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Abstract

Vision-and-language (VL) pre-training has proven to be
highly effective on various VL downstream tasks. While
recent work has shown that fully transformer-based VL
models can be more efficient than previous region-feature-
based methods, their performance on downstream tasks
often degrades significantly. In this paper, we present
METER, a Multimodal End-to-end TransformER frame-
work, through which we investigate how to design and
pre-train a fully transformer-based VL model in an end-
to-end manner. Specifically, we dissect the model designs
along multiple dimensions: vision encoders (e.g., CLIP-
ViT, Swin transformer), text encoders (e.g., RoBERTa, De-
BERTa), multimodal fusion module (e.g., merged attention
vs. co-attention), architectural design (e.g., encoder-only
vs. encoder-decoder), and pre-training objectives (e.g.,
masked image modeling). We conduct comprehensive ex-
periments and provide insights on how to train a perfor-
mant VL transformer. METER achieves an accuracy of
77.64% on the VQAv2 test-std set using only 4M images for
pre-training, surpassing the state-of-the-art region-feature-
based model by 1.04%, and outperforming the previous best
fully transformer-based model by 1.6%. Notably, when fur-
ther scaled up, our best VQA model achieves an accuracy
of 80.54%. Code and pre-trained models are released at
https://github.com/zdou0830/METER.

1. Introduction

Vision-and-language (VL) tasks, such as visual ques-
tion answering (VQA) [1] and image-text retrieval [27, 34],
require an AI system to comprehend both the input im-
age and text contents. Vision-and-language pre-training
(VLP) has now become the de facto practice to tackle these
tasks [5, 24, 26, 32, 42, 44]. Specifically, large amounts of
image-caption pairs are fed into a model that consumes both
images and texts to pretrain representations that contain rich
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Figure 1. An overview of the proposed METER framework. We
systematically investigate how to train a performant vision-and-
language transformer, and dissect the model designs along multi-
ple dimensions: vision encoder, text encoder, multimodal fusion
module, architectural design (encoder-only vs. encoder-decoder),
and pre-training objectives.

multimodal knowledge and is helpful for downstream tasks.
Transformers [48] are prevalent in natural language pro-

cessing and have recently shown promising performance
in computer vision [10, 30]. While almost all the existing
VLP models adopt transformers for their multimodal fusion
module, most of them [5, 24, 26, 32, 42, 44] use pre-trained
object detectors (e.g., Faster RCNN [38]) on the vision side
to extract region features from images. This can lead to
several problems: first, the object detectors are not perfect,
but are usually kept frozen during VLP, which limits the ca-
pacity of the VLP models; second, it is time-consuming to
extract region features [20]. On the other hand, vision trans-
formers (ViTs) have been an increasingly active research
topic in computer vision and have shown great potential
in vision feature extraction. Therefore, a natural question
arises: can we train a fully transformer-based VLP model
with ViTs as the image encoder?

Recent works [20,23,53] that tried to adopt vision trans-
formers have not shown satisfactory performance and typ-
ically underperform state-of-the-art region-feature-based
VLP models (e.g., VinVL [57]). To close the perfor-
mance gap, we present METER, a Multimodal End-to-end
TransformER framework, through which we thoroughly in-
vestigate how to design and pre-train a fully transformer-
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Model Vision Encoder Text Encoder Multimodal Fusion Decoder Pre-training Objectives
ViLBERT [32] OD+Xformer Xformer Co-attn.

✗

MLM+ITM+MIM
LXMERT [44] MLM+ITM+MIM+VQA
VisualBERT [24]

OD Emb. Merged-attn.

MLM+ITM
VL-BERT [42] MLM+MIM
UNITER [5] MLM+ITM+MIM+WRA
OSCAR [26] MLM+ITM
VinVL [57] MLM+ITM
VL-T5 [6] ✓ MLM+ITM+VQA+Grounding+Captioning
PixelBERT [16]

CNN Emb. Merged-attn.
✗

MLM+ITM
SOHO [15] MLM+ITM+MIM
CLIP-ViL [41] MLM+ITM+VQA
SimVLM [51]

✓
PrefixLM

MDETR [19] Xformer OD+Token Prediction+Contrastive Alignment
ViLT [20] Patch Emb. Emb. Merged-attn.

✗

MLM+ITM
Visual Parsing [53]

Xformer
MLM+ITM+MIM

ALBEF [23] Xformer Co-attn. MLM+ITM+ITC
METER (Ours) MLM+ITM
CLIP [35] CNN/Xformer Xformer None ✗ ITCALIGN [17] CNN

Table 1. Glossary of representative VLP models. OD: objective detector. Xformer: transformer. Emb.: embedding. MLM/MIM:
masked language/image modeling. ITM: image-text matching. WRA: word-region alginment. ITC: image-text contrastive learning.

based VLP model in an end-to-end manner. Specifi-
cally, as shown in Figure 1, we dissect the model designs
along multiple dimensions, including vision encoders (e.g.,
CLIP-ViT [35], Swin transformer [30]), text encoders (e.g.,
RoBERTa [29], DeBERTa [13]), multimodal fusion mod-
ule (e.g., merged attention vs. co-attention), architectural
design (e.g., encoder-only vs. encoder-decoder), and pre-
training objectives (e.g., masked image modeling [2]).

We perform the investigation by pre-training models un-
der METER on four commonly used image-caption datasets:
COCO [27], Conceptual Captions [40], SBU Captions [33],
and Visual Genome [21]. We test them on visual ques-
tion answering [1], visual reasoning [43], image-text re-
trieval [27, 34], and visual entailment [52] tasks. Through
extensive analyses, we summarize our findings as follows:

• Vision transformer (ViT) plays a more vital role than lan-
guage transformer in VLP, and the performance of trans-
formers on pure vision or language tasks is not a good
indicator for its performance on VL tasks.

• The inclusion of cross-attention benefits multimodal fu-
sion, which results in better downstream performance
than using self-attention alone.

• Under a fair comparison setup, the encoder-only VLP
model performs better than the encoder-decoder model
for VQA and zero-shot image-text retrieval tasks.

• Adding the masked image modeling loss in VLP will not
improve downstream task performance in our settings.

These insights, combined with other useful tips and tricks
detailed in later sections, enable us to train a strong model
that achieves an accuracy of 77.64% on the VQAv2 test-
std set, surpassing the previous best region-feature-based
VinVL model [57] by 1.04% and outperforming the pre-
viously best ViT-based model (i.e., ALBEF [23]) by 1.6%.

Notably, when further scaled up, our best METER model
achieves an accuracy of 80.54% on the VQAv2 test-std set.

2. Glossary of VLP Models
In this section, we provide an overview of representative

VLP models, and divide them into three categories based on
how they encode images, as summarized in Table 1.

OD-based Region Features. Most previous work use pre-
trained object detectors (ODs) to extract visual features.
Among them, ViLBERT [32] and LXMERT [44] use co-
attention for multimodal fusion, where two transformers
are applied independently to region and text features, and
another transformer fuses the representations of the two
modalities in a later stage. On the other hand, Visual-
BERT [24], VL-BERT [42], and UNITER [5] use a merged
attention fusion module that feeds both region and text fea-
tures together into a single transformer. OSCAR [26] and
VinVL [57] feed additional image tags into the transformer
model, and demonstrate state-of-the-art performance across
VL tasks. However, extracting region features can be time-
consuming, and the pre-trained ODs are usually frozen dur-
ing pre-training, which limits the capacity of VLP models.

CNN-based Grid Features. To tackle the above two is-
sues, researchers have tried different ways to pre-train VL
models in an end-to-end fashion. Among them, Pixel-
BERT [16] and CLIP-ViL [41] propose to feed grid features
from convolutional neural networks (CNNs) and text di-
rectly into a transformer. SOHO [15] proposes to to first dis-
cretize grid features using a learned vision dictionary, then
feed the discretized features into their cross-modal module.
While using grid features directly can be efficient, incon-
sistent optimizers are typically used for CNN and trans-
former. For example, PixelBERT [16] and CLIP-ViL [41]
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use AdamW [31] for transformer and SGD for CNN. Re-
cent work on vision transformers (ViTs) has also shown that
CNN can achieve slightly worse accuracy/FLOPs trade-offs
than their ViT counterparts [30], motivating researchers to
develop ViT-based VLP models.

ViT-based Patch Features. ViLT [20] directly feeds im-
age patch features and text token embeddings into a pre-
trained ViT model, and fine-tunes the model on image-
caption datasets. More recently, visual parsing [53] and
ALBEF [23] use ViT as the image encoder and design dif-
ferent pre-training objectives for ViT-based VLP models.
However, all these models lag behind the state-of-the-art
performance on downstream tasks such as visual question
answering. In this paper, we investigate how to pre-train a
ViT-based model in an end-to-end manner that closes the
performance gap while maintaining fast inference speed.

3. The METER Framework
Based on the previous work, we identify several impor-

tant modules in VLP models as in Figure 1. In this section,
we first illustrate our METER framework, then our default
settings, which paves the way for our analyses hereinafter.

Overview. Given a text sentence l and an image v, a VLP
model first extracts both text features l = ⟨l1, · · · , lN ⟩ and
visual features v = ⟨v1, · · · , vM ⟩ via a text encoder and a
vision encoder. The text and visual features are then fed into
a multimodal fusion module to produce cross-modal repre-
sentations, which are then optionally fed into a decoder be-
fore generating the final outputs.

3.1. Model Architecture

Vision Encoder. In this paper, we focus on patch features,
and study the use of vision transformers (ViTs) [10] for
vision encoder. Specifically, in ViT, an image is first seg-
mented into patches, and then the patches are fed into a
transformer model. ViT has become a popular research
topic recently [2, 10, 30, 45, 45, 46, 56], and has been intro-
duced into VLP [20,23,53]. However, all these models only
achieve inferior performance compared to state-of-the-art
region-feature-based models (e.g., VinVL [57]). Also, dif-
ferent pre-trained ViTs are used, lacking a systematic study
of which ViTs are the best for VLP. In this work, we com-
pare the original ViT [10], DeiT [45], Distilled-DeiT [45],
CaiT [46], VOLO [56], BEiT [2], Swin Transformer [30]
and CLIP-ViT [35], to provide a comprehensive analysis on
the role of vision transformers.

Text Encoder. Following BERT [9] and RoBERTa [29],
VLP models [5, 24, 26, 32, 42, 44] first segment the input
sentence into a sequence of subwords [39], then insert two
special tokens at the beginning and the end of the sentence
to generate the input text sequence. After we obtain the text
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QV KL VL
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(a) Co-attention model.
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(b) Merged attention model.

Figure 2. Illustration of two types of multimodal fusion modules:
(a) co-attention, and (b) merged attention.

embeddings, existing works either feed them directly to the
multimodal fusion module [5,24], or to several text-specific
layers [32, 44] before the fusion. For the former, the fusion
module is typically initialized with BERT, and the role of
text encoding and multimodal fusion is therefore entangled
and absorbed in a single BERT model. Here, we aim to dis-
entangle the two modules, and use a text encoder first before
sending the features into the fusion module.

Language model (LM) pre-training has demonstrated
impressive performance across tasks and different pre-
trained LMs have been proposed; however, most VLP mod-
els still only use BERT for initialization [5]. In this work,
we study the use of BERT [9], RoBERTa [29], ELEC-
TRA [7], ALBERT [22], and DeBERTa [13] for text encod-
ing. Besides, we also experiment on only using a simple
word embedding look-up layer initialized with the BERT
embedding layer as used in many previous works [5, 57].

Multimodal Fusion. We study two types of fusion mod-
ules, namely, merged attention and co-attention [14], as il-
lustrated in Figure 2. In the merged attention module, the
text and visual features are simply concatenated together,
then fed into a single transformer block. In the co-attention
module, on the other hand, the text and visual features
are fed into different transformer blocks independently, and
techniques such as cross-attention are used to enable cross-
modal interaction. For region-based VLP models, as shown
in [3], the merged attention and co-attention models can
achieve comparable performance. Yet, the merged atten-
tion module is more parameter-efficient, as the same set
of parameters are used for both modalities. Since end-to-
end VLP models are becoming increasingly popular, in this
work, we re-examine the impact of both types of fusion
modules in our new context.

Encoder-Only vs. Encoder-Decoder. Many VLP mod-
els such as VisualBERT [24] adopt the encoder-only archi-
tecture, where the cross-modal representations are directly
fed into an output layer to generate the final outputs. Re-
cently, VL-T5 [6] and SimVLM [51], on the other hand,
advocate the use of a transformer encoder-decoder archi-
tecture, where the cross-modal representations are first fed
into a decoder and then to an output layer. In their models,
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Figure 3. Illustration of the encoder-only and encoder-decoder
model architectures for VLP.

the decoder attends to both the encoder representations and
the previously generated tokens, producing the outputs au-
toregressively. Figure 3 shows the difference between them
when performing the masked language modeling task. For
the encoder-decoder model, when performing classification
tasks such as VQA, we feed the text inputs into its encoder
and feed a classification token into the decoder, and the de-
coder then generates the output class accordingly.

3.2. Pre-training Objectives

Now, we introduce how we pre-train our models. Specif-
ically, we will first briefly review masked language model-
ing and image-text matching, which have been used exten-
sively in almost every VLP model. Then, we will shift our
focus to how we can design and explore interesting masked
image modeling tasks.

Masked Language Modeling. The masked language mod-
eling (MLM) objective is first introduced in pure language
pre-training [9, 29]. In VLP, MLM with images has also
proven to be useful. Specifically, given an image-caption
pair, we randomly mask some of the input tokens, and the
model is trained to reconstruct the original tokens given the
masked tokens lmask and its corresponding visual input v.

Image-Text Matching. In image-text matching, the model
is given a batch of matched or mismatched image-caption
pairs, and the model needs to identify which images and
captions correspond to each other. Most VLP models treat
image-text matching as a binary classification problem.
Specifically, a special token (e.g., [CLS]) is inserted at the
beginning of the input sentence, and it tries to learn a global
cross-modal representation. We then feed the model with
either a matched or mismatched image-caption pair ⟨v, l⟩
with equal probability, and a classifier is added on top of
the [CLS] token to predict a binary label y, indicating if
the sampled image-caption pair is a match.

Masked Image Modeling. Similar to the MLM objective,
researchers have tried masked image modeling (MIM) on
the vision side. For example, many previous work, such
as LXMERT [44] and UNITER [5], mask some of the in-
put regions, and the model is trained to regress the original

a man hitting a 
tennis ball with 
a racquet.

Model

in-batch negatives

...

133   422    922
235    234    287
576    223    722

287

discrete code

Figure 4. Illustration of masked patch classification with in-batch
negatives and with discrete code.

region features. Formally, given a sequence of visual fea-
tures v = ⟨v1, · · · , vM ⟩, where vi is typically a region fea-
ture, we randomly mask some of the visual features, and the
model outputs the reconstructed visual features ov given the
rest of the visual features and the unmasked tokens t, and
regression aims to minimize the mean squared error loss.
Researchers [5, 32, 44] have also tried to first generate ob-
ject label for each region using a pre-trained object detector,
which can contain high-level semantic information, and the
model is trained to predict the object labels for the masked
regions instead of the original region features.

Notably, recent state-of-the-art models (e.g., AL-
BEF [23], VinVL [57]) do not apply MIM during VLP.
In addition, in ViLT [20], the authors also demonstrate
that masked patch regression is not helpful in their setting.
These results make it questionable whether MIM is truly ef-
fective for VLP models. To further investigate this, we treat
masked image modeling as a masked patch classification
task, and propose two ways of implementing the idea.

1) Masked Patch Classification with In-batch Negatives.
By imitating MLM which uses a text vocabulary, we first
propose to let the model reconstruct input patches by using
a dynamically constructed vocabulary constructed with in-
batch negatives. Concretely, at each training step, we sam-
ple a batch of image-caption pairs {⟨vk, lk⟩}Bk=1, where B
is the batch size. We treat all the patches in {vk}Bk=1 as can-
didate patches, and for each masked patch, we mask 15% of
the input patches, and the model needs to select the original
patch within this candidate set. Denoting the original patch
representations and our model’s output representations of
{vk}Bk=1 as {c(vk)}Bk=1 and {h(vk)}Bk=1, respectively, we
can represent the output probability at position i for the k-th
instance as:

p(vk
i |[vk,mask; lk]) =

eh(v
k
i )

Tc(vk
i )∑

j,k′ e
h(vk

i )
Tc(vk′

j )
. (1)

The model is trained to maximize its probability similar to
noise contrastive estimation [12, 18].

2) Masked Patch Classification with Discrete Code. In-
spired by BEiT [2], we also propose to obtain discrete repre-
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sentations of the input patches, and the model is then trained
to reconstruct the discrete tokens. Specifically, we first use
the VQ-VAE [47] model in DALL-E [37] to tokenize each
image into a sequence of discrete tokens. We resize each
image so that the number of patches is equal to the number
of tokens, and thus each patch corresponds to a discrete to-
ken. Then, we randomly mask 15% of the patches and feed
the masked image patches to the model as before, but now
the model is trained to predict the discrete tokens instead of
the masked patches.

3.3. Our Default Settings for METER

There are many different model designs under METER,
and we detail our default settings in this part.

Model Architecture. The default setting of model archi-
tecture is shown in Figure 2a. In the bottom part, there are
one pre-trained visual encoder and one pre-trained text en-
coder. On top of each encoder, we stack M = 6 transformer
encoding layers, with each layer consisting of one self-
attention block, one cross-attention block, and one feed-
forward network block. Unless otherwise stated, the hidden
size is set to 768, and the number of heads is set to 12 for the
top layers. Note that there is no decoder and no parameter
sharing between the vision and language branches.

Pre-training Objectives. Unless otherwise stated, we pre-
train the models with masked language modeling (MLM)
and image-text matching (ITM) only. For MLM, we mask
15% of the input text tokens, and the model tries to recon-
struct the original tokens. For ITM, we feed the model with
either matched or mismatched image-caption pairs with
equal probability, and the model needs to identify whether
the input is a match.

Pre-training Datasets. Following previous work [5, 20,
23], we pre-train models on four commonly used datasets,
including COCO [27], Conceptual Captions [40], SBU
Captions [33], and Visual Genome [21]. The statistics of
these datasets is shown in Appendix. The combined train-
ing data consists of about 4M images in total.

Downstream Tasks. For ablation and analysis, we mainly
focus on VQAv2 [1], arguably the most popular dataset for
VLP evaluation. We also test on Flickr30k zero-shot image-
text retrieval to remove any confounders that may be intro-
duced during finetuning [14]. For VQAv2, we follow the
standard practice [5] to train the models with both training
and validation data, and test the models on the test-dev set.
For Flickr30k, we follow the standard splits.

For comparison with state of the arts, we also evaluate
models on visual reasoning (NLVR2 [43]), visual entail-
ment (SNLI-VE [52]), and image-text retrieval (COCO [27]
and Flickr30k [34]) tasks. For retrieval tasks, we evaluate
models in both zero-shot and finetuning settings.

Text Enc. VQAv2 VE IR TR SQuAD MNLI
Acc. Acc. R@1 R@1 EM Acc.

Emb-only 67.13 74.85 49.06 68.20 - -
ELECTRA 69.22 76.57 41.80 58.30 86.8 88.8
CLIP 69.31 75.37 54.96 73.80 - -
DeBERTa 69.40 76.74 51.50 67.70 87.2 88.8
BERT 69.56 76.27 49.60 66.60 76.3 84.3
RoBERTa 69.69 76.53 49.86 68.90 84.6 87.6
ALBERT 69.94 76.20 52.20 68.70 86.4 87.9

Table 2. Comparisons of different text encoders without VLP.
CLIP-ViT-224/32 is used as the vision encoder. All the text en-
coders are in base model size, except ALBERT, which is xlarge.
Emb-only: only using word embeddings as text encoder. IR/TR:
Flickr30k image/text retrieval. EM: exact match. The results of
SQuAD and MNLI are copied from their corresponding papers.
All the results on VL tasks are from their test-dev/val sets.

Vision Encoder VQAv2 VE IR TR ImageNet
Dis. DeiT B-384/16 67.84 76.17 34.84 52.10 85.2

BEiT B-224/16 68.45 75.28 32.24 59.80 85.2
DeiT B-384/16 68.92 75.97 33.38 50.90 82.9
ViT B-384/16 69.09 76.35 40.30 59.80 83.97

CLIP B-224/32 69.69 76.53 49.86 68.90 -
VOLO 4-448/32 71.44 76.42 40.90 61.40 86.8
CaiT M-384/32 71.52 76.62 38.96 61.30 86.1
CLIP B-224/16 71.75 77.54 57.64 76.90 -
Swin B-384/32 72.38 77.65 52.30 69.50 86.4

Table 3. Comparisons of different vision encoders without
VLP. RoBERTa is used as the default text encoder. IR/TR:
Flickr30k image/text retrieval; B: Base. The results of ImageNet
classification are copied from their corresponding papers. All the
results on VL tasks are from their test-dev/val sets. N and M in
ViT-N/M denote the image resolution and patch size, respectively.

Implementation Details. We pre-train our models using
AdamW [31] for 100k steps. The learning rates for the bot-
tom and top layers are set to 1e-5 and 5e-5 respectively dur-
ing pre-training. The warm-up ratio is set to 10%, and the
learning rate is linearly decayed to 0 after 10% of the total
training steps. We use center-crop to resize each image into
the size of 224×224 or 384×384 depending on the adopted
vision transformers.

4. Experiments
In this section, we provide comprehensive analysis of

each individual module design. Specifically, (i) we study
the impact of vision and language encoders in Section 4.1,
(ii) we perform analysis on multimodal fusion designs in
Section 4.2, (iii) we compare encoder-only and encoder-
decoder architectures in Section 4.3, and (iv) we ablate pre-
training objectives in Section 4.4. Finally, we compare with
state of the arts in Section 4.5.

4.1. Impact of Vision and Language Encoders

4.1.1 Explorations without VLP

Since pre-training is time-consuming, we first perform an
exploration study by comparing different text and visual en-
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Text Enc. Vision Enc. VQAv2 Flickr-ZS
IR TR

Emb-only CLIP-32 73.99 60.32 74.10

BERT CLIP-32 74.98 66.08 78.10
CLIP-16 76.70 74.52 87.20

RoBERTa
CLIP-32 74.67 65.50 76.60
CLIP-16 77.19 76.64 89.60

Swin 76.43 71.68 85.30

Table 4. Comparisons of different vision and text encoders
with VLP. Results on VQAv2 are on test-dev set. ZS: zero-shot.

coders without VLP for efficiency. Concretely, we initial-
ize the bottom layers with specific pre-trained vision and
text encoders, and randomly initialize the top layers. Then,
we directly finetune the models on three tasks, including
VQAv2, SNLI-VE, and Flickr30k retrieval. The learning
rates for the bottom and top layers are set to 1e-5 and 1e-
4, and the number of training epochs is set to 10 for all the
tasks. We choose CLIP-ViT-224/32 [35] and RoBERTa [29]
as the default encoders. Here, N and M in ViT-N/M denote
image resolution and patch size, respectively.

Impact of Text Encoders. As shown in Table 2, there are
no significant differences between the model performance
of different text encoders. RoBERTa seems to achieve the
most robust performance in this setting. Also, as can be
seen from the Emb-only results, it is necessary to have a
pre-trained encoder because otherwise the downstream task
performance will be degraded.

Impact of Vision Encoders. As summarized in Table 3,
both CLIP-ViT-224/16 and Swin Transformer can achieve
decent performance in this setting. Notably, Swin Trans-
former can achieve an VQA score of 72.38 on the test-dev
set without any VLP, which is already comparable to some
VLP models after pre-training.

Conclusion. If we directly finetune the models on down-
stream tasks without any VLP, RoBERTa and Swin Trans-
former or CLIP-ViT perform the best. While models such
as DeBERTa and BEiT can achieve better performance than
the two models on pure language or vision tasks such as
MNLI [49] or ImageNet classification [8], that does not nec-
essarily indicate that they are more suitable for VL tasks.

4.1.2 Results with VLP

Now, we follow the default setting in Section 3.3, and
compare different vision/text encoders with VLP. Based on
the previous results, we compare Embed-only, BERT, and
RoBERTa on the text side, and CLIP-ViT-224/32, CLIP-
ViT-224/16, and Swin Transformer on the image side.

Results. As shown in Table 4, after VLP, the difference be-
tween BERT and RoBERTa seems to be diminished, but it
is still important to have a pre-trained text encoder on the
bottom (Embed-only vs. RoBERTa). For vision encoder,

Bottom LR Top LR VQAv2 Flickr-ZS
IR TR

1e-5 1e-5 73.16 48.80 63.70
2e-5 2e-5 73.66 53.14 67.20
3e-5 3e-5 73.77 56.48 70.90
5e-5 5e-5 73.54 52.48 65.90
1e-5 5e-5 74.98 66.08 78.10

Table 5. Using different learning rates for the randomly-initialized
and pre-trained parameters is better than using the same learning
rate. Results on VQAv2 are on test-dev set. ZS: zero-shot.
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Figure 5. Increasing the image resolution during finetuning
greatly improves the performance on the VQAv2 test-dev set.

both CLIP-ViT-224/16 and Swin Transformer can achieve
pretty good performance. Especially, CLIP-ViT-224/16 can
achieve a VQA score of 77.19/77.20 on the test-dev/test-std
sets, respectively, outperforming the previous state-of-the-
art region-based VinVL [57] models.

Useful Tricks. In experiments, we found two tricks for
ViT-based VLP models that can greatly boost the perfor-
mance. First, it is better to use a larger learning rate for the
randomly initialized parameters than parameters initialized
with pre-trained models, which is also found useful in some
other NLP tasks [28]. As shown in Table 5, using the same
learning rate for all parts of the model will lead to degraded
performance, possibly because the pre-trained parameters
already contain certain amounts of knowledge about vision
and language, and finetuning them aggressively can result
in the loss of these valuable information.

Second, similar to several previous work [20,56], we find
that increasing the image resolution during finetuning can
improve the model performance by a large margin, espe-
cially when the ratio of image resolution to patch size is
low. Figure 5 shows that increasing the image resolution
from 224 to 576 can improve the VQA score by about 3
and 1 points for the CLIP-ViT-224/32 and CLIP-ViT-224/16
model, respectively.

4.2. Analysis of the Multimodal Fusion Module

Now, following the default setting in Section 3.3, we per-
form investigations on multimodal fusion. First, we design
both merged attention and co-attention models and inves-
tigate their performance. For the merged attention model
(Figure 2b), the top transformer consists of Mmerged encod-
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Fusion Decoder VQAv2 Flickr-ZS
IR TR

Merged attention
✗

74.00 57.46 73.10

Co-attention 74.98 66.08 78.10
✓ 74.73 48.96 71.60

Table 6. Co-attention performs better than merged attention in our
setting, and adding a decoder is not helpful for our discriminative
VL tasks. Results on VQAv2 are on test-dev set. ZS: zero-shot.

ing layer, with each layer consisting of one self-attention
block and one feed-forward network block. To help the
model distinguish between the two modalities, we add a
modality embedding to the input features before feeding
them to the top transformer. For the co-attention model
(Figure 2a), we feed the text and visual features to two Mco-
layer transformers separately, and each top transformer en-
coding layer consists of one self-attention block, one cross-
attention block, and one feed-forward network block. Com-
pared with merged attention, co-attention allows separate
transformation functions for the vision and language modal-
ities. We set Mmerged = 12 and Mco = 6 so that the
numbers of parameters of the two models are roughly com-
parable to each other.

Results. Table 6 reports the downstream performance of
the two models. The co-attention model performs better
than the merged attention model in our setting, indicating
that it is important to have different sets of parameters for
the two modalities. Note that this contradicts with the find-
ings in region-based VLP models [3], possibly because (i)
findings of region-based VLP models cannot directly ap-
ply to ViT-based VLP models; (ii) most region-based VLP
models only use pre-trained visual encoders, and also do not
have a pre-trained text encoder included, thus the inconsis-
tency between the two modalities will not favor symmetri-
cal architecture like the co-attention model.

4.3. Encoder-Only vs. Encoder-Decoder

We then compare the encoder-only and encoder-decoder
architecture. For the encoder-only model, we use the same
co-attention model as in Section 4.2. For the encoder-
decoder model, we set the number of layers to 3 for both the
encoder and decoder, and each decoding layer has two sepa-
rate cross-attention blocks that attend to the vision and text
representations, respectively. According to [6], we adopt
T5-style [36] language modeling objective as it works well
for their model. Specifically, we mask 15% of input text to-
kens and replace contiguous text span with sentinel tokens,
and the decoder is trained to reconstruct the masked tokens.
For image-text matching, we feed the decoder with a special
class token and it generates a binary output.

Results. As shown in Table 6, the encoder-only model can
outperform the encoder-decoder model on our two discrim-
inative tasks, which is consistent with the findings in [6].

Pre-training Objectives VQAv2 Flickr-ZS
IR TR

MLM 74.19 - -
ITM 72.63 53.74 71.00
MLM+ITM 74.98 66.08 78.10
MLM+ITM + MIM (In-batch Negatives) 74.01 62.12 76.90
MLM+ITM + MIM (Discrete Code) 74.21 59.80 76.30

Table 7. Masked language modeling (MLM) and image-text
matching (ITM) can both improve the model performance, but
both of our designed masked image modeling (MIM) objectives
lead to degraded performance on downstream tasks. Results on
VQAv2 are on test-dev set. ZS: zero-shot.

However, it should be noted that the encoder-decoder ar-
chitecture is more flexible, as it can perform tasks such as
image captioning which may not be that straightforward for
an encoder-only model to be applied to.

4.4. Ablations on Pre-training Objectives

In all the previous experiments, we pre-train our mod-
els with different objectives, following the default setting
in Section 3.3. Now, we alter the pre-training objectives.

Results. As summarized in Table 7, both masked language
modeling and image-text matching can bring performance
improvements on downstream tasks. However, both of our
masked image modeling objectives can lead to degraded
performance on both VQAv2 and Flickr30k retrieval tasks.
This further indicates that conclusions in region-based VLP
models may not necessarily hold in vision transformer-
based models. We hypothesize that the performance drop is
due to the conflicts between different objectives, and some
techniques in multi-task optimization [50, 54] may be bor-
rowed to resolve the conflicts, which we list as one of the
future directions. Another possible reason is that image
patches can be noisy, thus the supervisions on reconstruct-
ing these noisy patches can be uninformative.

4.5. Comparison with Prior Arts

In this section, we evaluate our best-performing mod-
els (i.e., RoBERTa-base+Swin Transformer and RoBERT-
base+CLIP-ViT-224/16 with co-attention fusion module,
and with image resolutions set to 384 and 288, respec-
tively), and compare them with previous work. We eval-
uate the models on visual question answering (VQAv2),
visual reasoning (NLVR2), visual entailment (SNLI-VE),
Flickr30k retrieval tasks in zero-shot and finetuning set-
tings, and COCO retrieval tasks in the finetuning setting.

Main Results. As in Table 8 and 9, compared with models
pre-trained with fewer than 10M images, our CLIP-based
model (METER-CLIP-ViTBASE) can achieve either the best
or the second best scores on all the downstream tasks. No-
tably, our model can achieve a VQA score of 77.64% on the
VQAv2 test-std set using only 4M images for pre-training,
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Model VQAv2 NLVR2 SNLI-VE Flickr-ZS
test-dev test-std dev test dev test IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Pre-trained with >10M images
ALBEF (14M) [23] 75.84 76.04 82.55 83.14 80.80 80.91 82.8 96.3 98.1 94.1 99.5 99.7
SimVLMBASE (1.8B) [51] 77.87 78.14 81.72 81.77 84.20 84.15 - - - - - -
SimVLMHUGE (1.8B) [51] 80.03 80.34 84.53 85.15 86.21 86.32 - - - - - -
Pre-trained with <10M images
UNITERLARGE [5] 73.82 74.02 79.12 79.98 79.39 79.38 68.74 89.20 93.86 83.60 95.70 97.70
VILLALARGE [11] 74.69 74.87 79.76 81.47 80.18 80.02 - - - - - -
UNIMOLARGE [25] 75.06 75.27 - - 81.11 80.63 - - - - - -
VinVLLARGE [57] 76.52 76.60 82.67 83.98 - - - - - - - -
PixelBERT [16] 74.45 74.55 76.5 77.2 - - - - - -
CLIP-ViL (ResNet50x4) [41] 76.48 76.70 - - 80.61 80.20 - - - - - -
ViLT [57] 71.26 - 75.70 76.13 - - 55.0 82.5 89.8 73.2 93.6 96.5
Visual Parsing [53] 74.00 74.17 77.61 78.05 - - - - - - - -
ALBEF (4M) [23] 74.54 74.70 80.24 80.50 80.14 80.30 76.8 93.7 96.7 90.5 98.8 99.7
METER-SwinBASE 76.43 76.42 82.23 82.47 80.61 80.45 71.68 91.80 95.30 85.30 97.70 99.20
METER-CLIP-ViTBASE 77.68 77.64 82.33 83.05 80.86 81.19 79.60 94.96 97.28 90.90 98.30 99.50

Table 8. Comparisons with models pre-trained with <10M images on visual question answering, visual reasoning, visual entailment, and
zero-shot image retrieval (IR) and text retrieval (TR) tasks. The best scores are in bold, and the second best scores are underlined.

Model Flickr COCO
IR@1 IR@5 IR@10 TR@1 TR@5 TR@10 IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

Pre-trained with >10M images
ALBEF (14M) [23] 85.6 97.5 98.9 95.9 99.8 100.0 60.7 84.3 90.5 77.6 94.3 97.2
Pre-trained with <10M images

UNITERLARGE [5] 75.56 94.08 96.76 87.30 98.00 99.20 52.93 79.93 87.95 65.68 88.56 93.76
VILLALARGE [11] 76.26 94.24 96.84 87.90 97.50 98.80 - - - - - -
UNIMOLARGE [25] 78.04 94.24 97.12 89.40 98.90 99.80 - - - - - -
VinVLLARGE [57] - - - - - - 58.8 83.5 90.3 75.4 92.9 96.2
PixelBERT [16] 71.5 92.1 95.8 87.0 98.9 99.5 50.1 77.6 86.2 63.6 87.5 93.6
ViLT [57] 64.4 88.7 93.8 83.5 96.7 98.6 42.7 72.9 83.1 61.5 86.3 92.7
Visual Parsing [53] 73.5 93.1 96.4 87.0 98.4 99.5 - - - - - -
ALBEF (4M) [23] 82.8 96.7 98.4 94.3 99.4 99.8 56.8 81.5 89.2 73.1 91.4 96.0
METER-SwinBASE 79.02 95.58 98.04 92.40 99.00 99.50 54.85 81.41 89.31 72.96 92.02 96.26
METER-CLIP-ViTBASE 82.22 96.34 98.36 94.30 99.60 99.90 57.08 82.66 90.07 76.16 93.16 96.82

Table 9. Comparisons with models pre-trained with <10M images on Flickr30k and COCO image retrieval (IR) and text retrieval (TR)
tasks in the finetuning setting. The best scores are in bold, and the second best scores are underlined.

Model (#Pre-training Images) test-dev test-std
SimVLMBASE (1.8B) 77.87 78.14
SimVLMHUGE (1.8B) 80.03 80.34
METER-CoSwinHUGE (14M) 80.33 80.54

Table 10. Pre-training a huge model under the METER frame-
work with 14M images can lead to state-of-the-art performance
on VQAv2, surpassing previous models trained with 1.8B images.

surpassing the state-of-the-art region-feature-based VinVL
model by 1.04%, and outperforming the previous best fully
transformer-based model (i.e., ALBEF) by 1.6%. In addi-
tion, while ALBEF has specially-designed objectives for re-
trieval, our model can still outperform ALBEF on text and
image retrieval tasks, further demonstrating the effective-
ness of METER. Also, as shown in Appendix, we can main-
tain the fast inference speed of ViT-based models.

Scaling the Model. We also investigate if the METER
framework is scalable. To this end, we pre-train our model
with more images and larger vision backbone. Specifically,
we pre-train the model with COCO, CC, CC12M [4], SBU,
and VG datasets, consisting of about 14M images and 20M

image-caption pairs in total. We use CoSwin-Huge [55] as
our vision backbone and RoBERTa-base as our text back-
bone. The hidden size of the fusion module remains un-
changed. As shown in Table 10, our model can achieve
state-of-the-art performance on VQAv2, surpassing previ-
ous models trained with 1.8B images. The results indicate
that our METER framework is scalable.

Further Analysis. We also conduct experiments on image
captioning, investigate multi-scale feature fusion, study the
model performance on unimodal tasks after VLP, and pro-
vide visualization of learned attention maps. All these re-
sults are provided in Appendix.

5. Conclusion
We present METER, through which we systematically in-

vestigate how to train a fully-transformer VLP model in an
end-to-end manner. Experiments demonstrate that we can
achieve competitive performance with state-of-the-art mod-
els with only 4M images for pre-training. When further
scaled up, METER achieves new state of the art on VQA.
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