∈ RNq×Dd by
simply repeating the Eprior vectors Nq

Nc
times as follows.

QCA = Repeat(Eprior, Nq, Nc) (6)

Finally, we use QCA as initial values of the Object Query.

3.4. Category-Level Attention Module

For maximizing the capability of category informa-
tion, we also propose an attention mechanism, named as
Category-Level Attention Module (CLAM), to enhance the
representation ability of features output from backbone. As
illustrated in Figure 3, to clearly describe the entire work-
flow, we take the visual feature in one location as an ex-
ample of this module and denote the feature as Xvisual ∈
R1×Dd , while features work consistently.

The visual feature Xvisual is firstly projected to another
Dd-dimensional vector, denoted as X̂visual ∈ R1×Dd , via
a Muti-Layer Perception (MLP). The MLP contains an FC
layer without BatchNorm and ReLU and is used to trans-
form the feature from visual space to word space. Then we
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Figure 3. The pipeline of our proposed Category-Level Attention
Module (CLAM). Each cuboid indicates a feature vector with the
shape of 1 × Dd. ·, ×, + mean dot-product, multiplication and
element-wise addition respectively.

measure the similarity between the vector and category em-
bedding by dot product operation, and a softmax function is
followed to normalize the similarity values of all categories.

Watt = Softmax(MLP (Xvisual) · ET
prior) (7)

where Watt ∈ R1×Nc represents the attention weights of
prior categories on the feature and ‘·’ means Dot-Product.
Specifically, the weight in a category is high if the feature
contains rich information related to the category. To make
the features category aware, we aggregate all word embed-
dings of prior categories with corresponding weights into
one vector Xword ∈ R1×Dd and then add the vector back to
the original visual feature Xvisual. The feature aggregation
can be written as:

Xclam = Xapp +

Nc∑
j=1

wj
att × Ej

prior (8)

where wj
att is a value and indicates the attention weight of

j-th category belonging to the prior categories, Ej
prior is the

embedding of j-th category, ‘+’ represents element-wise ad-
dition, and ‘×’ mean the multiplication between the scalar
wj

att and each element of the vector Ej
prior respectively.

Our proposed CLAM has several advantages. Compared
to instance-level attention mechanism [7], ours is category-
level and has lower requirements on the accuracy of bound-
ing boxes. Meanwhile, we add the weighted average word
embedding with category information to the originally vi-
sual features. Therefore, the aggregated features, output
from our CLAN, not only have the capability of aware vi-
sual information but also are aware of category information.

3.5. Matching Cost & Training Loss

For training transformer-based models [1] with a set of
prediction results, the bipartite-matching algorithm is pub-
licly used to automatically match a ground-truth with at
most one prediction, which would suppress the problem of
redundant predictions. To this end, two types of losses are
introduced below.
Modified Matching Cost. Matching cost is conducted to
measure the similarity between the ground truth and an HOI
prediction and assign the label of each query whether a pos-
itive or a negative. Firstly, we calculate the matching cost
H ∈ RNgt×Nq following Formula 1 in [30], where Ngt is
the number of ground-truth HOI triplet and Hi,j indicates
the matching cost between i-th ground-truth and j-th pre-
diction generated from j-th output query. Then, we modify
the matching cost by Ĥi,j = Hi,j+Costi,j and the external
cost Costi,j is defined as follows:

Costi,j =


0, C(qj) = C(GTi)

v, C(qj) = “Background′′

2v, C(qj) = “None′′

2v, Else

(9)

where C represents the corresponding object category, qj
is the j-th query of QCA, GTi means the i-th ground-
truth triplet in the image. The Costi,j is used to make
the matching cost Hi,j higher when the object categories
of j-th query and i-th ground-truth are different. Mean-
while, the experimental results show that there is no dif-
ference when the value is higher than a threshold. Thus
we empirically set v as 500. Finally, we utilize the Hun-
garian Algorithm [16] to perform the optimal assignment
ω̂ = argminω∈ΩNq

∑Nq

i=1 Ĥi,ω(i), where only Ngt predic-
tions in ω̂ are set as positive and the rest are negative.

With the above modifications, a ground-truth will match
the query where their object category are the same. In
addition, if the object category of a ground truth is not
included in prior categories, the ground truth will prefer-
entially match the query whose prior category is “back-
ground”. Thus the modified cost shrinks the matching space
between the ground truth and the predictions.
Training Loss. Based on the above label assignment, the
training loss is calculated to optimize the parameters of our
CATN model. We directly adopt equations 6∼10 in [30]
and keep the weights consistent, which reveals that the per-
formance improvement is obtained by our proposed cate-
gory priors, not hyper-parameters.

4. Experiments
4.1. Datasets & Metrics

Datasets. We conduct experiments on two widely used
datasets to verify the effectiveness of our model. V-
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COCO [9], a subset of COCO [22] dataset, consists of
2,533 training images, 2,867 valuation images, and 4,946
test images respectively. There are 16,199 human instances
and each instance has a set of binary labels for 29 differ-
ent actions. HICO-DET [2] is the largest dataset in HOI
detection. There are 38,118 training images and 9,658 test
images respectively with totally more than 150k HOI an-
notations. It has 600 hoi categories (Full) with 117 verb
categories and 80 object categories, which can be further
divided into 118 categories (Rare) and 462 categories (Non-
Rare) based on the number of instances in the training set.
Evaluation Metrics. Following the standard rule [9], we
use the commonly used role mean average precision (mAP)
to evaluate the model performance for both benchmarks. An
HOI prediction is regarded as a true positive if the categories
of the object and verbs are correct, and the predicted bound-
ing boxes of the human and object are localized accurately
where the IoUs are greater than 0.5 with the corresponding
ground truth.

4.2. Implementation Details

We conduct our experiments with the publicly available
PyTorch framework [25].

For the external detector used in CAM to obtain category
priors, we adopt Faster-RCNN-FPN [21, 28] with ResNet-
50 [10] as the backbone to perform object detection. For
better performance, we use COCO pre-trained weights and
then fine-tune the model on both HICO-DET and V-COCO
datasets. During training, we drop the weight of regress-
ing Bbox in loss cost from 1.0 to 0.2 and keep the other
hyper-parameters consistent as default. Meanwhile, the hu-
man category is discarded since the number of humans is
dominant. We set the batch size to 4 and use SGD as the
optimizer with a learning rate of 0.01, a weight decay of
0.0001, and a momentum of 0.9. We train the model for 12
epochs with twice the learning rate decay at epoch 8, 11 by
10 times respectively. The detection threshold Tdet is set
to 0.15. The prior threshold Tcan, used for category priors,
is set to 0.3 and 0.4 for HICO-DET and V-COCO respec-
tively. The number Nc is set to 4 and 5 for two datasets re-
spectively. To obtain better category priors, we adopt some
commonly used augmentation strategies, including random
scales, random flip, color jittering, and random corp aug-
mentation.

For our CATN, ResNet-50 is used as the backbone, the
number of encoder and decoder layers are both set to 6 and
the number of Object Query Nq is set to 100. We initial-
ize the network with parameters of DETR [1] pre-trained
on the COCO dataset. During training, we set the batch
size to 16, the backbone’s learning rate to 1e-5, the trans-
former’s learning rate to 1e-4, and weight decay to 1e-4.
The model is trained for 150 epochs totally on both datasets
with once learning rate decreased by 10 times at epoch 100.

Method Query Full Rare Non-Rare
baseline Zeros 29.07 21.85 31.23

Ours CAQ* 37.17 31.65 38.81
Improvement (8.10 ↑) (9.80 ↑) (7.58 ↑)

Table 1. Oracle experiment on HICO-DET dataset. Zeros and
CAQ represent that the Object Query is initialized with zero-values
or category priors respectively. * indicates such category priors
generated from the ground truth. The performance is tremen-
dously promoted once category priors are adopted for initializing
the Object Query. This phenomenon directly indicates the ratio-
nality of introducing category priors.

Following DETR, scale augmentation, scaling the input im-
age such that the shortest side is at least 480 and at most 800
pixels while the longest at most 1333, is adopted for better
performance in training.

Note that the category embedding is generated by fast-
Text [24] and the “baseline” indicates the QPIC [30] with
ResNet-50 [10] if there are no additional comments.

4.3. Oracle Experiment

To verify the effectiveness of our idea that the perfor-
mance of transformer-based HOI detectors could be further
improved by initializing the Object Query with category-
aware semantic information, we firstly conduct the oracle
experiment where the category priors of an image are sim-
ply generated from the ground truth.

Table 1 illustrates the experimental results on HICO-
DET. In this experiment, we select QPIC as the baseline
and only apply such priors to the Object Query without the
proposed CLAM. Compared with the baseline, our method
achieves a great performance improvement on all three de-
fault settings. With such category priors, the ‘Full’ per-
formance is improved from 29.09 to 37.17 with a 27.8%
relative performance gain and especially the ‘Rare’ perfor-
mance is improved from 21.85 to 31.65 with a 44.8% rel-
ative performance gain. This simple experiment with great
performance gain verifies the effectiveness of our idea and
supports subsequent detailed experiments.

4.4. Comparison to the State-of-The-Art

In this section, we use the proposed CAM to obtain cat-
egory priors of an image and compare our proposed CATN
with other state-of-the-art methods on two public bench-
marks. HICO-DET. To verify the effectiveness of our pro-
posed idea, we adopt several different word2vector models
including fastText [24], BERT [4] and CLIP [27], to obtain
the category-aware semantic information and conducts the
experiments on HICO-DET dataset. As shown in Table 2,
our proposed method obtains the significant performance
improvement on both “Default” and “Known-Object” eval-
uation modes. Especially, the experiment with BERT [4]
has achieved the new state-of-the-art result, which promotes
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Default Known Object
Methods Backbone Detector Full Rare Non-Rare Full Rare Non-Rare
Two-Stage Methods
HO-RCNN [2] CaffeNet C 7.81 5.37 8.54 10.41 8.94 10.85
InteractNet [8] R50-FPN C 9.94 7.16 10.77 - - -
GPNN [26] R101 C 13.11 9.34 14.23 - - -
iCAN [7] R50 C 14.84 10.45 16.15 16.26 11.33 17.73
PMFNet [33] R50-FPN C 17.46 15.65 18.00 20.34 17.47 21.20
VSGNet [31] R152 C 19.80 14.63 20.87 - - -
PDNet [37] R152 C 20.81 15.90 22.28 24.78 18.88 26.54
FCMNet [23] R50 C 20.41 17.34 21.56 22.04 18.97 23.12
PastaNet [17] R50 C 22.65 21.17 23.09 24.53 23.00 24.99
VCL [11] R101 H 23.63 17.21 25.55 25.98 19.12 28.03
DRG [6] R50-FPN H 24.53 19.47 26.04 27.98 23.11 29.43
One-Stage Methods
UnionDet [13] R50-FPN H 17.58 11.52 19.33 19.76 14.68 21.27
IPNet [34] HG-104 C 19.56 12.79 21.58 22.05 15.77 23.92
PPDM [20] HG-104 H 21.73 13.78 24.10 24.58 16.65 26.84
Transformer-based Methods
HOI Transformer [39] R50 - 23.46 16.91 25.41 26.15 19.24 28.22
HOTR [14] R50 - 25.10 17.34 27.42 - - -
AS-Net [3] R50 - 28.87 24.25 30.25 31.74 27.07 33.14
QPIC [30] R50 - 29.07 21.85 31.23 31.68 24.14 33.93
Ours
CATN (with fastText [24]) R50 H 31.62 24.28 33.79 33.53 26.53 35.92
CATN (with BERT [4]) R50 H 31.86 25.15 33.84 34.44 27.69 36.45
CATN (with CLIP [27]) R50 H 31.71 24.82 33.77 33.96 26.37 36.23

Table 2. Comparison against state-of-the-art methods on HICO-DET dataset. For Detector, C means that the detector is trained on COCO
dataset, while H means that the detector is then fine-tuned on HICO-DET dataset. ‘Default’ and ‘Known Object’ are two evaluation modes
following the standard rule. “fastText”, “BERT”, “CLIP” means that the embeddings of prior categories are obtained from these pre-trained
word2vector models. The BEST and the SECOND BEST performances are highlighted in bold and underlined respectively. Our proposed
CATN outperforms the previous by a large margin to achieve new state-of-the-art results on both evaluation modes.

Methods Backbone AProle
VCL [11] R50-FPN 48.3
DRG [6] R50-FPN 51.0
PDNet [37] R152 52.6
UnionBox [13] R50-FPN 47.5
IPNet [34] HG-104 51.0
HOI Transformer [39] R50 52.9
HOTR [14] R50 55.2
AS-Net [3] R50 53.9
QPIC [30] R50 58.8
CATN (with fastText [24]) R50 60.1

Table 3. Comparison against state-of-the-art methods on V-COCO
dataset. The BEST performances are high-lighted in bold. Ours
also outperforms others to achieve a new state-of-the-art result.

the mAP-full from 29.07 to 31.86 in Default mode and from
31.74 to 34.44 in Known-Object mode. V-COCO. We also
evaluate our proposed CATN on V-COCO dataset. A simi-
lar performance gain is obtained as shown in Tabel 3. Com-

pared with previous methods, our method also achieves a
new state-of-the-art result. With the embeddings generated
by fastText [24], we reach an AP-role of 60.1, which obtains
1.3 points performance gain than the second-best method.

4.5. Ablations Study

The effectiveness of each component in our CATN. In
order to make a clearer study of the impact of each com-
ponent on the overall performance, supplementary ablation
experiments are conducted on the HICO-DET dataset. The
results in Default evaluation mode are shown in Table 4.
Initializing the Object Query with category-aware semantic
information instead of just zeros [30] can effectively im-
prove mAP from 29.07 to 30.82, which indicates the supe-
riority of our main idea on HOI detection. Modifying the
matching cost can also promote mAP to 31.03 with a gain
of 0.21 mAP. Illustrated as line 4, the performance could be
further improved from 31.03 to 31.62 when our proposed
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Method CAQ MMC CLAM mAP
1 baseline - - - 29.07
2

CATN
✓ 30.82

3 ✓ ✓ 31.03
4 ✓ ✓ ✓ 31.62

Table 4. Ablation studies on the effectiveness of each module
in our CATN on HICO-DET dataset. ✓ represents the compo-
nent is used. “CAQ” means the Object Query is initialized with
category-aware semantic information. “MMC” indicates our mod-
ified matching cost. “CLAM” represents the proposed Category-
Level Attention Module.

CLAM enhances the representation ability of features via
the category-aware semantic information. Moreover, we vi-
sualize an example of the attention map in the supplemen-
tary file to demonstrate the effectiveness of our CLAM.

4.6. Discussion

The impacts of where to leverage the category priors.
To verify how the category-aware semantic information bet-
ter promotes the HOI detection model, we design experi-
ments to leverage category priors in another location. As
Figure 4, the category priors are introduced in prediction
heads. Before predicting the categories of interaction, we
combine the visual feature and the category prior by differ-
ent operations (add and concatenate). Experimental results
indicate that taking category-aware semantic information as
the Object Query initialization achieves better performance
than using the information as complementary features.

The impacts of different initial types. Table 5 presents
comparisons to different types of query initialization, in-
cluding “Zeros”, “Random Values (following the Uniform
or Gaussian distribution)” and “Category-Aware Semantic
Information”. Models of the Object Query initialized with 3
different category-aware semantic information consistently
achieve better performance than other initial types.

Hyper-parameters in CAM. Figure 5 illustrates the
variance by several hyper-parameters, including Nc, Tdet,
and Tcan, in CAM. To clearly study the impacts1 of them
on the quality of category priors, we calculate the recall
and precision metrics of the prior categories in image level
not instance level. In other words, we only care if a ob-
ject category could be detected, not the amount and loca-
tion. We change one parameter in turn and keep others con-
sistent. We achieve the best performance where Nc = 3,
Tdet = 0.15, and Tcan = 0.30, due to a better trade-off
between the recall and precision.

5. Conclusion
In this paper, we explore the issue of promoting a

transformer-based HOI model by initializing the Object
Query with category-aware semantic information. We pro-
pose the Category-Aware Transformer Network (CATN),

Visual Features

H1 H2 H3

B B C C

*

Human Object Verb Method mAP

1 baseline - 29.07

2
Head

Add 29.24

3 Concat 29.08

4 CATN(Ours) CAQ 31.62
(a) (b)

CP

Figure 4. The impacts of where to leverage the category pri-
ors. “H”, “B”, “C” are prediction heads, bounding boxes, and
categories respectively. Similar to [6], Figure (a) and “Head” in
Tabel (b) indicate our experiments of introducing category pri-
ors (CP) into the verb prediction head. Results from (b) indicate
that taking such semantic information as the Object Query initial-
ization (shown as Figure 1.a) achieves a significant performance
gain than into the prediction head (Row.4 vs. Row2/3).

Method Value Full Rare Non-Rare
1 Zeros Zero 29.07 21.85 31.23
2 Rondom Uniform 29.70 23.53 31.53
3 Gaussian 29.60 22.42 31.73
4

CAQ
fastText [24] 31.03 23.97 33.12

5 BERT [4] 31.28 24.89 33.14
6 CLIP [27] 31.23 24.82 33.10

Table 5. The impacts of different initial types. CLAM is not used
due to the need of category priors. Models of the Object Query
initialized with 3 different category-aware semantic information
consistently achieve better performance than other initial types.
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Figure 5. The impacts of different settings of hyper-parameters,
including Nc, Tdet, Tcan, in CAM.

which obtains two modules: CAM for generating category
priors of an image and CLAM for enhancing the representa-
tion ability of the features. Extensive experiments, involv-
ing discussions of different initialization types and where to
leverage the semantic information, have been conducted to
demonstrate the effectiveness of the proposed idea. With
the category priors, our method achieves new state-of-the-
art results on both V-COCO and HICO-DET datasets.
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