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Abstract

Image inpainting has made significant advances in re-
cent years. However, it is still challenging to recover
corrupted images with both vivid textures and reasonable
structures. Some specific methods only tackle regular tex-
tures while losing holistic structures due to the limited re-
ceptive fields of convolutional neural networks (CNNs). On
the other hand, attention-based models can learn better
long-range dependency for the structure recovery, but they
are limited by the heavy computation for inference with
large image sizes. To address these issues, we propose to
leverage an additional structure restorer to facilitate the
image inpainting incrementally. The proposed model re-
stores holistic image structures with a powerful attention-
based transformer model in a fixed low-resolution sketch
space. Such a grayscale space is easy to be upsampled to
larger scales to convey correct structural information. Our
structure restorer can be integrated with other pretrained
inpainting models efficiently with the zero-initialized resid-
ual addition. Furthermore, a masking positional encod-
ing strategy is utilized to improve the performance with
large irregular masks. Extensive experiments on various
datasets validate the efficacy of our model compared with
other competitors. Our codes are released in https:
//github.com/DQiaole/ZITS_inpainting.

1. Introduction
Image inpainting has been investigated as a long-

standing challenge to address the difficulty of filling in
missing areas of pictures. It is very useful to various
real-world applications, such as object removal [12], photo
restoration, and image editing [25]. To achieve realistic out-
comes, the inpainted images should remain both semanti-
cally coherent textures and visually reasonable structures.
Many classical algorithms [3, 9, 19, 31, 42] search similar
patches for the reconstruction heuristically. But preserving

*Equal contributions.
†Corresponding authors.

Figure 1. High quality 1024×1024 inpainted results. From left to
right, masked inputs, results of LaMa [44], results of our method.

good textures and holistic structures in large images is still
non-trivial for these conventional methods.

Benefited from excellent capacities of Convolutional
Neural Networks (CNNs) [28] and Generative Adversar-
ial Networks (GANs) [15], existing deep learning meth-
ods [4,18,30,35,44,46,54,59] could efficiently conduct the
image inpainting tasks in some common cases. However,
they still suffer from some dilemmas. (1) Limited recep-
tive fields. Learning semantically consistent textures is dif-
ficult for traditional CNNs due to the local inductive priors
and narrow receptive field of convolution operations. Even
dilated convolutions [55] fail to tackle large corrupted re-
gions or high-resolution images. (2) Missing holistic struc-
tures. Recovering key edges and lines for scenes, especially
ones with weak texture is difficult without the holistic un-
derstanding of large images as shown in Fig. 1. (3) Heavy
computations. Training GANs with large image sizes is
still very tricky and costly [27]. And the inpainting perfor-
mance may be degraded on high-resolution images. (4) No
positional information in masked regions. The inpainting
model tends to repeat meaningless artifacts in large irregu-
lar masked regions without explicit positional clues.

Some pioneering works can partially solve these prob-
lems. For the limited receptive fields, attention-based meth-
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ods [54, 56, 60] leverage the attention mechanism to extend
the receptive fields. Suvorov et al. [44] utilize the Fast
Fourier Convolution (FFC) to encode features in frequency
fields with global receptive fields for resolution-robust in-
painting. But they fail to ensure the holistic structures
and work inferior for the images of weak texture. Further-
more, transformer-based methods [46, 58] with long-range
dependency are utilized to firstly fill low-resolution tokens,
and then upsample them with CNNs. Unfortunately, trans-
formers demand huge memory footprint for large images.
And the resolution disparity between transformer and CNN
causes serious error propagation. On the other hand, some
methods utilize auxiliary information for structure recov-
ery, e.g., edges [18, 38], segmentation [32, 43], and gra-
dients [53]. Cao et al. [4] propose a sketch tensor space
consisting of edges and wireframes [22] to facilitate holis-
tic structure learning in man-made scenes. However, these
sophisticated methods are usually based on multi-stage or
multi-model designs, which are costly to be trained from
scratch. Moreover, many researches [23, 33, 51] show that
the position information is critical to learning the network,
such as GANs [33, 51] and NeRF [36]. To our knowledge,
there is no previous work that has explicitly discussed and
utilized the position information in image inpainting.

Therefore, this motivates our work of incrementally in-
ferring the holistic structural information and positional
information to boost the performance of the inpainting
model. Specifically, we leverage a transformer-based model
to tackle holistic structures with edges and lines as the
sketch tensor space [4]. Critically, such a normalized
grayscale space can be easily upsampled by a simple CNN
to higher resolutions without information loss. Further,
we propose a novel incrementally training strategy with
Zero-initialized Residual Addition (ZeroRA) [2] to incor-
porate the structural information into a pretrained inpaint-
ing model. This incremental strategy enjoys fast conver-
gence for much fewer steps compared with retraining a new
auxiliary-based model. Furthermore, we introduce the po-
sitional encoding for the mask region, which improves the
performance of image restoration.

Formally, this paper proposes a novel ZeroRA based In-
cremental Transformer Structure (ZITS) inpainting frame-
work enhanced with Masking Positional Encoding (MPE).
Our ZITS has novel components of Masking Positional
Encoding (MPE), Transformer Structure Restorer (TSR),
Fourier CNN Texture Restoration (FTR), and Structure Fea-
ture Encoder (SFE). The TSR is composed of alternating
axial [21] and standard attention blocks for the balance be-
tween the performance and the efficiency. Note that our
TSR can achieve much better structure recovery compared
with CNNs [4, 38]. The output grayscale edges and lines
are upsampled with a simple 4-layer CNN. Then, a gated
convolutions [57] based SFE encodes features and transfers

them to a FFC based inpainting model called FTR with Ze-
roRA. Furthermore, we use MPE to express both distances
and directions from unmasked regions to masked ones.

We highlight several contributions as follows. (1) We
propose using a transformer to learn a normalized grayscale
sketch tensor space for inpainting tasks. Such an attention-
based model can learn substantially better holistic struc-
tures with long-range dependency. (2) The auxiliary infor-
mation can be incrementally incorporated into a pretrained
inpainting model without retraining. (3) A novel mask-
ing positional encoding is proposed to improve the gener-
alization of the inpainting model for different masks. (4)
Extensive experiments on several datasets, which include
Places2 [63], ShanghaiTech [22], NYUDepthV2 [37], and
MatterPort3D [5] reveal that our proposed model outper-
forms other state-of-the-art competitors.

2. Related Work
Inpainting by Auxiliaries. Auxiliary information such
as edges [38, 53], segmentation maps [32, 43], and gradi-
ents [53] are shown very useful to inpainting. Specifically,
EdgeConnect [38] utilizes edges to help inpainting images
with certain structures. Guo et al. [18] propose a two-stream
network for image inpainting, which models the structure
constrained texture synthesis and texture-guided structure
reconstruction in a coupled manner. SGE-Net [32] just it-
eratively updates the semantic segmentation maps and the
corrupted image. Cao et al. [4] further propose learning a
sketch tensor space, composed of edges and lines for in-
painting man-made scenes. In our work, we also take edges
and lines as our auxiliary information. Differs from [4],
the transformer is leveraged to rebuild edges and lines in
ZITS. As some preliminary investigations [6] have shown
its excellent capability in modeling structural relationships
for natural image synthesis. Besides, almost all auxiliary-
based methods need extra input channels for more informa-
tion, which makes them must be retrained from scratch to
utilize these additional inputs sufficiently. In our paper, we
propose a flexible and effective way to add structural infor-
mation to a pretrained inpainting model incrementally.
Transformers for Image Generation. Transformer [1, 45]
achieved good performance on many tasks in the NLP and
CV communities, as it learned long-range interactions on
sequential data. Dosovitskiy et al. [11] firstly propose the
use of a transformer for image recognition and show its
great capacity. Many works [6, 29, 39] devote to reducing
the time and space complexity for transformers. Esser et
al. [13] and Ramesh et al. [41] leverage discrete represen-
tation learning for lower computational cost. The trans-
former is also used in image inpainting [46, 58] for low-
resolution images reconstruction, and then guides the GAN-
based CNN for further high-quality results. In our work, the
transformer is used to build the holistic structure reconstruc-
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tion and then to guide the image inpainting, which enjoys
excellent performance compared with CNN-based methods.

3. Method
Overview. The whole pipeline of ZITS is shown in
Fig. 2. Given masked image Im, canny edge Ie [10],
lines Il [4], and binary mask M, we concatenate and in-
put them to the Transformer Structure Restoration (TSR)
model for recovered edges and lines as sketch space
[̃Ie, Ĩl] = TSR(Im, Ie, Il,M) (Sec. 3.1). During the in-
ference stage, the Simple Structure Upsampler (SSU) can
easily upsample the grayscale sketch maps into arbitrary
sizes (Sec. 3.2). Then, a gated convolution based Struc-
ture Feature Encoder (SFE) extracts multi-scale features
Sk = SFE(Ĩe, Ĩl,M), {k = 0, 1, 2, 3} from upsampled
sketches. We incrementally add Sk to related layers of the
Fourier convolution based CNN Texture Restoration (FTR)
as Ĩ = FTR(Im,M, αk ·Sk), {k = 0, 1, 2, 3} with the resid-
ual addition of zero-initialized trainable coefficients αk, i.e.,
ZeroRA (Sec. 3.3).

3.1. Transformer Structure Restoration

Since the transformer shows an ability to get expressive
global structure recoveries [46], we leverage the capacity of
the transformer to restore holistic structures in a relatively
low resolution. For the input masked image Im, edges Ie,
lines Il, and mask M in 256 × 256, we firstly downsample
them with three convolutions to reduce computation for the
attention learning. Such simple convolutions can also inject
beneficial convolutional inductive bias for vision transform-
ers compared with the patch based MLP embedding [49].
Then we add a learnable absolute position embedding to
the feature at each spatial position and get X ∈ Rh×w×c

for the input to attention layers, where h,w = 32 are height
and width, and c = 256 is the feature channel.

To overcome the quadratic complexity of the standard
self-attention [45], we alternately use axial attention mod-
ules [21] and standard attention modules as shown in the
top left of Fig. 2. The axial attention module can be im-
plemented easily by adjusting the tensor shape for row-
wise and column-wise and then processing them with dot
product-based self-attention respectively. To improve the
spatial relation, we also provide relative position encoding
(RPE) [40] for each axial-attention module. For the input
feature X ∈ Rh×w×c, we suppose that xri,rj ,xci,cj ∈ Rc

mean feature vectors of rows i, j and columns i, j of X.
Then the row and column-wise RPE based axial attention
scores Arow,Acol can be written as

Arow
i,j = xriWrqW

T
rkx

T
rj +Rrow

i,j ,

Acol
i,j = xciWcqW

T
ckx

T
cj +Rcol

i,j ,
(1)

where Wrq,Wrk,Wcq,Wck are trainable parameters for
query and key in row and column; Rrow

i,j is the trainable

RPE value between row i and j, and Rcol
i,j means the RPE

value between columns i, j. Then, the attention scores are
processed by the softmax operation. To stabilize the train-
ing, we use the pre-norm trick in [50]. Compared with
the O(n2) complexity of the standard self-attention, the ax-
ial attention only has O(2n

3
2 ), which allows us can han-

dle more attention layers for a better capacity. Besides, we
also remain some standard attention modules for learning
the global correlation. Our ablation shows that this setting
can improve the performance with the same memory cost.

After the encoding of stacked transformer blocks, fea-
tures are upsampled by three transpose convolutions for out-
putting structures in 256×256. We use the binary cross-
entropy (BCE) loss to optimize the predicted continuous
sketch structures of edges Ĩe and lines Ĩl as

Le = BCE(̃Ie, Îe), Ll = BCE(̃Il, Îl), (2)
where Îe means the binary ground truth canny edges, and
Îl indicates the antialiasing lines map got from the masking
augmented wireframe detector from [4].

3.2. Simple Structure Upsampler

To capture holistic structures for possible high-resolution
images, we should upsample the generated edges and lines
to arbitrary scales without obvious degeneration. However,
vanilla interpolation-based resizing causes zigzag as shown
in Fig. 3(f)–(i). Such artifacts are more serious for large
image sizes, which deteriorate the inpainted results. Fortu-
nately, the grayscale sketch tensor is easy to be upsampled
with a learning-based method. At first we train a simple
CNN as the SSU to upsample edges and lines to a doubled
size. Although lines can be upsampled successfully, edges
fail to get correct results as shown in Fig. 3(j). Because
there are ambiguities in the canny edge from different im-
age sizes as shown in Fig. 3(b) and Fig. 3(c). Since lines
got from a wireframe parser have good discrete represen-
tations [22, 52], i.e., a line can be indicated as positions of
two end-points and their relation, we can draw line maps
in various resolutions without any ambiguities as shown in
Fig. 3(d) and Fig. 3(e). If the model is trained in lines,
it can also achieve smooth high-resolution edge maps due
to the generalization of the network as shown in Fig. 3(k).
Through iteratively calling the SSU, we can get high-quality
edges and lines with high resolutions.

3.3. ZeroRA Structure Enhanced Inpainting

Fourier CNN Texture Restoration (FTR). For the tex-
ture restoration, we adopt the excellent work of [44] as our
inpainting backbone. Suvorov et al. [44] propose to use
Fourier convolutions [7] for the frequency domain learning,
which can achieve resolution-robust inpainted results. As
backbones used by other inpainting models [4, 38], FTR is
an autoencoder model with several convolutions for down-
sampling and upsampling image features. The key module
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Figure 2. The overview of our ZITS. At first, the TSR model is used to restore structures with low resolutions. Then the simple CNN based
upsampler is leveraged to upsample edge and line maps. Moreover, the upsampled sketch space is encoded by the SFE model, and added
to the FTR through ZeroRA to restore the textures. The top left corner show details about the transformer block. The input feature are
learned through row-wise and column-wise attentions respectively, then encoded by a standard attention module.

(a) RGB image (b) 256x256 edge (c) 512x512 edge (d) 256x256 line (e) 512x512 line

(j) Upsampled edge and line from the model
trained with both edge and line

(k) Upsampled edge and line from the model
trained with line only

(f) Nearest resizing (g) Bilinear resizing (h) Cubic resizing (i) Antialias resizing

Figure 3. (a)–(e) indicate the ground truth images and structures.
Edges are got from canny edge detector, while sigma is 2.0 for
256×256 and 2.5 for 512×512. However, there are obvious ambi-
guities between (b) and (c). (f)–(i) show resizing edges of different
interpolations. The learning based upsampling edge from (j) has
significant superior quality compared with one from (k).

of FTR is the Fast Fourier Convolution (FFC) layer, which
is consisted of two branches: 1) the local branch uses con-
ventional convolutions and 2) the global branch convolutes
features after the fast Fourier transform. Then two branches
are combined for larger receptive fields and local invariance
during the inpainting [44]. However, such a powerful model
fails to learn reasonable holistic structures. And we further
propose a series of novel components to improve it.
Structure Feature Encoder (SFE). For the given recov-
ered edges Ĩe and lines Ĩl in arbitrary scales, we need a full
convolutional network (FCN) to process them into a feature
space. Our SFE is also an autoencoder model with 3 lay-

ers downsampling convolutions (encoder), 3 layers residual
blocks with dilated convolutions [55] (middle), and 3 layers
upsampling convolutions (decoder). For the encoder and the
decoder in SFE, we use gated convolutions (GCs) [57] to
transfer useful features selectively. GC learns another sig-
moid activation with the same channels. Then the sigmoid
features are multiplied to the convoluted ones as outputs.
Although GCs are widely used in image inpainting for the
better generalization to irregular masks, we use GCs to filter
useful features to FTR. Because the grayscale sketch space
is sparse, and not all features are necessary for the inpaint-
ing. Then, 4 coarse-to-fine feature maps Sk, k ∈ {0, 1, 2, 3}
from the last middle layer and 3 decoder layers are selected
to transfer structural features to FTR as

S0,S1,S2,S3 = SFE(Ĩe, Ĩl,M), (3)

where M indicates the resized binary mask.
Masking Positional Encoding (MPE). Although the zero-
padding in CNNs can provide some position informa-
tion [23], it only contains information about spatial an-
chors [51]. Therefore, central generated regions from
GANs tend to repeat meaningless artifacts without specific
position encoding. When the image size is large, the ef-
fect of zero-padding will be further weakened, which causes
more repeated artifacts [33] to generators.

During the inpainting, position information for un-
masked regions is unnecessary, because the model always
knows ground truth unmasked image regions. However, we
think that position information is still critical for masked
regions, especially when mask areas are large for high-
resolution images. Limited by the receptive fields of CNNs,
the model with large masks may lose the direction and po-
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(a) Input mask (b) Masking distance !!"#

(c) Four channels of masking directions !!"$

Figure 4. The illustration of our masking relative position encod-
ing. (a) Input mask, (b) masking distance Ddis and the all-one
3×3 kernel, (c) masking directions Ddir and their kernels.

sition information, which causes meaningless artifacts. Al-
though FFC can extend the feature learning to the frequency
domain, it is insensitive to distinguish masked or unmasked
regions. Therefore, we propose to use position encoding in
masked regions called MPE for the image inpainting, which
is orthogonal to and improves upon the FFC in FTR.

Specifically, to clearly represent masked and unmasked
positional relations with our MPE written as P, it can be
expressed as the masking distance Pdis and the masking
directions Pdir as shown in Fig. 4. Given an inversed
256×256 binary mask, where one indicates unmasked re-
gions and zero indicates masked regions, we use a 3×3 all-
one kernel to calculate the masking distance Ddis for each
position in masked regions as shown in Fig. 4(b). Then, the
distance is clipped and mapped by the Sinusoidal Positional
Encoding (SPE) [45] to get Pdis ∈ R256×256×d

Pdis,2i = sin(clip(Ddis, 0, Dmax)/10000
i
d ),

Pdis,2i+1 = cos(clip(Ddis, 0, Dmax)/10000
i
d ),

(4)

where i indicates the channel index; Dmax = 128, and
d = 64 means the total channels of Pdis, which is the
same as the first convolution of FTR. Since SPE can only
provide absolute positional information [51], Pdis can be
further resized by the nearest interpolation to various scales
during the training for learning relative positional informa-
tion in arbitrary resolutions. For masking directions, we use
4 different binary kernels to get the 4-channel one-hot vec-
tor Ddir ∈ R256×256×4. Values of Ddir depend on which
kernel covers the masked regions firstly. Ddir shows the
nearest direction from a masked position to an unmasked
one as shown in Fig. 4(c). Note that the masking direc-
tion is a multi-label vector, because a pixel may have more
than one shortest direction. Then Ddir is projected to a
d dimension features with learnable embedding parameters
Wdir ∈ R4×d as

Pdir = Ddir ×Wdir ∈ R256×256×d. (5)

Pdis and Pdir are added as MPE to the first layer of FTR.

Zero-initialized Residual Addition (ZeroRA). Since most
inpainting methods are based on sophisticated GANs nowa-
days, training the inpainting model incrementally is non-
trivial. However, benefiting from various auxiliary informa-
tion [4,32,38], incrementally training is flexible to improve
the image inpainting. To improve the pretrained inpainting
model incrementally with holistic structures, we propose to
use ZeroRA, which has been leveraged in [2] to replace the
layer normalization in the transformer. The idea of ZeroRA
is simple. For the given input feature x, the output feature
x′ is got from adding a skip connection with function F to
x with a zero-initialized trainable residual weight α as

x′ = x+ α · F (x). (6)

For simple linear-based models, if α is initialized in zero,
the input-output Jacobian will be initialized to 1, which
makes the training stable. For more complex cases, ex-
periments in [2] also prove the effectiveness of ZeroRA.
Since ZeroRA can replace the layer normalization in the
transformer, it can also improve the expressive power of the
model without degrading variances to early layers.

In our case, we use ZeroRA to incrementally add struc-
tural information from SFE to FTR. Specifically, 4 zero-
initialized αk, k ∈ {0, 1, 2, 3} are utilized to fuse 4 related
feature maps Sk from SFE. For the feature Xk of FTR en-
coder layer k, which is based on Conv-BatchNorm-ReLU,
we add residuals as follows

Xk+1 = Conv(Xk + αk · Sk),

Xk+1 = ReLU(BatchNorm(Xk+1)).
(7)

There is another advantage of the ZeroRA based incremen-
tal learning. The model output is equivalent to the pre-
trained one at the beginning of finetuning, which can effec-
tively stable the training, and transfer necessary information
adaptively. Our ablation studies show that the ZeroRA is
important to incrementally finetune the pretrained inpaint-
ing model with additional information.

3.4. Loss Functions

We adopt the same loss functions as [44], which include
L1 loss, adversarial loss, feature match loss, and high re-
ceptive field (HRF) perceptual loss [44]. Firstly, L1 loss is
only calculated between the unmasked regions as

LL1 = (1−M)� |̂I− Ĩ|1, (8)

where M indicates 0-1 mask that 1 means masked regions;
� means the element-wise multiplication; Î, Ĩ indicate the
ground truth and predicted images respectively. The adver-
sarial loss is consisted of the discriminator loss LD and the
generator loss LG. Moreover, we only regard features from
masked regions as fake samples in LD. The PatchGAN [24]
based discriminator is written as D and the combination of
FTR and SFE can be seen as the generator G, Then the ad-
versarial loss can be indicated as
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LD =− EÎ

[
logD(̂I)

]
− EĨ,M

[
logD(̃I)⊙ (1−M)

]
− EĨ,M

[
log(1−D(̃I))⊙M

]
,

LG = −EĨ

[
logD(̃I)

]
,

Ladv = LD + LG + λGPLGP ,

(9)

where LGP = EÎ||▽ÎD(̂I)||2 is the gradient penalty [16]
and λGP = 1e− 3. We also use the feature match loss [47]
Lfm, which is based on L1 loss between discriminator fea-
tures of true and fake samples. Lfm is usually used to stable
the GAN training. It can also slightly improve the perfor-
mance. Furthermore, we use the HRF loss Lhrf in [44] as

Lhrf = E(
[
ϕhrf (̂I)− ϕhrf (̃I)

]2
), (10)

where ϕhrf indicates a pretrained segmentation ResNet50
with dilated convolutions. As discussed in [44], using HRF
loss instead of the perceptual loss [26] can improve the qual-
ity of the inpainting model. The final loss of our model in
the incremental training can be written as

Lfinal =λL1LL1 + λadvLadv + λfmLfm + λhrfLhrf , (11)

where λL1 = 10, λadv = 10, λfm = 100, λhrf = 30.

4. Experiments
4.1. Datasets

The proposed ZITS is trained on two datasets:
Places2 [63] and our custom indoor dataset (Indoor). For
Places2, we use about 1,800k images from various scenes
as the training set, and 36,500 images as the validation. To
better demonstrate the structural recovery, we collect 5,000
images from ShanghaiTech [22] and 15,055 images from
NYUDepthV2 [37] to build the custom 20,055 Indoor train-
ing dataset. For the Indoor validation, we collect 1,000 im-
ages which are consist of 462 and 538 images from Shan-
haiTech and NYUDepthV2 respectively. Places2 and In-
door can all be tested in both 256×256 and 512×512. Be-
sides, we also test the inpainting ability on high-resolution
MatterPort3D [5] with 1,965 indoor images in 1024×1024.
More details and results of MatterPort3D are discussed in
the supplementary.

4.2. Implementation Details

Training Settings. Our ZITS is implemented with Py-
Torch. For the training of TSR, we use the Adam optimizer
of learning rate 6e-4 with 1,000 steps warmup and cosine
decay. TSR is trained with 150k and 400k steps for Indoor
and Places2. On the other hand, we first train the FTR with
Adam optimizer of learning rates 1e-3 and 1e-4 for genera-
tor and discriminator respectively. And FTR is trained with
100k steps on Indoor and 800k steps on Places2. Then, we
incrementally finetune them with ZeroAR for just 50k steps

Table 1. Quantitative results on Indoor and Places2 in 256×256.
Indoor Places2

PSNR↑ SSIM↑ FID↓ LPIPS↓ PSNR↑ SSIM↑ FID↓ LPIPS↓
EC 24.07 0.884 22.02 0.135 23.31 0.839 6.21 0.149

MST 24.52 0.894 21.65 0.122 24.02 0.862 3.53 0.137
HiFill - - - - 20.76 0.770 21.33 0.246

Co-Mod - - - - 22.57 0.843 1.49 0.122
LaMa 25.20 0.902 16.97 0.112 24.37 0.869 1.63 0.155
Ours 25.57 0.907 15.93 0.098 24.42 0.870 1.47 0.108

on both Indoor and Places2, and reduce the generator learn-
ing rate to 3e-4. Besides, we warmup the learning rate for
training the SFE with 2,000 steps. For the training of TSR
and FTR, input images are resized into 256×256. For the
incremental finetuning, we separately train two versions of
ZITS, which are the version trained in 256×256 and the
version trained in random size from 256 to 512. The second
model can handle some situations with higher resolution in-
puts. And the MPE is also changed to a relative position
encoding for the random size training.
Mask Settings. To tackle the real-world object removal
task, we follow the mask setting from [4], which includes
irregular masking brushes and COCO [34] segmentation
masks with masking rates from 10% to 50%. Different
from [4], we randomly combine irregular and segmentation
masks with 20% to improve the learning difficulty.

4.3. Comparison Methods

We compare the proposed model with other state-of-
the-art methods, which include Edge Connect (EC) [38],
Contextual Residual Aggregation (HiFill) [54], Multi-scale
Sketch Tensor inpainting (MST) [4], Co-Modulation GAN
(Co-Mod) [62], and Large Mask inpainting (LaMa) [44].
All competitors are compared in the Places2. We also re-
train EC, MST, and LaMa for the Indoor dataset to discuss
the structure recovery. Note that the LaMa compared below
are all trained with the same total steps as ZITS.

4.4. Quantitative Comparisons

Inpainting Results. In Tab. 1, we utilize PSNR, SSIM [48],
FID [20], and LPIPS [61] to assess the performance of
all compared methods on the Indoor and Places2 datasets
in 256×256 with mixed segmentation and irregular masks.
More results with different masking rates are shown in the
supplementary. For Indoor, our ZITS can achieve the best
results on all metrics. While MST can get slightly better
results compared with EC, which is benefited by the usage
of lines. LaMa can get more acceptable FID and LPIPS
while our ZITS can achieve significant improvements based
on LaMa due to the seamlessly embedded structural infor-
mation and positional encoding. Note that the gap between
ZITS and MST is also caused by the quality gap of the struc-
ture recovery as discussed below. For Places2, HiFill fails
to get good results with large masks, which may be caused
by its limited model capacity. Note that Co-Mod has a low
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Table 2. Quantitative Precision (P.), Recall (R.) and F1-score (F1)
of edges and lines on Indoor and Places2.

Edge Line Avg
P. R. F1 P. R. F1 F1

Indoor
MST 23.79 26.87 21.36 43.67 51.95 37.77 33.73
Ours 37.34 34.25 35.10 53.60 66.23 58.35 46.72

Places2
MST 22.54 18.29 20.19 34.22 49.21 37.09 28.64
Ours 35.64 27.92 30.39 43.70 60.54 49.35 39.87

Table 3. Ablation studies of MPE on 512×512 Places2 finetuned
with dynamic resolutions from 256 to 512.

PSNR↑ SSIM↑ FID↓ LPIPS↓
with MPE 24.23 0.881 26.08 0.133
w./o. MPE 24.20 0.880 26.29 0.135

FID and LPIPS on Places2. However, Co-Mod is trained
with a sophisticated StyleGAN [27] with much more train-
ing data compared with others. And our ZITS can even
achieve slightly better results compared with Co-Mod with
limited data scale and training steps. In general, our method
has superior performance compared with LaMa, which is
valuable with only 50k finetune steps. And LaMa in Tab. 1
are trained with the same total steps as ZITS.
Results of Edges and Lines. We show quantitative results
of edges and lines on Indoor and Places2 in Tab. 2. Our TSR
can achieve much better results on both Indoor and Places2
compared with MST. It demonstrates that the transformer-
based TSR is amenable to learning holistic structures in a
sparse tensor space, which can benefit the results of ZITS
a lot as shown in Tab. 1. Note that TSR results in Tab. 2
are based on Mask-Predict [8, 14, 17], which can enrich
the structural generation by iteratively sampling outputs
but does not improve the quantitative metrics. More about
Mask-Predict are discussed in the supplementary.

4.5. Qualitative Comparisons

Inpainting Results. We show the qualitative inpainting re-
sults of Indoor in Fig. 5 and Places2 in Fig. 6. Compared
with other methods, our ZITS can tackle more reasonable
structures, especially our method can obtain clearer bor-
derlines. Furthermore, ZITS achieves prominent improve-
ments in the structure recovery compared with LaMa. Note
that both LaMa and ZITS are trained with the same steps.
Results of Edges and Lines. We compared the structure
recovery results in Indoor of Fig. 7, which are compared
between our transformer-based TSR and CNN-based model
from MST. Our TSR can achieve more reasonable and ex-
pressive results of both edges and lines. More qualitative
structural results are shown in the supplementary.

4.6. Ablation Studies

Quantitative ablation studies on Indoor are shown in
Tab. 4. MPE and GCs can slightly improve the performance
of FTR. Besides, if adding structural information from TSR

Table 4. Ablation studies with different settings on Indoor.
FTR SFE MPE ReZero GateConv PSNR↑ SSIM↑ FID↓ LPIPS↓
" 25.20 0.902 16.97 0.112
" " 25.31 0.903 16.44 0.110
" " " " 25.28 0.905 16.15 0.102
" " " " 25.46 0.906 16.22 0.107
" " " " 25.51 0.906 16.15 0.103
" " " " " 25.57 0.907 15.93 0.098

Table 5. Quantitative results of 512×512 in Indoor and Places2,
and 1024×1024 MatterPort3D.

PSNR↑ SSIM↑ FID↓ LPIPS↓

Indoor(512)
LaMa 24.42 0.911 21.48 0.826
Ours 25.36 0.919 18.76 0.823

Places2(512)

HiFill 20.10 0.764 65.47 0.291
Co-Mod 22.00 0.843 30.04 0.166

LaMa 24.15 0.877 27.86 0.149
Ours 24.23 0.881 26.08 0.133

MatterPort3D(1k)
LaMa 26.40 0.944 14.04 0.133
Ours 26.55 0.946 12.34 0.116

without ZeroRA, the improvement is limited. So ZeroRA
is useful for incremental learning with a good convergence.
Moreover, the full model achieves the best performance.
ZeroRA. We also show line charts of PSNR and FID dur-
ing the finetuning in Fig. 8 with and without ZeroRA. The
blue curve without ZeroRA is unstable at the beginning of
the finetuning, while the red one with ZeroRA enjoys better
convergence and stability. Because adding extra structural
features without ZeroRA leads to dramatic output changing,
which harms the vulnerable GAN training.
MPE. We further exploit the effects of MPE in high-
resolution inpainting. FTR is trained without MPE at first.
Then we use the ZeroRA technique to finetune the model
with and without MPE of the same steps. Results in Tab. 3
show that the simple MPE based finetuning effectively im-
proves the 512-inpainting in FID. From Fig. 9, ZITS with
MPE generates images with natural and smooth colors.

4.7. Results of High-Resolution Inpainting

We also compare the results of HiFill, Co-Mod, LaMa,
and our ZITS in Places2(512) in Tab. 5. Besides, LaMa
and ZITS are further compared in Indoor(512) and Matter-
Port3D(1k) in Tab. 5. LaMa and ZITS are firstly trained in
256×256 and then finetuned with dynamic resolutions from
256 to 512 with 50k steps. Models tested in Indoor(512)
and MatterPort3D(1k) are both trained in Indoor training
set. For the Places2(512), we randomly select 1,000 sam-
ples from 36,500 for the 512 testing. Our ZITS can achieve
prominent improvements compared with LaMa, which il-
lustrates that our MPE and incremental structure enhanced
training is effective for high-resolution inpainting. Besides,
ZITS can also get better 1k results in MatterPort3D. More
high-resolution results can be seen in the supplementary.
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(a) Masked Input (b) EC (c) MST (d) LaMa (e) Ours
Figure 5. Qualitative results of Indoor dataset compared among EC [38], MST [4], LaMa [44], and ours. Zoom-in for details.

(a) Masked Input (b) EC (c) HiFill (d) MST (f) LaMa(e) Co-Mod (g) Ours

Figure 6. Qualitative results of Places2 compared among EC [38], HiFill [54], MST [4], Co-Mod [62], LaMa [44], and ours.

(a) Masked input (b) Edges from MST (c) Lines from MST (d) Edges from ours (e) Lines from ours

Figure 7. Qualitative results of edges and lines of Indoor dataset.

Figure 8. Structure enhanced finetuning with and without ZeroRA.

5. Conclusions

In this paper, we propose an incrementally struc-
ture enhanced inpainting model called ZITS. We use a
transformer-based structure restorer to get much better
holistic structures compared with previous methods. Then,

(a) Masked input (b) w./o. MPE (c) with MPE

Figure 9. Ablations of 512×512 Places2 with and without MPE.

a novel ZeroRA strategy is leveraged to incorporate auxil-
iary structures into a pretrained inpainting model with a few
finetuning steps. The proposed masking positional encod-
ing can further improve the inpainting performance. ZITS
can achieve significant improvements based on the state-of-
the-art model in experiments of various resolutions.
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