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Abstract

Despite the potential of multi-modal pre-training to
learn highly discriminative feature representations from
complementary data modalities, current progress is being
slowed by the lack of large-scale modality-diverse datasets.
By leveraging the natural suitability of E-commerce, where
different modalities capture complementary semantic in-
formation, we contribute a large-scale multi-modal pre-
training dataset M5Product. The dataset comprises 5
modalities (image, text, table, video, and audio), covers
over 6,000 categories and 5,000 attributes, and is 500 x
larger than the largest publicly available dataset with a sim-
ilar number of modalities. Furthermore, M5SProduct con-
tains incomplete modality pairs and noise while also hav-
ing a long-tailed distribution, resembling most real-world
problems. We further propose Self-harmonized ContrAstive
LEarning (SCALE), a novel pretraining framework that
integrates the different modalities into a unified model
through an adaptive feature fusion mechanism, where the
importance of each modality is learned directly from the
modality embeddings and impacts the inter-modality con-
trastive learning and masked tasks within a multi-modal
transformer model. We evaluate the current multi-modal
pre-training state-of-the-art approaches and benchmark
their ability to learn from unlabeled data when faced with
the large number of modalities in the M5Product dataset.
We conduct extensive experiments on four downstream tasks
and demonstrate the superiority of our SCALE model, pro-
viding insights into the importance of dataset scale and di-
versity. Dataset and codes are available at '

1. Introduction

Self-supervised learning has been driving the rapid de-
velopment of fields such as computer vision and natural

I https://xiaodongsuper.github.io/M5Product_dataset/
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Our M5Product dataset contains a large variety of
modalities (image, text, table, video and audio) that depict the
categories, descriptions, materials, properties and purposes of E-
commerce products, and diverse real-world data samples.

Figure 1.

language processing, as well as research on multi-modal
representation learning. In particular, it has been shown
both from a theoretical [18] and a practical [16, 58] per-
spective that large scale datasets with diverse modalities
can effectively enhance the discrimination of generated fea-
tures and thus improve the performance in vision-language
tasks. However, current advances are severely limited by
the lack of such large-scale diverse-modality datasets, with
the largest public multi-modal datasets only containing text
and image modalities and no category information [41].
Given the prevalence of online shopping in daily life,
with its natural occurrence of multi-modal information
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and diverse categories, multi-modal pre-training on E-
commercial products has received increasing attention and
led the developments of next-generation technology for sev-
eral downstream tasks (e.g., multi-modal retrieval, multi-
modal classification, and clustering). However, even among
the present product datasets (e.g., RPC checkout [48], Dress
Retrieval [9] and Product1M [55]), the number of categories
is insufficient to robustly verify the performance of down-
stream tasks.

More importantly, the current research community
mostly focuses on two modalities (text and image) in both
general multi-modal and E-commerce datasets, while ignor-
ing the importance of additional complementary informa-
tion from structural data as well as video and audio modal-
ities. Tabular data for instance can provide detailed infor-
mation about properties and characteristics, such as brand,
materials, attributes, and scenarios, while audio and video
can convey different perspectives, scales, affordances, sell-
ing points, characteristics, and use scenarios that are not
obvious from images or text alone. The focus on these two
modalities is partly due to the lack of datasets with diverse
modalities as well as an under-exploration of approaches to
balance the modality importance in these settings. In partic-
ular, two key challenges are: 1) Modality Interaction: How
to learn common representations from unimodal, bimodal,
trimodal, and even multi-modal relationships between dif-
ferent modalities using an elegant approach that scales to
a large number of modalities; 2) Modality Noise: How to
reduce the influence of modality noise (missing and incom-
pleted modalties) during the training process.

To address the problem of insufficient modality diver-
sity and limited scale, while at the same time providing a
challenging real-world scenario, we present a very large-
scale E-commerce multi-modal product dataset MSProduct,
which is one of the largest and most diverse multi-modal
product dataset to date. Our MSProduct dataset contains
more than 6 million multi-modal samples from 6,232 cat-
egories and has more complex and diverse modalities than
existing datasets. This allows MSProduct to be used for
more comprehensive evaluation of the practical application
and generalization abilities of multi-modal pretraining mod-
els and can improve the modality fusion performance, fa-
cilitating new directions in multimodal research. Figure 1
shows the five modalities (image, caption, video, audio, and
specification (table)) of our dataset.

To further address the modality fusion limitations of ex-
isting methods as well as handle modality noise, we propose
a generic framework that takes five-modality data as inputs,
as shown in Figure 2. The framework consists of a sim-
ple and efficient multi-modal five stream pre-training model
named Self-harmonized ContrAstive LEarning (SCALE)
and is evaluated on several downstream tasks and compared
with several recent state-of-the-art vision-language mod-

els [7,27,30,38,42,45,56]. SCALE increases modality
alignment effectiveness by implementing a self-harmonized
strategy that adapts the alignment weights between different
modalities in the contrastive learning modules and masked
tasks to adaptively integrate complementary modality infor-
mation. In summary, our contributions are as follows:

* We provide the largest five-modality E-commerce
dataset MSProduct. Through its large scale, diver-
sity, complex real scenarios and number of modali-
ties, MSProduct provides a comprehensive environ-
ment for evaluating the generalization performance of
multi-modal pre-training models.

¢ Our Self-harmonized Contrastive Learning (SCALE)
framework learns adaptive modality interactions, re-
sulting in more effective modality fusion. We com-
pare SCALE to a comprehensive set of baseline meth-
ods and demonstrate its superior performance on the
M5Product dataset.

* Interesting Observations: 1) In large-scale and com-
plex scenarios, the complementary gain of different
modalities increases. Learning modality alignment
weights allows our SCALE framework to effectively
coordinate complementary information to achieve bet-
ter performance. 2) For multi-modal pre-training mod-
els in the E-commerce domain, dataset scale and di-
versity are relatively important for the downstream
tasks. Given the large-scale and diverse products, our
SCALE framework generalizes better than other base-
lines to downstream tasks.

2. Related Work

Multi-modal pre-training datasets. Most multi-modal
pre-training datasets are collected from social websites
(e.g., Twitter and Facebook) and are limited to just two
modalities collected for specified tasks. These datasets can
be divided into four categories according to their modal-
ity composition, i.e., audio/text, video/text, image/text, and
others. Among these, LJ Speech [19] and SQuAD [25] are
classical audio/text datasets and used for voice synthesis
and audio Q&A, while most video/text datasets [2, 20, 24,

,46,47,51,57] are used for video Q&A. However, these
datasets commonly only contain a limited number of sam-
ples, limiting their applicability to multi-modal pretraining.
Image/text datasets [1,4,8,17,22,23,29,34,41,43,48,53],
on the other hand, tend to be larger and have been widely
used for pretraining multi-modal models. Among these, the
CC 3M [41] with more than three million image-text pairs is
the most widely used pre-training dataset, and has recently
been expanded to CC 12M [5], the largest text-image cross-
modal dataset currently. Apart from these, commonly used
Image/text datasets for multi-modal retrieval tasks are MS
COCO [29], Flickr30K [53], INRIA-Websearch [22] and
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Table 1. Comparisons with other widely used multi-modal
datasets. ”-”” means not mentioned. Our M5Product is one of the
largest multi-modal datasets compared with existing datasets. Six
modalities are separately denoted as: Image (I), Text (T), Video
(V), Audio (A), Table (Tab) and 3D Image (3D).

Dataset ‘ Samples  Categories Instances Modalities‘ Modal type  Product

SQuAD [25] 37,111 - - 2 A/T no
HowTol100M [32] | 1,220,000 12 - 2 V/IT no
CC3M [41] 3,300,000 - - 2 T no
CC 12M [5] 12,423,374 - - 2 T no
CMU-MOSEI [54]| 23,500 2 - 3 T/V/IA no
XMedia [36] 12,000 20 - 5 I/T/V/A/3D  no
RPC checkout [48]] 30,000 200 367,935 2 T yes
Dress Retrieval [9]| 20,200 50  ~20,200 2 /T yes
ProductIM [55] | 1,182,083 458 92,200 2 T yes
MEP-3M [6] 3,012,959 599 - 2 T yes
MS5Product 6,313,067 6,232 - 5 I/T/V/A/Tab yes

NUS-WIDE [8] with standard annotations. Other datasets
include CMU-MOSEI [54] and XMedia [36], where CMU-
MOSEI mainly focuses on the emotional analysis and XMe-
dia is utilized for cross-modal retrieval.

Aside from the abovementioned datasets, there exist sev-

eral E-commerce datasets. The Dress Retrieval [9], RPC
checkout [48] and Product1M [55] are typical E-commerce
multi-modal datasets. The Dress Retrieval dataset contains
20,200 samples from 50 clothing categories, RPC check-
out offers 30,000 samples of small retail goods on simple
backgrounds and ProductIM provides 1.18 million samples
from 458 cosmetics classes. Compared with these three
datasets, our M5Product is not only larger in terms of cate-
gories and data scale, but also contains a more diverse set of
modalities. A detailed comparison with other multi-modal
pre-training datasets is provided in Table 1.
Multi-modal pre-training for E-commerce products.
Several vision-language pre-training models have been ex-
plored for visual-text multi-modal learning in recent years.
They can coarsely be divided into two categories: 1) Single-
stream models whose transformer layer operates collec-
tively on the concatenation of the visual and text inputs,
e.g, VL-bert [42], Image-BERT [37], VideoBERT [44],
MMT [12], HERO [26], VisualBERT [27] and UNITER [7].
2) Dual-stream models whose image and text inputs are
not concatenated, such as VILBERT [30], LXMERT [45],
CLIP [38] and DALL-E [39].

Within E-commerce, fashion-based tasks have been ad-
dressed in among others FashionBERT [13], MAAF [11],
Kaleido-BERT [59], M6 [28] and CAPTURE [55]. All ex-
isting studies in the E-commerce scenarios focus solely on
the image and text modalities and none of the approaches
can utilize more modalities. Besides, all existing meth-
ods default to assigning the same contribution to different
modalities when modeling multi-modal interactions.More
specifically, transformer-based approaches combine high-
level features that are extracted from the different inputs
via concatenation, where the uni-modal transformers are

Table 2. The characteristics of different modalities for E-products.
Modality ‘ APP USA SPEC SELL PROD MATE CATE

Image v
Text v v v v
Video v v v v
Audio v v v
Table v v v v

trained via masked task constraints or via constructing inter-
modality losses between different modalities. This re-
stricts the models from effectively prioritizing modalities
and tends to limit performance improvements as the num-
ber of modalities increases.

Our proposed benchmark fills this gap by exploiting all
the diverse modalities of the MSProduct dataset and pro-
vides a strong baseline for multi-modal pre-training re-
search in the field of E-commerce and beyond.

3. M5Product Dataset

Data Collections. The dataset is crawled from a popu-
lar E-commerce website 2. and the front page of each E-
commerce product is analyzed to collect the multi-modal
information consisting of product images, captions, videos,
and specifications (table information) *. Duplicate data is
removed and audio information is extracted from videos via
the moviepy * tool and saved in mp3 format. For prod-
uct specifications, we extract 5,679 product properties and
24,398,673 values to construct a table database coarsely
labeled by e-commerce merchants. After processing, the
dataset contains 6,313,067 samples. Note, being a real-
world dataset, our M5Product is, unlike traditional multi-
modal datasets, not a complete paired dataset and contains
samples with only a subset of modalities as well as long-
tailed distributed (Figure 3). We summarize the product
characteristics that are relayed by the different modalities
in our dataset in Table 2, where APP, USA, SPEC, SELL,
PROD, MATE and CATE denote Appearance, Usage, Spec-
ification, Selling Point, Production, Material and Category
Descriptions, respectively.

Quantitative analysis. 1) Diversity: The dataset consists
of more than 6,000 classes covering various and massive
amounts of E-commerce products such as clothes, cosmet-
ics, and instruments. Figure 1 illustrates the diversity of the
modalities and categories and we further provide a descrip-
tion of the data format and the collection process in Sec-
tion E of the supplementary materials. Finally, a quantita-
tive analysis of the category and modality distributions can
be found in Section F. Note that about 5% of products are
unimodal samples e.g. only either contain images, captions,

2 We are authorised by the company to access and obtain the data. We
are further authorised to share the dataset and the detailed license is given
in Section A of the supplementary material > In this work we focus on
core data modalities (image, text, video, audio, and table data) only and
do not consider extracted feature representations such as OCR and Motion
embeddings that are extracted from core modalities as separate modalities.

4 https://pypi.org/project/moviepy/
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Figure 2. An illustration of our M5Product benchmark. It consists of a five-modality E-commerce dataset with a more diverse and
complex backgrounds collected from the real-world online-shopping website. It also proposes a SCALE model to capture the maximum
modality complementary information for four common downstream tasks: 1) multi-modal retrieval, 2) fine-grained retrieval, 3) multi-
modal classification, and 4) multi-modal clustering. The benchmark verifies the effectiveness of modality diversity in five widely used

modalities.
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Figure 3. Training data distribution over whole categories.
or tabular properties. 2) Quality: We further provide a com-

parison between our M5Product dataset and some widely-
used datasets for multi-modal pre-training in Table 1. A
more extensive comparison with other multi-modal datasets
can be found in Section H of the supplementary materials.
Compared with existing multi-modal datasets, M5Product
is the first extremely large public real-world E-commerce
product dataset that contains data of more than two modali-
ties.

Moreover, our dataset contains a large amount of in-
stances, i.e., more than six million samples from the 6,232
coarse categories. These abundant data will benefit several
downstream tasks such as self-learning, weakly-supervised
learning, multi-modal retrieval, cross-modal generation and
fine-grained recognition.

Additional analysis. In the supplementary materials, we
provide dataset collection details in Section B and detail
how the dataset is split into training and test in Section D
and how annotations are obtained in Section C. We further
provide a smaller split, referred to as subset, which is used
to show the difference in performance for a smaller dataset.
Finally, we provide further insights into the composition of
the dataset (missing modalities, unimodal data analysis, and

| A8 Moido fashion portable foldable
underwear drying sterilization

=, | box, matemal and baby product;

UV ultraviolet sterilization drye

data format) in supplementary Section F.

4. Our Methodology

s
r

As shown in Figure 2, our SCALE framework consists
of a self-harmonized contrastive learning module and a self-
supervised multi-modal transformer. In this section, we first
provide the architectural design of SCALE in Section 4.1
before describing the five masked tasks that enable the self-
supervised learning of SCALE in Section 4.2. Finally, we
present the detailed learning process of SCALE and detail
how multi-modal alignment is achieved in Section 4.3.

s

4.1. Architectural Design of SCALE

As depicted in Figure 2, SCALE is a typical single-
stream transformer architecture. In the bottom part, the Im-
age/Text/Table/Video/Audio embedding layers and trans-
formers aim to extract modality features and generate to-
ken features. Specifically, the text and table encoders are
standard transformers to encode the caption and table in-
formation of products, respectively. The image encoder in-
stead takes proposals extracted by bottom-up-attention [3]
as inputs, while ordinal frames sampled from the video are
fed into the video encoder. For the audio encoder, SCALE
extracts MFCC [33] features from audio. After being pro-
cessed by the separate modality encoders, the token features
of different modalities are concatenated and fed into a Joint
Co-Transformer (JCT) module to capture the token rela-
tionships between different modalities.

Missing Modalities. Zero imputation of missing modali-
ties is leveraged to utilize all available data when training
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SCALE. We provide experimental evidence that SCALE
benefits from the incomplete samples in Section I of the
supplementary material.

4.2. SCALE by Masked Multi-Modal Tasks

Similar to previous works, we utilize several pretext
tasks (PRE) to facilitate self-supervised learning of
SCALE in the Joint Co-Transformer module. For modality-
wise feature learning from the image and text modalities,
we adopt the Masked Region Prediction task (MRP) and the
Masked Language Modeling task (MLM), respectively, af-
ter the JCT. Utilizing the characteristics of the table, video,
and audio modalities, we further propose a Mask Entity
Modeling task (MEM), Mask Frame Prediction task (MFP),
and Mask Audio Modeling task (MAM) following a similar
strategy of predicting masked tokens. In all masked tasks,
the ground-truth labels are the features of masked areas. For
all masking tasks, 15% of the inputs are masked out and the
remaining inputs are used to reconstruct the masked infor-
mation. Please note that unlike in the MLM task, where
15% of individual words are masked, 15% of the entities
(properties, brand names, etc.) are entirely masked out for
the MEM task. This drives our model to learn better table
representations to recover the masked inputs, which is illus-
trated in Section 5.3. The loss function of the ith modality
is defined as:

‘CMI- (9) - _Ethth log PG (tmsk | tﬂmslw Mﬂz) 5 (l)

where t_,, s denotes the unmasked tokens surrounding the
masked token ¢,,s;, 6 represents the network parameters,
and M; and M_,; are the ¢th modality and the remaining
modalities, respectively.

4.3. Self-harmonized Inter-Modality Contrastive
Learning

Self-harmonized Inter-Modality Contrastive Learning
(SIMCL) is at the core of our proposed SCALE frame-
work. It aims to facilitate the semantic alignment between
different modalities via a self-harmonized strategy for adap-
tive Inter-Modality Contrastive Learning (IMCL). For a
minibatch of modality samples D € RBXMXF where B,
M and F' denote the batch size, number of modalities, and
embedding dimension, respectively, we first construct the
contrastive loss between each modality.

Given N data samples {(dgo), dz(-l)) N |, where each
sample has two modalities (0) and (1), we select the N
modality pairs as positive pairs in our contrastive learning.
For each positive pair (dgo), dgl)), negative pairs are con-
structed by pairing dl(»o) and dz(l) with the remaining V-1
samples from the other modality, resulting in 2(/V-1) nega-
tive pairs. For a modality pair (dEO), dgl)) and their embed-

ding features ( fi(o), fl-(l)), the cross-modal contrastive loss

MO G o G D A

Inter-Modality Scores
Inter-Modality Contrastive Learning

Figure 4. The Inter-Modality Contrastive Learning module of our
SCALE framework.

of each modality pair is:

exp(sim (£,5)) /7)
i
&t (5717 )
2
where sim is the cosine similarity, 7 is the temperature pa-
rameter and 1(;; is a binary indicator function, and 1=1
for k # ¢ and O otherwise.

In most prior work, only two modalities are considered
and Eq. 2 can be used. However, when considering trimodal
data or data with even more than three modalities, it is not
suitable to directly fit the loss function as it does not account
for the difference in complementary information that dif-
ferent modalities contribute. To solve this problem, we de-
fine a simple but effective self-harmonized method to model
the complementary process of the inter-modal relationships.
We introduce a modality alignment score matrix, to encode
the relationships among the inter-modal losses L1, and the
intra-modal losses L£js,. The alignment score matrix S for
each data sample is initialized by a zero matrix and up-
dated as free model parameters. To obtain modality im-
portance scores for each modality combination, we apply
the softmax function to S. Finally, the importance scores
are multiplied to generate the modality alignment score S
as S = S - softmax(S). The learning process is shown
in Figure 4 and illustrates that SIMCL takes full advantage
of the inter-modal relationships. Given the modality align-
ment score .S, the triangular part S is selected to weight
the inter-modal losses L£¢ 1, and the diagonal part S\ is uti-
lized to constrain the intra-modal losses Ly, resulting in
the weighted loss:

Lop(d?,dV) = ~log

7

1
>
m=

Liotal = ngj Lo, ,;(Sijlogit; ;) + Z? L, (Silogit;)
3)

where logit is the the loss logit.

5. Experiments

Implementation Details. We use BERT [10] to initialize
the text transformer of our proposed SCALE framework,
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Table 3. The (pretrain/finetune) performance gains from sequentially adding more modalities using SCALE on the subset (top) and the

whole dataset (bottom). The retrieval performances are based on the features extracted from pretrain and finetune stages.

Modality | Accuracy | mAP@] mAP@5 mAP@10 |  Prec@l Prec@5 Prec@10

Text 7742 | 4770/65.10  53.63/68.39  51.59/66.99 | 47.70/65.10  30.96/44.89  24.15/33.44
+Tmage | 7958 | 51.47/67.02 56.16/69.85 54.41/68.43 | 5147/67.02 33.41/4629  25.55/34.29
+Table 82.83 | 57.14/67.97 61.71/7034  59.64/69.38 | 57.14/67.97  38.02/4685  28.99/34.36
+Video 8431 | 5857/69.79 63.15/7230 61.02/70.67 | 58.57/69.79  39.26/4744  29.56/34.78
+Audio | 8550 | 58.72/70.62 63.17/73.02 61.05/71.50 | 58.72/70.62  39.66/48.20  30.32/35.35

Text 8L.I1 | 55.82/69.47 60.74/72.74  59.02/71.79 | 55.82/69.47  36.99/48.76  28.04/35.84
+Image | 83.68 | 59.81/71.51 64.13/7451 62.18/7321 | 59.81/71.51  38.97/49.27  30.15/36.72
+Table 84.63 | 61.32/7234 6553/7486  63.62/7347 | 61.32/7234  40.66/49.77  30.78/36.95
+Video 8490 | 62.65/7259 65.67/7505 63.87/73.62 | 62.65/7259  41.18/49.96  31.01/37.04
+Audio | 86.57 | 63.56/73.77 67.51/7617  65.39/74.73 | 63.56/74.01  42.68/50.78  32.17/37.42

Table 4. The performance of our model SCALE under different modality combinations on the coarse- and fine-grained multi-modal
retrieval and classification tasks. In the following, I, T, Tab, V and A denote image, text, table, video and audio modalities, respectively.

Modality Combinations ‘ Accuracy ‘ mAP@1 mAP@5 mAP@10 ‘ Prec@1 Prec@5 Prec@10
I+Tab 62.00 44.53/4597 49.62/51.89 48.28/50.33 | 44.53/45.97 30.89/34.08 23.65/28.63
+V 34.57 20.57/36.29 26.78/42.72 26.41/41.38 | 20.57/36.29 14.71/26.52 11.78/22.34
I+A 27.67 15.73/35.64 20.85/42.96 20.72/41.70 | 15.73/35.64 11.16/27.02 9.47/22.78
I+T 79.58 67.02/62.20 69.85/66.97 68.43/64.21 | 67.02/62.20 46.29/49.85 34.29/42.36
+T+V 80.34 67.35/63.05 70.29/67.37 68.95/64.62 | 67.35/63.05 46.45/50.85 34.33/43.02
+T+A 79.73 67.19/64.21 70.15/68.25 68.64/65.35 | 67.19/64.21 46.33/50.42 33.32/42.93
I+Tab+V 63.09 4594 /4733 51.32/53.33 49.78/51.28 | 45.94/47.33 31.69/35.81 24.12/30.05
I+T+Tab 82.83 67.97/68.30 70.34/72.67 69.38/70.07 | 67.97/68.30 46.85/57.44 34.36/50.59
I+T+Tab+V 84.31 69.79/68.40 72.30/7291 70.67/70.31 | 69.79/68.40 47.44/57.60 34.78/51.47
I+Tab+A+V 63.54 47.24/4824 52.07/53.89 50.41/51.89 | 47.24/48.24 32.19/36.29 24.47/30.74
+T+A+V 80.36 68.80/66.43 70.84/71.12 69.71/68.16 | 68.80/66.43 47.24/54.03 34.57/47.53
I+T+Tab+A 84.33 70.23/68.97 72.59/73.07 70.94/70.77 | 70.23/68.97 47.58/57.89 35.33/51.60
I+T+Tab+A+V 85.50 ‘ 70.62/69.25 73.02/74.08 71.50/71.02 ‘ 70.62/69.25 48.20/58.76 35.35/52.05

Table 5. Comparisons of image and text modalities on the subset
(top) and the whole dataset (bottom).

Method ‘ mAP@1 ‘ Accuracy ‘ NMI  Purity
Imagepgsed 15.17 27.67 63.62 54.86
BERT [10] 47.70 77.42 76.35 68.80

VL-BERT [42] 49.31 78.13 80.51 7191
ViLBERT [30] 49.18 78.24 80.51 7191
VisualBERT [27] 49.20 78.41 81.23  72.39
CLIP [38] 49.39 78.35 81.75 7250
UNITER [7] 49.87 78.54 82.71 73.58
CAPTURE [38] 50.30 78.69 83.06 74.14
SCALE (Ours) 51.47 79.58 84.23 75.81
Imagepased 22.67 30.14 6749 59.64
BERT [10] 55.82 82.11 87.30 7175
CLIP [38] 57.73 82.60 90.49  76.48
SCALE (Ours) 59.81 83.68 92.01 78.34

while the remaining transformers are randomly initialized.
Both the single-modality encoders and the multi-modal fu-
sion encoders consist of 6 transformer layers each, adding
up to a total of 12 transformer layers. The hidden state size
of each modality transformer is 768 and the maximum se-
quence length for the captions and tables are set to 36 and
64, respectively. Using the same setting as in [30] °, we uti-
lize Faster R-CNN [40] with a backbone ResNet101 [15]
pre-trained on the Visual Genome dataset [23] to extract
region features of selected 10 to 36 bounding boxes with

5 https://github.com/airsplay/py-bottom-up-attention

high-class detection probability for each image. We train
SCALE with a total batch size of 64 for 5 epochs using
the Adam optimizer [21] with a warm-up learning rate of
le-4. Additional implementation details of our model are
provided in Section G of the supplementary material.

Baselines. We compare SCALE to the following eight al-
ternative pre-training methods that utilize image and text
modalities as well as combinations of both: Bert [10]
(Textpgsed), Imagepqseqd, VILBERT [30], CLIP [38], VL-
BERT [42], VisualBERT [27], UNITER [7] and CAP-
TURE [56]. Imagepqseq and BERT [10] are 12-layer trans-
formers based on the MLM (Mask Language Modeling) or
MRP (Mask Region Prediction) task using image or text
modality, providing single-modal baselines for the product
retrieval, classification, and clustering tasks. To ensure a
fair comparison, the same hidden size of 768 is chosen for
all baselines.

Evaluation. We consider the following four downstream
tasks to evaluate the learned representations: 1) Multi-
modal retrieval: This task aims to find the most relevant
target products using combinations of two or more modal-
ities. A pair is considered a match if both belong to the
same category; 2) Fine-grained multi-modal retrieval: Re-
trieval on an instance level, where only samples of the same
product (i.e. color, model, shape, and style) are considered
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a match °; 3) Multi-modal classification: Product category
classification given the multi-modal features extracted from
the joint co-transformer of SCALE using a linear classifier;
and 4) Multi-modal clustering: Product category clustering
using k-Means clustering and the same features as in the
classification setting. For product retrieval, we adopt the
widely used metrics mean Average Precision (mAP) and
Precision (Prec) [14,31,49] to evaluate the retrieval accu-
racy on the two retrieval tasks. For product classification
and clustering, all methods are evaluated using the Classifi-
cation Precision (Classification accuracy), Normalized Mu-
tual Information (NMI) [52] and Purity metrics. In all ex-
periments, models are trained on the training split. The pre-
trained model is then applied to extract the modality fea-
tures of the gallery and test splits for the product retrieval
and clustering tasks. For the classification task, we finetune
the pre-trained model on the classification subset containing
1,805 categories/classes and utilize the finetuned model to
extract the features of the classification test set.

5.1. Modality Diversity

To examine the performance of our proposed SCALE
framework and to verify the benefits of diverse modalities
and dataset scale, we train SCALE with an increasing num-
ber of modalities and observe the variations in classification
and multi-modal retrieval performance both for the whole
MS5Product dataset and the subset. More specifically, fused
features are extracted from the joint co-transformer (JCT)
of our SCALE after finetuning for the classification task
and after pre-training and finetuning for the (coarse) multi-
modal retrieval task. Results in Table 3 show that perfor-
mance increases across all settings as modalities are added,
illustrating the benefit of complementary modality informa-
tion to learning multi-modality feature representations. It
can also be observed that modality gains are larger on the
whole dataset, supporting Interesting Observation 1.

We further provide results for an extensive set of modal-
ity combinations to verify SCALEs effectiveness in lever-
aging the diverse modalities of our MSProduct dataset. Ta-
ble 4 provides results for the coarse- and fine-grained multi-
modal retrieval tasks as well as the classification task after
finetuning the model. As in the previous experiment, notice-
able improvements can be observed as additional modalities
are added. In particular, the addition of the text modality
leads to high modality gains, verifying the benefits of in-
cluding more diverse modalities that can capture different
views of the same product. Interestingly, performance on
the coarse-grained retrieval task is significantly worse than
on the fine-grained retrieval task in most cases, indicating
the complexity of the MSProduct dataset and the diversity
of the products in each category.

6 A more thorough definition of the term same products and how in-
stance-level labels are obtained is provided in the supplementary.

Table 6. Ablation study of the SIMCL module.

# | IMCL PRE || Accuracy | mAP@L1510 |  Prec@15,10

83.77 68.45/70.92/69.30 | 67.56/46.37/34.12

v 84.44 69.14/71.96/70.13 | 69.14/47.15/34.84
v 84.09 69.31/71.59/69.85 | 69.31/46.72/34.42

v v 85.50 70.62/73.02/71.50 | 70.62/48.20/35.35

AW -

Table 7. Analysis of different masked tasks (token mask (MLM)
and entity mask (MEM)) for the table modality.

Tasks | Accuracy | mAP@1,510 |  Prec@1,5,10

MLM 84.05 68.34/71.19/69.43 | 68.34/47.02/34.43
MEM 85.50 70.62/73.02/71.50 | 70.62/48.20 / 35.35

Table 8. Analysis of treating text and table modalities separately
(T/Tab) or stacked together (T+Tab).
mAP@1,5,10 Prec@1,5,10

70.15/72.19/70.49 | 69.15 / 47.40 / 34.40
70.62 /73.02/71.50 70.62/48.20 / 35.35

Formats | Accuracy

T+Tab 84.61
T/Tab 85.50
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Figure 5. Variations of modality correlation gains with the

number of modalities.
Semantic Alignment. To additionally demonstrate the im-
portance of modality diversity, we compute the modality
correlation, the average cosine similarity between image
and text features as obtained by the JCT, for an increasing
number of modalities. Figure 5 illustrates that the semantic
alignment capability of the pre-training model increases as
the number of modalities grows.

5.2. Multi-modal Downstream Tasks

We evaluate SCALE on the M5Product dataset for the
product retrieval, classification, and clustering tasks and
compare results to several benchmark approaches in Ta-
ble 5. For the Imagey,scq and BERT [10] models, which
only utilize the image and text features, respectively, the ex-
tracted features are fed directly into the classification model.
For our SCALE approach, we utilize the fused modality
features generated by the joint co-transformer, pre-trained
on both image and text modalities. Only utilizing the image
and text modalities allows us to facilitate a fair compari-
son to the recent state-of-the-art approaches VILBERT [30],
CLIP [38], VL-BERT [42], VisualBERT [27], UNITER [7]
and CAPTURE [56]. Comparing our SCALE framework
to the unimodal models, Imagey,seq and Bert [10], we
observe that exploiting multi-modal data significantly im-
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Figure 6. Visualize the embeddings generated by SCALE and
VILBERT via t-SNE. Points belonging to the same category are
of the same color. Best viewed in color.
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Figure 7. Attention attribution over proposals learned by our SCALE.

proves the performance across all tasks. We further observe
that SCALE, by leveraging SIMCL, can efficiently fuse the
modalities and outperform all the baseline approaches (In-
teresting Observation 2).

5.3. Ablation Studys and Visualization

To explore how SIMCL influences IMCL and the
Pretext tasks, we conduct several ablation studies. Table 6
illustrates that improvements of approximately 2% are ob-
tained in the classification task and more than 2% for the
coarse-grained retrieval task when including both, high-
lighting the importance of both the Pretext tasks and the
effective modality fusion of SIMCL. We further analyze
the effect of the MEM pretext task for the table modal-
ity and show the benefit of masking out complete enti-
ties over masking out individual tokens (MLM) in Table 7.
This benefit can be attributed to the fact that MEM en-
sures that SCALE learns representations that encode the
semantic information of complete entities. Finally, we eval-
uate the performance of modelling the text and the table
modalities using individual modality encoders and compare
SCALE:s retrieval performance to a baseline where text and
table information is concatenated and fed to a single trans-
former, resembling the process of BERT [10]. By modelling
both modalities individually, results in Table 8 illustrate that
more information can be preserved and we hypothesize that
using a single transformer leads to a loss in table modal-
ity information for the benefit of the more expressive text
modality.

Figure 6 shows t-SNE visualizations of the extracted fea-
tures for the JCT module of our SCALE model and the al-
ternative approach ViLBert [30] on the M5Product dataset.

SCALE not only better distinguishes different classes but
also improves class compactness compared to the ViLBert
model. Further, the attention attribution for different modal-
ities are shown in Figure 7 and verify that the visual features
generated by SCALE are object-oriented and semantically
interpretable.

6. Limitations and future work

The experimental evaluation showed that SCALE is able

to learn efficient representations from a large number of
modalities for retrieval, classification, and clustering. How-
ever, more evaluation of the generative capabilities of the
models representations is lacking and tasks such as image
and caption generation could be promising directions to ex-
plore. We further provide some of SCALEs failure cases in
supplementary Section J.
Potential negative societal impact. As a result of the strict
ethical considerations used in the data collection process,
where among others personally identifiable information has
been removed, MSProduct does not pose any ethical risks.

7. Conclusion and Discussion

To facilitate multi-modal pre-training, we present the
MSProduct dataset, which is the largest available multi-
modal E-commerce product dataset, consisting of five core
modalities (image, text, table, video, and audio). To fur-
ther promote multi-modal research in retail and increase
seller and buyer engagement, we also propose the novel
SCALE multi-modal pre-training framework. By utiliz-
ing Self-harmonized Inter-Modality Contrastive Learning
(SIMCL), SCALE is able to model and exploit modal-
ity relationships effectively and outperforms previous ap-
proaches on the MSProduct multi-modal retrieval, classi-
fication, and clustering tasks. We believe that both the
dataset and the proposed framework work will inspire re-
search on scaling multi-modal pre-training beyond the com-
monly used image and text modalities.
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