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Abstract

Accurate detection of the fake but photorealistic images
is one of the most challenging tasks to address social, bio-
metrics security and privacy related concerns in our com-
munity. Earlier research has underlined the existence of
spectral domain artifacts in fake images generated by pow-
erful generative adversarial network (GAN) based meth-
ods. Therefore, a number of highly accurate frequency do-
main methods to detect such GAN generated images have
been proposed in the literature. Our study in this paper in-
troduces a pipeline to mitigate the spectral artifacts. We
show from our experiments that the artifacts in frequency
spectrum of such fake images can be mitigated by proposed
methods, which leads to the sharp decrease of performance
of spectrum-based detectors. This paper also presents ex-
perimental results using a large database of images that are
synthesized using BigGAN, CRN, CycleGAN, IMLE, Pro-
GAN, StarGAN, StyleGAN and StyleGAN2 (including syn-
thesized high resolution fingerprint images) to illustrate ef-
fectiveness of the proposed methods. Furthermore, we se-
lect a spatial-domain based fake image detector and ob-
serve a notable decrease in the detection performance when
proposed method is incorporated. In summary, our insight-
ful analysis and pipeline presented in this paper cautions
the forensic community on the reliability of GAN-generated
fake image detectors that are based on the analysis of fre-
quency artifacts as these artifacts can be easily mitigated.

1. Introduction

GAN-based methods can achieve state-of-the-art perfor-
mance for several computer vision related tasks. They have
shown great ability to generate images which do not exist
in the real world [8, 32, 38], transfer the style of images
[14, 25, 42] and translate text to image [16, 39]. Consider-
ing the latent risk associated with the misuse of these fake

but real-looklike images, several methods have been pro-
posed to detect such GAN-generated images. Spatial do-
main methods [36, 40, 41, 44] that directly train large neu-
ral network-based detectors have shown to perform well.
More recently such fake image detectors based on the arti-
facts in frequency spectrum of GAN-generated images have
been proposed. These detectors require less parameters as
compared with the spatial-domain based detectors, and have
shown better performance.

Figure 1. Detectors based on the artifacts in frequency spectrum of
GAN-generated images show good performance in recent works.
However, these detectors can be compromised when the GAN-
generated images are further subjected to our proposed methods.

The main reason for the success of these methods is that
the anomalies in the frequency domain representation of
GAN-generated images are more pronounced and therefore
easy to detect. These anomalies in the spectrum of GAN-
generated images can be categorized into two types: abnor-
mal spectral patterns and discrepancy in their power distri-
bution. Some abnormal patterns such as dots and lines are
more frequent in the spectra of images generated by Cy-
cleGAN [47], StarGAN [13], and StyleGAN [27]. In fre-
quency spectra of BigGAN [10] generated images, cloud-
like blurry regions in high-frequency part of spectra are
more likely to be observed. In the spectra of synthetic im-
ages generated by CRN [12], IMLE [31], ProGAN [26] and
StyleGAN2 [28], the artifact patterns have been observed
in distinguishing latent shapes. Zhang et al. [45] use spec-
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Figure 2. Our pipeline to enhance GAN-generated image to evade
popular fake image detectors.

trum as the input to train a classification network and pro-
vide comparative performance using a network trained on
spatial domain features. Frank et al. [23] design a shallow
CNN which use DCT spectrum as the input to detect GAN-
generated images. It is an exciting approach as it requires
less parameters than those in previous works while achiev-
ing higher accuracy. Discrepancy in the distribution of spec-
tral power is another type of artifacts. The high frequency
part in such power distribution of GAN-generated images
can provide important cues of their origins as compared to
the real-world images. Therefore, promising attempts have
been reported in [19,20] which train detectors to accurately
classify the GAN-generated images, using the cues from the
power distribution.

There are some interesting references that analyze the
origins of such spectral artifacts and they aim to resolve
them. References [19,20,23,45] point out that it largely due
to the violation of Sampling Theorem that causes anomaly
in the spectra of GAN-generated images. Durall et al. [19]
introduce spectral loss to correct the power distribution
when generator is trained. Chandrasegaran et al. [11] an-
alyze the contributions to power distribution from different
up-sampling attempts in the last layer of generator. Frank et
al. [23] analyze the different impacts of three types of up-
sampling modules to the anomaly in the patterns of spec-
trum. Although these works analyze the reason why arti-
facts exist in frequency spectra of GAN-generated images,
the artifacts in spectra are still difficult to alleviate. There-
fore, such fake image detectors based on the analysis of
frequency domain imprints are widely regarded as robust.
On the contrary, our work detailed in this paper develops
counterexamples to prove that detectors based on the fre-
quency spectrum may not be robust. The term spectrum in
rest of this paper refers to the magnitude spectrum, the term
power distribution in this paper essentially refers to spec-
tral power distribution which is computed from magnitude

spectrum using Algorithm 1. The spectrum-based fake im-
age detectors, which can also be regarded as the black box
models, are still easy to attack. Fig. 1 shows an illustration
of the proposed method to generate more effective fake im-
age (Fake+) that can compromise the spectrum-based fake
image detectors.

1.1. Contributions

The contributions of our work can be summarized as fol-
lows:

• We investigate the mainstream fake image detec-
tors and observe that these spectrum-based detectors
mainly rely on the abnormal patterns and power dis-
crepancy of artifacts in their spectra to detect the fake
images. Therefore two methods are proposed to mit-
igate the intensity of artifact patterns in spectra of
GAN-generated images, and one method is proposed
to correct power discrepancy.

• By incorporating artifact-mitigating strategy followed
by the power discrepancy correction, the performance
from spectrum-based detectors significantly reduces.
It can prove that the spectrum-based detectors are not
robust to handle malicious operations on spectra of the
fake images. This finding is also significant for the im-
age forensic community. It cautions for their reliance
on the spectrum-based fake image detection.

• We also present experimental results to evaluate the ac-
curacy of a spatial domain based detector on the GAN-
generated images that are enhanced by proposed meth-
ods. Despite performance degradation, such spatial
domain based detector is still robust to detect fake im-
ages.

1.2. Related Work

Accurate detection of GAN-generated fake images has
attracted significant research efforts and promising results
have been reported in the literature. These techniques can
be categorized into the spatial domain and frequency do-
main methods, and briefly summarized in the following.
Spatial Domain Methods: Similar to the existence of dig-
ital imprints in the images acquired by the real-world cam-
eras, GAN-generated high quality images are expected to
present spatial domain imprints that may be visually imper-
ceptible. Marra et al. [34] propose a steganalysis method
based on photo response non-uniformity (PRNU) patterns.
McCloskey et al. [35] point out that saturation cues can be
utilized to distinguish GAN-generated imagery from cam-
era imagery. Marra et al. [33] propose detector based on
neural networks to classify the real and fake images and
conclude that neural-network-based detectors can perform
better than conventional methods for detecting compressed
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images. Earlier study from Cozzolino et al. [15] notes that
the forensic classifiers perform poorly in test dataset where
the synthetic images are generated from GANs that are dif-
ferent from those used for training dataset. Therefore they
design a few-shot detector for forensic purpose to address
this problem. Wang et al. [41] train a detection model with
only using ProGAN-generated training images to prove that
neural-network-based detectors can offer strong generaliza-
tion capability in distinguishing GAN-generated images.
Frequency Domain Methods: Zhang et al. [45] propose
a spectrum detector with good generalizing ability which is
trained on spectra of images synthesized by a GAN sim-
ulator that shares the architectures which are common in
most GANs. Frank et al. [23] demonstrate that the spectral
artifact patterns in fake images can be attributed to the up-
sampling operations which are common in all of the pop-
ular GAN models. This reference also presents a detailed
analysis on three different types of up-sampling modules
i.e. nearest neighbor up-sampling, bilinear up-sampling, bi-
nominal up-sampling and their influence on resulting spec-
trum. Besides such direct use of the spectrum for train-
ing classifier models, several references propose methods
that can detect fake images from the analysis of their spec-
tral power distribution. Dzanic et al. [20] claim that there
is systematic shortcoming of GANs in replicating the at-
tributes of high-frequency modes, and they propose a de-
tector whose cross-model accuracy can reach up to 99.2%.
Durall et al. [19] suggest that GAN-generated images al-
ways possess inevitably higher power distribution in the
high frequency portion because of the intrinsic character-
istics of convolutional neural networks. They propose sim-
ple detectors based on SVM and k-means power distribu-
tion classifier and achieve high detection accuracy. Three
convolutional layers consisting of 5× 5 kernels are also in-
troduced to suppress the power distribution discrepancy in
the high-frequency region of the spectrum. However, this
method requires carefully selected quantity and size of con-
volutional layers at the last layer of generator, and is not
always very successful in suppressing the higher frequency
components. On the other hand, Chandrasegaran et al. [11]
have recently argued that such abnormal power distribution
can actually be avoided by adjusting the up-sampling oper-
ation for the last layer of generator. They list several coun-
terexamples to underline the limitation for detecting GAN-
generated images from their power distribution discrepancy.
However, their proposed method requires careful and manu-
ally adjustment of the type and quantity of the up-sampling
modules. Therefore it is still difficult to mitigate spectral
anomalies for most of the GANs.

2. Proposed Methods
In this section we provide details of the developed meth-

ods to correct spectral domain anomalies in the GAN gener-

ated images. We firstly introduce SpectralGAN in Sec. 2.1
which is followed by another approach using spectrum dif-
ference normalization in Sec. 2.2. Sec. 2.3 introduces a
dictionary-based method to correct the power distribution
discrepancy in the generated images. As can be observed
from Fig. 2, the GAN-generated image f(x, y) can be
decomposed into magnitude spectrum R(u, v) and phase
spectrum I(u, v) following the Fourier transform. After
post-processing R(u, v) with the spectral artifact pattern
suppression module, followed by dictionary-based power
correction (PDC), artifact-free spectrum R′(u, v) is gener-
ated from R(u, v). Finally we use inverse Fourier Trans-
form to recover the f ′(x, y) to evade the popular detectors.

2.1. SpectralGAN

The SpectralGAN is the abbreviation of the proposed
GAN-based module to mitigate the spectral artifacts in the
input images and is also referred to as Method 1 in Sec. 3.

If we regard the domain of spectra of GAN-generated
images which contain artifacts as domain A and the spec-
tra of real-world images without such artifacts as domain B,
then the task here is to learn the mapping relationship from
domain A to domain B. In such scenario, it is natural for us
to consider CycleGAN based network architecture to realize
such domain transfer. However, our attempts to incorporate
original CycleGAN to alleviate such spectral artifacts are
not successful. It can be observed in Fig. 3a which illus-
trates obvious difference in the power distribution of spec-
tra after such domain transfer attempts using the original
CycleGAN, and the spectra of real images. We draw Fig. 3
using the fingerprint class in dataset. Further, we note that
it is necessary to stabilize the network to ensure that the
maximum value in spectrum unchanged, else the training of
SpectralGAN can easily collapse. Therefore, we introduce
power loss and max loss detailed in the following part.
Optimization Objectives: Given training samples {ai}
and {bi} which belong to domain A and domain B respec-
tively, we define a ∈ {ai}, b ∈ {bi}. We denote the map-
ping function from domain A to domain B as G, and the
mapping back from B to A as F . Function DA aims to
distinguish between the actual spectra from domain A and
the correspondingly mapped spectra from domain B, while
the function DB aims to distinguish between the spectra
from domain B and the correspondingly mapped spectra
from domain A. In addition to the conventional LGAN, Lcyc
and Lidentity incorporated in CycleGAN, we introduce power
loss Lpower which aims to help regularize the range of spec-
tral power distribution, and max loss Lmax which is used for
ensuring the constraint that the maximum value of spectra
remains unchanged during domain transfer A→B, B→A,
A→B→A and B→A→B. Therefore the total loss function
L (G,F,DA, DB) is stated in Eq. (1).
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L (G,F,DA, DB) = LGAN (G,DB , A,B)

+ LGAN (F,DA, B,A)

+ λ1Lcyc(G,F ) + λ2Lidentity(G,F )

+ λ3Lpower + λ4Lmax

(1)

where λ1, λ2, λ3, λ4 represent the weights for Lcyc, Lidentity,
Lpower, Lmax respectively.

We aim to optimize G∗, F ∗:

G∗, F ∗ = argmin
G,F

max
DA,DB

L (G,F,DA, DB) (2)

The max loss is stated in Eq. (3):

Lmax = ∥G(a)[g][h]− a[g][h]∥1 + ∥F (b)[p][q]− b[p][q]∥1
+ ∥F (G(a))[g][h]− a[g][h]∥1
+ ∥G(F (b))[p][q]− b[p][q]∥1
(g, h = argmax

g,h
a[g][h], p, q = argmax

p,q
b[p][q])

(3)

(a) CycleGAN (b) spectral loss (c) Lpower & Lmax

Figure 3. The comparative spectral power distributions of differ-
ent optimization constraints. The blue curves illustrate the power
distributions of samples bi in domain B, the red curves illustrate
power distributions of spectra which are mapped from samples ai

in domain A using function G.

Power Loss: Durall et al. [19] introduce spectral loss into
generator of GAN to constrain the energy distribution of
generated images. Although the spectral loss incorporated
for spatial domain features has shown to offer great per-
formance to restrict power distribution, when we introduce
spectral loss to constrain the power distribution directly on
the spectral domain features, it fails to constrain such power
distribution well. It can be observed in Fig. 3b where the
power distributions of spectra after introduction of such op-
timization constraint are different from those of real im-
ages. Therefore, we propose to incorporate the power loss
in Eq. (4) for constraining the spectral power distribution
instead of spectral loss:

Lpower = ∥P (G(a))− lmean∥F (4)

where lmean is the average power distribution of real im-
ages, ∥·∥F denotes Frobenius norm, computation of spectral

power distribution which follows Algorithm 1 is denoted as
P . For M ×M images, the size of lmean and P (G(a)) is
1× ⌊

√
2M⌋.

Algorithm 1 Computation of Spectral Power Distribution

Input: Spectrum S, whose size is M ×M
Output: Spectral Power Distribution Feature l, which is

initialized as 1×M zero vector
1: for i in range(M ) do
2: for j in range(M ) do

3: index = ⌊
√
(i− 0.5M)

2
+ (j − 0.5M)

2⌋
4: l[index] = l[index] + S[i][j]
5: end for
6: end for
7: l = l/l[0]

Algorithm 2 Spectrum Difference Normalization

Input: Spectrum S, average spectrum R of real-world im-
ages in training dataset, average spectrum G of GAN-
generated images in training dataset

Output: Spectrum S′

1: The spectrum difference is denoted as ∆ = G−R
2: S′ = S −∆
3: return S′

We can observe from Fig. 3c that the spectral power dis-
tributions are successfully restricted into normal distribu-
tion when power loss and max loss are all incorporated.

Backbone of Generator and Discriminator: The back-
bone of generator for SpectralGAN is Nested UNet [46]. In
Fig. 4 we present the visualization of intermediate features
during forward propagation in this generator. This figure
helps us to ascertain that the generator has effectively learnt
to suppress the spectral artifacts in such skip-connected ar-
chitecture, without influencing the salient visual details that
generally reside in low frequency part of spectrum. The
definition and variables x00, x01, . . . , x40 employed in this
visualization are the same as defined in Nested UNet [46].
The size of input and output features is 1 × 256 × 256, the
size of x00 ∼ x04 is 64× 256× 256, the size of x10 ∼ x13

is 128× 128× 128, the size of x20 ∼ x22 is 256× 64× 64,
the size of x30, x31 is 512 × 32 × 32, the size of x40 is
1024× 16× 16. For visualization, we calculate the average
value of the first channel. We adopt the same architecture
for the discriminator as in PatchGAN [25], which helps the
network converge quickly with relatively small number of
parameters and larger receptive fields.
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(a) input (b) output (c) x00 (d) x01 (e) x02

(f) x03 (g) x04
(h) x10 (i) x11 (j) x12 (k) x13

(l) x20 (m) x21 (n) x22
(o) x30 (p) x31

(q) x40

Figure 4. Intermediate features during forward propagation .

2.2. Spectrum Difference Normalization

In this section, we propose to incorporate the differences
in the spectrum of two domains to mitigate the artifacts in
the spectrum and this approach is referred to as Method 2
in Sec. 3 on experiments. Although it is hard to determine
the intensity and exact location of artifacts, simply by sub-
tracting the average of the spectrum differences ∆, i.e. be-
tween the fake images and real images, on the spectra with
artifacts can achieve good results. The details of implemen-
tation of this approach is summarized in Algorithm 2.

2.3. Power Distribution Correction

In this section, a dictionary-based power distribution cor-
rection (PDC) method is proposed to further correct the
power distribution discrepancy. Although we have consid-
ered two methods to mitigate the artifacts in spectra, they
may fail for some images in ensuring the realness of the
power distribution, and our extensive experiments in Tab. 1
reveal that such power distributions can still be detected by
a linear classifier. Thus, it is necessary to introduce power
distribution correction method to address this problem. We
firstly construct a dictionary of power distribution features
of real-world images, then we detail the steps to correct the
power distribution using this approach.
Power Dictionary Construction: This dictionary consists
of a number of 1-dimensional power distribution features in
the available real-world images dataset. The power dictio-
nary features from spectra of real-world images are com-
puted using Algorithm 1. The power distribution dictionary
D which contains N features can be represented as follows:

D = {D1, D2, . . . , DN}, Di = [Di1 , Di2 , . . . , Dik ]

where i = 1, 2, . . . , N and k = ⌊
√
2M⌋

Dictionary-based Correction: Given a spectrum pro-
cessed by the spectral artifacts suppression module as
shown in Fig. 2, its power distribution feature can be cor-
rected from the dictionary D in the following Algorithm 3.

Algorithm 3 Dictionary-based Power Correction

Input: Spectrum S, whose size is M ×M
Output: The spectrum S′ with corrected power distribu-

tion
1: Calculate the power distribution Ps of S following Al-

gorithm 1. Ps = [Ps1 , Ps2 , . . . , Psk ]
2: We select the power distribution feature Dr in the dic-

tionary, r = argmini
∑ 1

4k
j=1

(
Psj −Dij

)2
3: for i in range(M ) do
4: for j in range(M ) do

5: index = ⌊
√
(i− 0.5M)

2
+ (j − 0.5M)

2⌋
6: S′[i][j] = S[i][j]× Dr[index]

Ps[index]
7: end for
8: end for

3. Experiments and Results
In Sec. 3.1 we briefly detail two recent and popular

spectrum-based detectors along with one spatial feature-
based detector to evaluate the performance of the methods
proposed in our paper. In supplementary file we provide
implementation details for Method 1, Method 2 and PDC.
We analyze the effectiveness of the proposed methods in
Sec. 3.2. Finally, several examples from challenging sam-
ples are presented in Sec. 3.3 to outline limitation of pro-
posed methods. The spectra used for training and testing
Method 1, Method 2 and CNN-based spectrum detectors are
all log-scaled and normalized to [−1, 1] range, the power
distribution features used for constructing power dictionary
and training SVM classifier are computed from image spec-
tra which have not been log-scaled and normalized.
Introduction to Dataset: The dataset contains nine classes,
each class includes two sub-classes: GAN-generated im-
ages, and real-world images used for training the corre-
sponding type of GAN. Similar to as in reference [41],
synthetic images generated using BigGAN, CRN, Cycle-
GAN, IMLE, ProGAN, StarGAN, StyleGAN, StyleGAN2
and the corresponding real images used for training these
GANs consist the first 8 class. We additionally select real
and GAN-generated fingerprint images as the last class of
the dataset to evaluate effectiveness of proposed methods,
since the spectra of fingerprint images are significantly dif-
ferent from other real-world images and such images are
widely used for a range of security and e-governance ap-
plications [17, 18, 29, 37]. Please see supplementary file for
more details on this database. The fake images in BigGAN
∼ StyleGAN2 classes are acquired from [1,41]. Further we
also acquire the fake images of BigGAN, CycleGAN, Star-
GAN, StyleGAN and StyleGAN2 classes that are provided
in [2–6]. For fingerprint class, synthetic fingerprints are
generated from skeletons following the method proposed
in [43]. We generate fake fingerprint images from skele-
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Metric BigGAN CRN CycleGAN IMLE ProGAN StarGAN StyleGAN StyleGAN2 Fingerprint

Original fake images 78.81 90.37 90.55 72.40 92.21 88.25 74.23 76.98 100.0
Method 1 + PDC 51.00 51.88 51.90 52.11 51.72 50.60 51.73 51.39 50.19

Method 1 58.34 68.44 62.15 61.32 72.95 68.83 65.48 60.31 55.58
Method 2 + PDC 50.47 51.80 51.68 54.98 50.56 50.33 50.95 50.72 50.78

Method 2 57.03 69.42 64.15 62.65 73.70 67.58 63.80 61.44 60.16
PDC 50.22 50.20 51.35 50.43 50.15 50.63 50.08 50.34 50.12

Table 1. Results from SVM Classifier using the power distribution (accuracy in %)

Metric BigGAN CRN CycleGAN IMLE ProGAN StarGAN StyleGAN StyleGAN2 Fingerprint

Original fake images 94.59 96.32 99.48 95.11 97.62 98.08 85.48 92.55 100.0
Method 1 + PDC 68.44 81.09 53.30 61.79 64.58 54.73 64.05 69.28 51.09
Method 2 + PDC 60.34 72.67 59.18 57.79 61.32 60.28 67.19 62.63 54.55

PDC 93.28 91.50 94.33 92.68 91.49 93.85 80.13 87.02 100.0

Table 2. Results from shallow CNN-based spectrum detector (accuracy in %)

Figure 5. Real and GAN-generated fake fingerprint images.

tons followed by style transfer to synthesize real look-like
fingerprint images. Sample real fingerprint images used for
training the style transfer models are illustrated in the first
row of Fig. 5 while the GAN-generated fake fingerprint im-
age samples are illustrated in the second row of Fig. 5.

All the images are resized to 256×256, 80% of the GAN-
generated and real images in each class are used for training
and the rest of the images is used for testing.

3.1. Fake Image Detectors

SVM Classifier using the Power Distribution: This spec-
tral power distribution based fake image detector uses a tra-
ditional supervised SVM classifier. We recreate this detec-
tor by Durall et al. [19] and ensure that the proposed meth-
ods can effectively correct the power distribution discrep-
ancy and successfully challenge this detector. The power
distribution features of size 1 × 180 are computed using
Algorithm 1. We train a SVM classifier using power dis-
tribution features from 82210 GAN-generated images and
82210 real images from 8 classes (excluding the fingerprint

class) in the training dataset as detailed in the supplemen-
tary file, the experimental results of BigGAN∼StyleGAN2
in Tab. 1 are tested by this detector. Further, as the power
distributions of fingerprint images are different from other
real-world images, we independently train another SVM
classifier using respective power distribution features from
training dataset of fingerprint images. The fake fingerprint
images detection results in Tab. 1 are tested by this detector.
CNN-based Spectrum Classifier: Reference [23] presents
another promising detector which trains a shallow CNN
with only four convolution layers to detect the GAN-
generated images using the spectral features. Such shal-
low CNN trained on entire spectrum has shown to offer sig-
nificant performance boost as compared to those classifiers
trained on raw pixels. Our paper adopts two CNN models
to detect the GAN-generated images using the entire spec-
trum: a shallow CNN which only contains 4 layers and a
ResNet18 classifier. The spectra of 88126 GAN-generated
images and 89122 real images from nine classes of training
dataset are used for training these two detectors.
CNN-based Spatial Domain Classifier: We also use a
pretrained model provided in [1, 41] which is trained on
ProGAN-generated images and has shown to offer high
generalizing capability for detecting fake images generated
by unseen GANs. This fake image detector is referred to as
detector W, which is able to calculate the realness score of
the input RGB image.

3.2. Discussion on Results

Method 1 and Method 2: The experimental results sum-
marized in Tab. 1 illustrate the limitations of Method 1
and Method 2 if these methods are not combined with
dictionary-based power correction. Therefore the SVM
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Metric BigGAN CRN CycleGAN IMLE ProGAN StarGAN StyleGAN StyleGAN2 Fingerprint

Original fake images 95.63 97.06 99.85 96.35 98.18 99.20 89.31 94.91 100.0
Method 1 + PDC 70.88 83.91 54.20 63.02 72.63 53.03 68.55 71.27 52.09
Method 2 + PDC 61.81 80.81 60.53 57.51 66.68 59.05 69.02 65.33 56.51

PDC 93.63 91.35 95.15 91.70 92.91 94.48 78.98 86.97 100.0

Table 3. Results from ResNet-based spectrum detector (accuracy in %)

Dictionary with 100k Samples BigGAN CRN CycleGAN IMLE ProGAN StarGAN StyleGAN StyleGAN2

Method 1 + PDC 0.9493 0.9245 0.9485 0.9638 0.9409 0.8978 0.9015 0.9391
Method 2 + PDC 0.9510 0.9222 0.9158 0.9627 0.9399 0.9262 0.9239 0.9388

PDC 0.9611 0.9505 0.9648 0.9654 0.9550 0.9336 0.9566 0.9427

Dictionary with 200k Samples BigGAN CRN CycleGAN IMLE ProGAN StarGAN StyleGAN StyleGAN2

Method 1 + PDC 0.9524 0.9289 0.9567 0.9734 0.9513 0.9117 0.9131 0.9425
Method 2 + PDC 0.9469 0.9316 0.9390 0.9705 0.9412 0.9285 0.9346 0.9447

PDC 0.9639 0.9522 0.9714 0.9663 0.9742 0.9515 0.9580 0.9514

Dictionary with 500k Samples BigGAN CRN CycleGAN IMLE ProGAN StarGAN StyleGAN StyleGAN2

Method 1 + PDC 0.9596 0.9302 0.9807 0.9728 0.9685 0.9460 0.9281 0.9554
Method 2 + PDC 0.9518 0.9325 0.9487 0.9713 0.9651 0.9384 0.9383 0.9536

PDC 0.9721 0.9534 0.9828 0.9756 0.9815 0.9672 0.9617 0.9589

Table 4. Similarity between original fake images and enhanced fake images (fake+) using SSIM scores

classifier is still capable of detecting GAN-generated fake
images but with reduced accuracy, which mirrors the justi-
fication to introduce the power correction. We report the
performance from two CNN-based spectrum detectors in
Tabs. 2 and 3. In conjunction with PDC, Method 1 can
outperform Method 2 in detecting CycleGAN, StarGAN,
StyleGAN and fingerprint classes of fake images, but is
outperformed by Method 2 for images in other classes. It
is also easy to observe from Tabs. 2 and 3 that both the
spectrum-based detectors with two different kinds of CNN
architectures, perform quite well in detecting unprocessed
GAN-generated fake images and show sharp decline in the
accuracy when images are enhanced using the proposed
methods. This observation underlines that our proposed
methods can be regarded as black box attack to compromise
the CNN-based spectrum detectors. Lack of expected fea-
tures from the spectral artifacts cannot alert the pretrained
detector models and thereby disable their capabilities to de-
tect fake images, even without incorporating adversarial at-
tack [9, 21, 22, 24, 30] techniques for compromising such
black box model. As can be observed from the results in
Fig. 6, by applying the proposed methods the spatial-based
fake image detector also illustrates consistently decrease in
the detection performance. Therefore it is reasonable to in-
fer that the spatial-domain based detector of [1,41] may also
use the frequency domain information while detecting fake

images from spatial-domain features.

Influence from Power Correction: Our results in Tab. 1
indicate that the dictionary-based power correction is very
effective, regardless of whether it is combined with Method
1 or Method 2, to compromise the SVM classifier. The re-
sults in the last rows of Tabs. 2 and 3 also indicate that the
performances of CNN-based spectrum detector almost re-
mains unchanged if we only incorporate the PDC. The re-
sults in these tables reveal that the CNN-based spectrum de-
tectors may not detect the fake images by just using the fea-
tures from the spectral power distributions. Instead, these
detectors more focus on the artifact patterns which mirrors
the claim in [23]. The results in Fig. 6 also indicate that
the dictionary-based power correction plays a positive role
in compromising detection performance of detector W. As
compared with the GAN-generated images which are not
subjected to the proposed methods, we can note the drop
in detection performance when power correction is intro-
duced. As shown from the results in Fig. 6, the perfor-
mance of spatial-based detector drops further if Method 1
and Method 2 are combined with PDC. However, such phe-
nomenon may not be consistent on other classes of datasets
as can be observed from the additional ROC plots which are
included in the supplementary file.

Influence from the Size of Power Dictionary: Results
in Tab. 4 illustrate the structural similarity index measure
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(a) CRN (b) StarGAN

Figure 6. ROC performance curves using detector W when pro-
posed methods are evaluated on CRN and StarGAN images.

(SSIM) scores which represent the similarity between the
original fake images and the enhanced images (fake+) us-
ing three different sizes of such dictionaries. As compared
with the other two sets of experiments that combine Method
1 and Method 2 with PDC, only incorporating PDC always
achieves the highest SSIM score. As the size of power dic-
tionary increases, the diversity of power distribution fea-
tures enhances. This can lead to smaller changes in the
power distribution of spectra and thereby increasing the
SSIM scores.

3.3. Analysis on challenging examples

Challenges for SpectralGAN: We present sample results
from challenging examples to ascertain the effectiveness
of the proposed methods. We can observe the failure of
Method 1 in suppressing the spectral artifact patterns from
the examples in Fig. 7a. When the artifact pattern is weak
or different from those in the training dataset, Method 1 can
decrease its effectiveness in mitigating them. We visual-
ize the samples from spectra of all types of GAN-generated
images in training dataset and observe that the artifact pat-
terns of CycleGAN, StarGAN and StyleGAN are visually
clear while the artifact patterns from BigGAN, CRN, IMLE
and StyleGAN2 images are relatively weaker. This phe-
nomenon may explain the reason for superior performance
from Method 1 with PDC, on CycleGAN, StarGAN and
StyleGAN, over the Method 2 with PDC as observed from
results in Tabs. 2 and 3.
Challenges for Spectrum Normalization: Since the in-
tensity and location of artifact patterns are uncertain, direct
subtraction of spectrum differences may lead to two types
of errors. The first scenario is that artifacts cannot be suffi-
ciently mitigated. As can be observed from sample results
in the first row of Fig. 7b, the artifact pattern can still remain
obvious after such normalization. Another failure scenario
can arise when the intensity of such artifacts is compara-
tively weaker and we can observe such example from the
sample in the bottom row of Fig. 7b that illustrates intensity
at the location of artifacts are smaller than other values in
the areas surrounding the artifacts.

(a) processed by Method 1 (b) processed by Method 2

Figure 7. Sample results from challenging examples

4. Conclusions and Further Work
This paper has revisited the effectiveness of the ad-

vanced fake image detectors to detect GAN-generated im-
ages. We have accordingly developed two methods to mit-
igate the intensity of patterns from spectral artifacts and
one dictionary-based method to correct the spectral power
distribution discrepancy in the GAN-generated fake im-
ages. Reproducible [7] experimental results presented in
Sec. 3 suggest that the proposed methods can effectively
mitigate the widely observed spectral artifacts and correct
spectral power distribution discrepancy to compromise the
spectrum-based detectors for the GAN-generated fake im-
ages. The CNN based classifier which uses the entire spec-
trum for detecting such fake images has still shown its capa-
bility in detecting the GAN-generated images, but with sig-
nificant drop in its performance. The SVM based detector,
which locks on power distribution discrepancy, completely
fails to detect the GAN-generated fake images that are en-
hanced by our methods. A spatial-based detector [1, 41]
selected in our evaluation however remains robust in dis-
tinguishing the enhanced GAN-generated fake images but
with degradation in detection performance. We further test
the SSIM score between the enhanced images (fake+) and
original fake images, which confirms their high similarity. It
may be easy to comprehend that why power distribution can
be corrected by dictionary-based method in Sec. 2.3. But as
for the CNN-based spectrum detectors, one of the reasons
that these detectors can be compromised is that they are vul-
nerable as black-box models to attacker. Since they utilize
the artifact information to detect the fake images, we can
compromise these models only by removing such artifacts.

In summary, the findings from this research indicate that
the detectors based on analysis of fake image spectra may
not be robust to detect GAN-generated fake images because
the artifacts in such spectra can be easily mitigated by ma-
licious attackers while the respective images can visually
look very similar after such enhancement. Therefore signif-
icant work is required to develop robust fake image detec-
tors that can reliably detect fake images from sophisticated
GAN-based models that pose increasing challenges to our
community.
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Riess, Matthias Nießner, and Luisa Verdoliva. Forensictrans-
fer: Weakly-supervised domain adaptation for forgery detec-
tion. arXiv preprint arXiv:1812.02510, 2018. 3

[16] Bo Dai, Sanja Fidler, Raquel Urtasun, and Dahua Lin. To-
wards diverse and natural image descriptions via a condi-
tional gan. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 2970–2979, 2017. 1

[17] UIDAI dashboard for fingerprint authentication. https:
//uidai.gov.in/aadhaar_dashboard/auth_
trend.php?auth_id=biofingure, Accessed Nov
2021. 5

[18] Office of Biometric Identity Management Department of
Homeland Security. https://www.dhs.gov/obim,
Accessed Nov 2021. 5

[19] Ricard Durall, Margret Keuper, and Janis Keuper. Watch
your up-convolution: Cnn based generative deep neural net-
works are failing to reproduce spectral distributions. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7890–7899, 2020. 2, 3, 4, 6

[20] Tarik Dzanic, Karan Shah, and Freddie Witherden. Fourier
spectrum discrepancies in deep network generated images.
arXiv preprint arXiv:1911.06465, 2019. 2, 3

[21] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li,
Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi
Kohno, and Dawn Song. Robust physical-world attacks on
deep learning visual classification. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1625–1634, 2018. 7

[22] Hany Farid. Fake photos. MIT Press, 2019. 7
[23] Joel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fis-

cher, Dorothea Kolossa, and Thorsten Holz. Leveraging fre-
quency analysis for deep fake image recognition. In Interna-
tional Conference on Machine Learning, pages 3247–3258.
PMLR, 2020. 2, 3, 6, 7

[24] Gaurav Goswami, Akshay Agarwal, Nalini Ratha, Richa
Singh, and Mayank Vatsa. Detecting and mitigating adver-
sarial perturbations for robust face recognition. International
Journal of Computer Vision, 127(6):719–742, 2019. 7

[25] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017. 1, 4

[26] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017. 1

[27] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4401–4410, 2019. 1

[28] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8110–8119, 2020. 1

[29] Ajay Kumar. Contactless 3D Fingerprint Identification.
Springer, 2018. 5

[30] Dongze Li, Wei Wang, Hongxing Fan, and Jing Dong. Ex-
ploring adversarial fake images on face manifold. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5789–5798, 2021. 7

[31] Ke Li, Tianhao Zhang, and Jitendra Malik. Diverse image
synthesis from semantic layouts via conditional imle. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4220–4229, 2019. 1

[32] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen
Wang, and Stephen Paul Smolley. Least squares genera-
tive adversarial networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2794–2802,
2017. 1

[33] Francesco Marra, Diego Gragnaniello, Davide Cozzolino,
and Luisa Verdoliva. Detection of gan-generated fake images

7873



over social networks. In 2018 IEEE Conference on Multi-
media Information Processing and Retrieval (MIPR), pages
384–389. IEEE, 2018. 2

[34] Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and
Giovanni Poggi. Do gans leave artificial fingerprints? In
2019 IEEE Conference on Multimedia Information Process-
ing and Retrieval (MIPR), pages 506–511. IEEE, 2019. 2

[35] Scott McCloskey and Michael Albright. Detecting gan-
generated imagery using saturation cues. In 2019 IEEE In-
ternational Conference on Image Processing (ICIP), pages
4584–4588. IEEE, 2019. 2

[36] Huaxiao Mo, Bolin Chen, and Weiqi Luo. Fake faces identi-
fication via convolutional neural network. In Proceedings of
the 6th ACM Workshop on Information Hiding and Multime-
dia Security, pages 43–47, 2018. 1

[37] Federal Bureau of Investigation. Integrated automated fin-
gerprint identification system. https://www.fbi.gov/
services / information - management / foipa /
privacy-impact-assessments/iafis, Accessed
Nov 2021. 5

[38] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015. 1

[39] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-
geswaran, Bernt Schiele, and Honglak Lee. Generative ad-
versarial text to image synthesis. In International Conference
on Machine Learning, pages 1060–1069. PMLR, 2016. 1

[40] Shahroz Tariq, Sangyup Lee, Hoyoung Kim, Youjin Shin,
and Simon S Woo. Gan is a friend or foe? a frame-
work to detect various fake face images. In Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing,
pages 1296–1303, 2019. 1

[41] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew
Owens, and Alexei A Efros. Cnn-generated images are
surprisingly easy to spot... for now. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8695–8704, 2020. 1, 3, 5, 6, 7, 8

[42] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8798–8807, 2018. 1
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