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Abstract

Preserving geometric structures in the scene plays a vi-
tal role in image stitching. However, most of the existing
methods ignore the large-scale layouts reflected by straight
lines or curves, decreasing overall stitching quality. To ad-
dress this issue, this work presents a structure-preserving
stitching approach that produces images with natural vi-
sual effects and less distortion. Our method first employs
deep learning-based edge detection to extract various types
of large-scale edges. Then, the extracted edges are sampled
to construct multiple groups of triangles to represent geo-
metric structures. Meanwhile, a GEometric Structure pre-
serving (GES) energy term is introduced to make these tri-
angles undergo similarity transformation. Further, an op-
timized GES energy term is presented to reasonably deter-
mine the weights of the sampling points on the geometric
structure, and the term is added into the Global Similar-
ity Prior (GSP) stitching model called GES-GSP to achieve
a smooth transition between local alignment and geomet-
ric structure preservation. The effectiveness of GES-GSP is
validated through comprehensive experiments on a stitch-
ing dataset. The experimental results show that the pro-
posed method outperforms several state-of-the-art methods
in geometric structure preservation and obtains more nat-
ural stitching results. The code and dataset are available
at https://github.com/flowerDuo/GES-GSP-
Stitching.

1. Introduction

With the popularity of multimedia devices such as smart-
phones and digital cameras, the requirement to obtain high-
quality panoramic images is increasing [9, 20]. Although,
image stitching [24] has made tremendous progress, it is
still a challenge to produce high-quality panoramic im-
ages [23] due to the wide baseline, large parallax, and low-
texture under complex stitching scenes [24].

†Corresponding author: Jifeng Ning, njf@nwsuaf.edu.cn

The overall naturalness is an important factor affect-
ing the quality of image stitching. The existing stitching
methods can be roughly classified into single feature-based
alignment and multiple features-based alignment. The for-
mer relies on the homography transformation estimated by
point features. The AutoStitch [1] uses global homogra-
phy transformation for image mapping, but it cannot handle
multi-plane scenes. In the dual homography warp (DHW)
[4], the scene is simply considered composed of a per-
spective plane and a ground plane. Furthermore, the as-
projective-as-possible (APAP) warps [27] divides the image
into meshes and estimates a set of smooth transformations
for each grid to improve local alignment. The robust elastic
warping (ELA) [10] applies the Bayesian model to improve
local alignment for images with parallax. However, the use
of only one or more homographic transformations may re-
sult in excessive perspective transformation and affect the
overall naturalness of the stitching result. Therefore, some
works such as the smoothly varying affine (SVA) stitch-
ing [16], the shape-preserving half-projective (SPHP) [2],
the adaptive as-natural-as-possible (AANAP) warps [14]
and the global similarity prior (GSP) model [3] try to obtain
more natural stitching results by exploring the advantage of
local or global similarity transformation.

On the other hand, joint alignment of point features and
line features [8, 12, 13, 25] at the same time can better es-
timate homography transformation attributed to its strong
constraint for image stitching. Li et al. first proposed dual-
feature including point and line features for warping-based
motion model estimation (DFW) [12] to handle the lack
of features during stitching. The single-perspective warp
(SPW) [13] solves projective distortion to a certain extent,
and Xiang et al. [25] proposed a line-guided local warping
method with a global similarity constraint. Jia et al. [8] pro-
posed to leverage line-point consistence (LPC) to preserve
structures, which introduces global collinear structures to
enhance the desired characters for image warping. Then,
Zhang et al. [30] applied LPC to the regularization [6] of
the stitched result.

Generally, the feature registration method mainly de-
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Figure 1. An example of stitching 10 images. (a) The AutoStitch’s [1] result is severely distorted. (b) The person on the right side is
distorted in the APAP’s [27] result. (c) Several misalignments (red and green closeup) in the ELA’s [10] result. (d) The SPW’s [13] result
exhibits significant wrong scale at the right end. (e) There are some distortions, e.g., the floor and carpet in the red box become curved in
the result obtained by GSP [3]. (f) Our result preserves the salient geometric structures in the scene.

pends on more homography transformations and local or
global similarity constraints to improve stitching quality.
However, the curve constraints effectively reflecting the
critical structure of the scene are not considered. Although
the stitching method based on dual features [8, 13, 25] can
better keep the scene structure compared with the method
based on a single feature, it needs to find the corresponding
relationship between the point and the line features among
the stitched images. Also, when it is extended to multiple
images, finding the correspondence becomes more compli-
cated. Besides, the geometric structure of the scene contains
not only straight lines but also curves with better integrity.
Interestingly, the seam-guided local alignment for parallax-
tolerant image stitching (Seagull) [15] performs similarity
transformation on the edges to improve stitching quality [5],
indicating the importance of geometric structure informa-
tion.

In this work, curve structures are introduced into sin-
gle feature-based stitching model to preserve the geometric
structure better than the methods based on point and line
features [8, 12, 13, 25]. Different from Seagull [15] only
handling a local alignment near the seam line, this work not
only ensures the alignment accuracy but also protects the
geometric structure in all overlapping and non-overlapping
regions. Our method is built on GSP [3] because of the
whole naturalness of its stitching result. This work designs
a special scheme to protect line and curve structures in over-
lapping regions and non-overlapping regions to obtain more
natural stitching results.

Figure 1 illustrates the stitching result of a challenging

example in [19]. It can be seen that the stitching result of
AutoStitch [1] is severely distorted. In the stitching result
of APAP [27], the person on the right side is distorted. In
the stitching result of ELA [10], the salient geometric struc-
tures are not destroyed, but there are several misalignments
(red and green closeup). In the stitching result of SPW [13],
there is a significant wrong scale at the right end. GSP [3]
solves the problem of limited field of view, but there are dis-
tortions in the local geometric structure, e.g., the floor and
carpet in the red box become curved and the toy track is too
small in scale than the real scene. The stitching result of
our method maintains the geometric structures of carpets,
toys, and floors well, and it also looks more natural locally
and globally. Our method performs significantly better than
AutoStitch, APAP, SPW, and GSP and slightly better than
ELA. Generally, the contributions of this work are summa-
rized as follows:

• This work fully utilizes the line and edge features ex-
tracted from the stitched images to represent the large-
scale geometric structure to obtain high-quality para-
noiac images.

• A geometric structure-preserving energy term is added
to the GSP stitching model, and the weights of the
sampling points on geometric structures are set reason-
ably to ensure a smooth transition between local align-
ment and geometric structure preservation to achieve
natural stitching results.

• The experiments on 50 sets of images demonstrate that
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the proposed method outperforms several state-of-the-
art structure-preserving methods.

2. Related Work
Mainly for Alignment. It can usually be considered

in terms of global alignment and seam-guided stitching.
DHW [4] divides the scene into a perspective plane and
a ground plane and represents the transformation model
through a combination of two homography transformations.
SVA [16] aligns images using affine transformation and
smooth transformation to enhance the local alignment ac-
curacy. APAP [27] improves the ability of local alignment
by estimating a set of smooth transformations for each grid.
ELA [10] applies the Bayesian model to remove incorrect
local matches to improve alignment. The above methods
belong to single feature-based alignment. In addition, some
works [8, 12, 13, 25] improve the stitching quality by us-
ing point and line features and the estimate transformation
matrix from different aspects when the images lack point
features.

Meanwhile, the seam-guided image stitching method
only needs to find a parallax-free local region to perform
partial alignment and then produce a good seam for stitch-
ing, which is more advantageous for large parallax image
stitching. Gao et al. [5] selected a subset of sparse feature
matches that facilitate finding local regions for stitching.
Zhang and Liu [28] used an efficient randomized feature se-
lection algorithm to hypothesize homography candidates to
obtain good stitching seams. Seagull [15] uses the estimated
seam to guide the process of optimizing local alignment so
that the seam quality can be improved iteratively.

Mainly for Naturalness. SPHP [2] divides the im-
age into three parts so that the non-overlapping areas have
less distortion. AANAP [14] stitches better than SPHP by
combining the local homography and the global similarity
transformation. GSP [3] uses mesh vertex alignment as an
alignment term and combines the local similarity term and
global similarity term to optimize the mesh deformation. Li
et al. [11] proposed a quasi-homography warp to balance
perspective distortion and projective distortion in the non-
overlapping region. Zhang et al. [29] proposed a warp to
produce an orthogonal projection of a wide-baseline scene.

Liu et al. [17] implemented content-preserving by con-
straining grid similarity transformation [7]. Guided by dual-
feature, DFW [12], SPW [13] and LPC [8] achieves a good
image stitching effect under the lack of feature points and
solves projective distortion to a certain extent. LPC in-
troduces global collinear structures to balance the desired
characters for image warping, which can preserve both lo-
cal and global straight-line structures. However, the meth-
ods guided by dual-feature [8, 12, 13] need to accurately
find the corresponding line features, which is challenging
for a scene with parallax [15]. Moreover, they ignore the

curve structure in the scene, which is more common than
the straight-line structure in complex real scenes.

In general, the preservation of curve structure in the
scene is less studied, although curve structures are more
common than straight-line structures. In this work, a stitch-
ing model is proposed to preserve different types of geomet-
ric structures extracted from images to obtain high-quality
stitching results.

3. The Proposed Method
In this section, the limitation of GSP [3] is first ana-

lyzed, and then the proposed method is presented in detail,
including large-scale edge extraction, geometric structure-
preserving term, and our stitching model.

3.1. Limitation of GSP Stitching Method

The GSP [3] is a stitching method based on mesh opti-
mization [7], and it constructs an energy function with mul-
tiple constraints. Let Vi and Ei denote the set of vertices
and edges in the mesh for the image Ii, respectively. V de-
notes the set of all vertices in all images. The GSP method
attempts to find a set of deformed vertex positions V̂ such
that the energy function ψ(V̂ ) is minimized. The energy
function consists of three terms: the alignment term ψa(V̂ ),
the local similarity term ψl(V̂ ), and the global similarity
term ψg(V̂ ). It is defined as

V̂ = argmin
V̂

ψa(V̂ ) + λlψl(V̂ ) + ψg(V̂ ). (1)

In Equation (1), alignment termψa(V̂ ) ensures the align-
ment accuracy after image transformation, local similar-
ity term ψl(V̂ ) ensures that each grid undergoes similarity
transformation, and the global similarity term ψg(V̂ ) en-
sures that each image undergoes a whole similarity trans-
formation to obtain a natural stitching result. Please refer
to [3] for the details.

It can be seen that the local similarity term and global
similarity term of the GSP [3] method protect the scene
structure to a certain extent. Also, GSP takes the grid as
the optimization unit, and the local geometric structure in
each grid can be protected. However, when a local geomet-
ric structure crosses multiple grids, its structure may be de-
stroyed because the transformation of each grid is different.
As shown in Figure 1(e), the lack of large-scale geomet-
ric structure preservation affects the naturalness of the re-
sult compared with our stitching result shown in Figure 1(f)
with geometric structure constraints.

3.2. Large-scale Geometric Edge Extraction

There are obvious edge structures such as straight lines
and smooth curves in real scenes, and smooth curves are
more common. If these salient structures are deformed dur-
ing stitching, the naturalness of the stitching result could not
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be guaranteed. Therefore, extracting and protecting large-
scale edges in images have an important effect on stitching
performance.

The geometric structure of an object is not entirely com-
posed of straight lines, and the curve is also an important
part. There are a large number of short lines and rela-
tively complete curve structures in the scene shown in Fig-
ure 2(a). So, ignoring the complete geometric structure of
curves in the image warping will lead to non-optimal re-
sults. Although image stitching with content-preserving has
been studied [6,8,13,17,30], the image structure extraction
methods in these works do not make full use of the non-
linear structure in the image, and the importance of geo-
metric structural integrity is ignored.

Inspired by the progress of deep learning in computer vi-
sion, we use the Holistically-nested Edge Detection (HED)
[26] method based on the Convolutional Neural Network
(CNN) to extract the large-scale edges of images. HED re-
solves the challenging ambiguity in edge and object bound-
ary detection, and it filters many weak edges and highlights
the contour edge structures of the objects. Then, after the
branches are cut and the corner disconnection is processed,
the outline edge structures representing the geometric struc-
ture of the scene initially are obtained.

The large-scale edges of the scene extracted from Fig-
ure 2(a) by HED [26] are shown in Figure 2(b), which rep-
resent the obvious curves and lines in the image. However,
there are still discontinuities in the edges and partial miss-
ing of line structures. To solve this problem, we add the
lines extracted by LSD [22] into the obtained edge struc-
tures. The large-scale edges of the scene are further refined
by post-processing such as reconnection of broken lines and
collinear constraints to improve the integrity of geometric
structures of objects. As shown in Figure 2(c), the geomet-
ric structures of most objects are well represented by several
concise and complete contours.

(a) (b) (c)

Figure 2. An example of large-scale edge extraction. (a) The orig-
inal image. (b) The extracted large-scale edge structure based on
HED [26]. (c) After the line structure is added to (b), the more
concise and complete geometric structure is obtained through line
reconnection and collinear processing where the line segment of
the same color belongs to the same geometric structure. The curve
structure of the roof is completely extracted and the geometric
structure of the door, windows, horizontal, and longitudinal struc-
tures of the building are well represented by several contours.

3.3. Geometric Structure Preservation Based on
Triangle-sampling

After the continuous large-scale edge structure reflecting
the geometric structure in the image is obtained, it should
be represented effectively in the stitching model. Similar
to [15], the sampling points are set equidistantly on the ge-
ometric edges. Each sampling point forms a triangle with
the endpoint of the geometric structure. The transformation
of the geometric structure is indirectly constrained by the
similarity transformation constraint [7] on the triangle cor-
responding to each sampling point, which is also suitable
for straight-line structures. As shown in Figure 3(a), a con-
tinuous curve representing a geometric structure is sampled
at equal intervals, and a group of triangles is formed by the
two endpoints and sampling points on the curve. Obviously,
if these triangles undergo similarity transformation only in
image warping, then the geometric structure can also be ef-
fectively protected, as shown in Figure 3(d).

(a) (b)

(c) (d)

Figure 3. Illustration of triangle sampling in a curve edge.
(a) A curve edge is sampled equidistantly. (b) A triangle in
(a). (c) The triangle in (b) undergoes a similarity transformation
and projection transformation to triangle (V̂ desired

i , V̂a, V̂b) and
triangle(V̂i, V̂a, V̂b) respectively. (d) The same similarity transfor-
mation is performed for all triangles in (a) to obtain the similarity
transformation result of this contour, then the structure can be pro-
tected, which is available for the protection of line structure.

In Figure 3(a), the coordinates of Vi can be represented
by the other two endpoints Va,Vb and (ui, hi),

Vi = Va + ui (Vb − Va) + hi

[
0 1
−1 0

]
(Vb − Va) , (2)

where (ui, hi) are the known coordinates within the local
coordinate system, and its value will not change after the tri-
angle undergoes similarity transformation [7]. (ui, hi) can
be calculated by three vertex coordinates,

hi=H
(
∥(Vi−Va)×(Vb−Va)∥

∥Vb−Va∥

)
,ui=U

(√
∥Vi−Va∥2−hi

2

∥Vb−Va∥

)
(3)
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where

H(x)=

{
x if (Vi − Va)× (Vb − Va) < 0
−x else

U(x)=

{
−x if (Vi−Va)·(Vb−Va)

∥Vi−Va∥∥Vb−Va∥ < 0

x else

. (4)

As shown in Figure 3(c), supposing Vi, Va, Vb are trans-
formed into V̂i, V̂a, V̂b and V̂ desired

i , V̂a, V̂b after the pro-
jection transformation and the similarity transformation, re-
spectively. V̂ desired

i is calculated as,

V̂ desired
i = V̂a+ui

(
V̂b−V̂a

)
+hi

[
0 1
−1 0

](
V̂b−V̂a

)
. (5)

To indirectly protect the structure as much as possible,
one can minimize the following cost to encourage similarity
transformation on a given triangle,

Ei =
∥∥∥V̂i − V̂ desired

i

∥∥∥2. (6)

The error equation of all the geometric structure sam-
pling points can be obtained as,

ψges(V̂ ) =

Nc∑
j=1

Ns∑
i=1

Ej
i , (7)

where Nc is the total number of all geometric structures in
the image, and Ns is the number of all sampling points in
the geometric structure i.

3.4. Geometric Structure Preservation based GSP
Stitching Method

It is found that the improvement effect by adding Equa-
tion (7) as a new constraint term to the GSP [3] model is not
good. This is because the same similarity transformation is
used for each sample triangle regardless of whether they are
in overlapping or non-overlapping regions. After adding ge-
ometric structure constraints, in the non-overlapping area,
strong geometric constraints need to be maintained; in the
overlapping area, geometric constraints need to be main-
tained, and image alignment needs to be ensured. There-
fore, the weights for the sampling points on geometric edges
need to be set reasonably and will play an important role in
keeping the best balance between image deformation and
structure preservation.

To ensure the overall naturalness of the stitching result,
the weights of the sampling points in the non-overlapping
area and overlapping area are set to 1 and less than 1, re-
spectively. Figure 4(a) shows an example of the weight
map of sampling points when two images are pre-stitched.

P0, P1, and P2 denote the three sampling points on a curve
structure in the figure on the right (green). P0 is located
in the non-overlapping area of the right image, and the ge-
ometric structure constraints are completely dominated by
the right image, so the weight of P0 is 1. P1 tends to con-
centrate on the center position of the right image, but it is
located at the edge of the left image (red). Thus, it is consid-
ered that the geometric structure constraints at the position
of P1 are dominated by the right image. And similarly, the
weight of P2 is less than that of P1.

P
1

P
2

P
0

d
o

d
b

1

0.5

0

(a)

1

ε

1

(b)

Figure 4. (a) Illustration of the weight map of the sampling points
in a geometric curve for two stitched images. (b) The function
curve of the weight equation.

Therefore, we calculate the weight by using the min-
imum distances from the sampling points to the overlap-
ping region boundary and the image boundary, respectively.
Note that when the overlapping region of two images is a
square, an optimal solution is obtained, and it is expected
that the sum of the weights of the two sampling points in
the same position in the overlapping region is 1. So, we
use a centrosymmetric function, e.g. cosine (Figure 4(b)),
and the formula for calculating the weight of the sampling
points in the overlapping area is

wi = max

(
1

2
(cos (γi × π) + 1) , ε

)
, (8)

where γi = do (Vi) / (db (Vi) + do (Vi)), do (Vi) is the min-
imum distance between the grid where the sampling point
is located in and the boundary of the overlapping region,
and db(Vi) is the minimum distance between the grid where
the sampling point is located in and the image boundary, as
shown in Figure 4(a). In all of our experiments, ε=0.01.

Finally, geometric structure preservation is integrated
into the GSP model to obtain our GES-GSP stitching model,

V̂ =argmin
V̂

(
ψa

(
V̂
)
+λlψl

(
V̂
)
+ψg

(
V̂
)
+λgesψges

(
V̂
))
(9)

where, ψges(V̂ ) =
Nc∑
j=1

Ns∑
i=1

wj
iE

j
i . In all of our experiments,

λl = 0.75, λges=1.5.
Our stitching method attempts to find a set of deformed

vertex positions V̂ such that the total energy term is mini-
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mized. Locally, each grid undergoes similarity transforma-
tion so that the panoramic image has better detail informa-
tion. Globally, the appropriate scale and rotation are found
for each image to maintain a good structure. Geometrically,
the salient geometric structures in the image are protected
from distortion. Thus, the energy function consists of four
terms: the alignment term ψa(V̂ ), the local similarity term
ψl(V̂ ), the global similarity term ψg(V̂ ) and the geometry-
preserving term ψges(V̂ ) .

The proposed method can be regarded as a linear opti-
mization problem, and the optimal mesh vertex set can be
obtained as a closed-form solution by solving a sparse lin-
ear matrix equation. The detailed process is given in the
supplementary material.

4. Experiments

The experiments were performed on a computer
equipped with a 2.9GHz CPU and 16GB memory, and run-
ning Windows10 and Ubuntu18 operating systems. SIFT
[18] features are extracted using VLFeat [21], and edges
are extracted by HED [26] and LSD [22]. The grid size is
40×40 pixels for mesh-based methods. By default, the min-
imum sampling point interval is set as the grid size, and as
many sampling points as possible are obtained according to
the total length of the geometric structure.

To comprehensively test the effect and stability of the
proposed method, we constructed 50 diversified and chal-
lenging datasets (26 from [2–4, 8, 14, 19, 27] and 24 col-
lected by ourselves). The numbers of images range from
2 to 35, and the spatial relations among the images are 1D
and 2D. Compared with GSP [3], our method takes some
time on image pre-processing, but the time consumption is
still acceptable. For the resolution of 800×600, the GSP
method takes 2.37 s for stitching two images (Figure 5) and
20.27 s for stitching 21 images (Figure 7), while the pro-
posed method takes 4.418s and 31.168s, respectively.

Due to the limited space, please see the supplementary
material for more detailed comparisons and discussions.

4.1. Comparison with the State-of-the-art Methods

Our GES-GSP method is compared with AutoStitch [1],
APAP [27], ELA [10], SPW [13], LPC [8] (Only supports
stitching two images) and GSP [3] on a variety of real
scenes.

Figure 5 illustrates the result of stitching two images in
the scene of the office (data from LPC [8]). In the result
obtained by APAP, SPW, and LPC, the door exhibits arti-
facts with obliqueness and non-uniform deformation (blue
box). In the result obtained by APAP and SPW, the clock
exhibits misalignment (red closeup). In the result obtained
ELA, there are distortion and misalignment (red circle). In
the result obtained by LPC, the door exhibits artifacts, and

the overall perspective is not natural. In the results obtained
by GSP, the wall indicated by the red, yellow, and green
lines is bent and does not conform to the visual perspective
effect. In the result obtained by our GES-GSP, neither the
table nor the door on the left is stretched, the wall is not
bent, and the overall visual effect is more natural.

Figure 5. An example of stitching two images in the scene of the
office.

Figure 6 shows the result of stitching five images in the
scene of the mall with smooth curve geometry. To better
represent the differences between the results, green curves
are added to the results with the same curvature, which are
closer to the real scene. In the results obtained by AutoS-
titch and GSP, as indicated by the green curve, the arc at the
top exhibits an unnatural expansion, and the part indicated
by the red line is bent. In the results obtained by APAP,
ELA, and SPW, the arc at the top is significantly shrunk,
and the parts of the image are severely oblique and stretched
(blue box) due to over-projection. In the result obtained by
our method, the scale and radian of the top circle are more
natural, and the geometric structures of other salients are
also well protected in warping.

Figure 7 shows the result of stitching 21 images, and the
spatial relations among them are 2D (data from GSP [3]). In
the result obtained by AutoStitch, there are obvious distor-
tions in the horizontal and vertical directions of the building
(red box). In the result obtained by ELA, there is distortion
caused by the spherical projection. There are misalignments
in the result obtained by APAP and SPW (red circle). In the
result obtained by GSP, the edges of the buildings in the
middle (red, green, yellow lines) are bent, and the billboard
on the right (red box) is distorted into a fan shape. In the
result obtained by our method, the artifacts of the building
(red, green, yellow lines) are well preserved, and the geo-
metric structure of the billboard on the right is protected.

In summary, AutoStitch [1] and ELA (spherical projec-
tion) [10] suffer from the distortion caused by the spherical
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Figure 6. An example of stitching five images in the scene of mall.

Figure 7. An example of stitching 21 images in the scene.

projection. APAP [27] and ELA [10] suffer from severe
shape and area distortions, especially in non-overlapping
areas. SPW [13] and LPC [8] protect line structures and
suppress distortions, and the shape and area are stretched
and non-uniformly enlarged to a certain extent. However,
the result is still not very good because using the straight-
line feature only is not enough for the complex real scene.
GSP [3] selects the proper scale and rotation for each image.
Though it solves the above problems nicely, the geometric
structures in the image are destroyed.

As for our method, the type of structure to be preserved

is not limited, so it can maintain different geometric struc-
tures extracted and obtain the best balance between image
deformation and structure preservation. Therefore, the re-
sults obtained by our method are more natural.

4.2. Discussions

In this section, the influence of sampling interval and the
weight of sampling point and the evaluation of distortion on
the stitching result are analyzed.

4.2.1 Sampling Interval

As mentioned above, geometric structure often crosses mul-
tiple grids. Therefore, we set different numbers of sampling
points for each grid on the geometric structure to evaluate
the influence on geometric structure preservation. Specifi-
cally, five schemes are set up, e.g. sampling four points, two
points, and one point for every grid, and sampling one point
every two grids and every four grids, respectively.

As shown in Figure 8, there are approximately horizon-
tal edges spanning multiple grids on the building. When the
number of sampling points is greater than one for each grid,
a better geometric structure preservation effect can be ob-
tained; otherwise, the geometric structure preservation ef-
fect will be reduced. Then, to simplify the sampling pro-
cess, we only sample one point per grid in the experiment.

Figure 8. An example of geometric structure preservation under
different sampling schemes.
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Figure 9. An example of the influence of with/without adapted
weight.

4.2.2 The Weight of Sampling Point

Setting the weight of the sampling point on geometric struc-
tures is crucial for alignment accuracy and naturalness dur-
ing stitching. The influence of the adapted-weight and
equal-weight is discussed here.

Figure 9 shows an example of three stitching methods
including GSP [3], the proposed method with the equal-
weight and the adapted-weight. The result obtained by GSP
exhibits distortion on the ground (green closeup). The pro-
posed method with equal weight has a certain effect (yellow
line), but the part in the red box is bent compared with the
corresponding part of the GSP. Such shape bending is due to
the same weight of sampling points on the geometric struc-
ture, which makes the stitching in the overlapping region
difficult to balance between local alignment and geometric
structure preservation. Finally, as shown in the red box and
line, our method can obtain more natural stitching results
with less distortion via adapted weight for each sampling
point.

4.2.3 Comparison with GSP in Geometric Structure
Preservation

Two examples of geometric structure preservation by our
method and the GSP [3] method are illustrated here. Fig-
ure 10 shows the local deformation of the original image
in Figure 6. The mesh deformation demonstrated by the
curve parts (red box) in the image indicated that the result
obtained by the GSP method without geometric structure
preservation exhibits arched bending. Meanwhile, the dis-
tortion in the result obtained by our GES-GSP is much less
than that of the result obtained by GSP. Similarly, in Fig-
ure 11, the mesh in the vertical street lamp (red box) shows
obvious bending, and the bridge (green box) is also arched
in the result obtained by GSP.

Figure 10. The warping of an image from Figure 6.

Figure 11. The warping of an image with obvious curve structures.

5. Conclusion
This paper proposes an image stitching method guided

by geometric structure not limited to specific edge types.
First, the deep learning-based large-scale edge detection
method and the traditional line detection method are used to
extract various types of edges reflecting the structure infor-
mation of the scene. Then, triangle sampling is performed
on the structures to obtain a set of triangles representing the
corresponding structure. Finally, the obtained triangles are
used to construct a geometric structure preservation term to
perform similarity transformation for content preservation.

In the proposed GES-GSP method, the adapted weights
for sampling points balance between the alignment and ge-
ometric structure preservation to obtain more natural stitch-
ing results. Compared with the state-of-the-art methods, the
proposed GES-GSP can preserve different types of geomet-
ric structures as much as possible, thus obtaining a high-
quality panoramic image. In the future, we will explore the
spatial constraints between different geometric structures
and further obtain more compelling stitching results.
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