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Abstract

We introduce Displacement Aware Relation Module
(DisARM), a novel neural network module for enhanc-
ing the performance of 3D object detection in point cloud
scenes. The core idea is extracting the most principal con-
textual information is critical for detection while the tar-
get is incomplete or featureless. We find that relations be-
tween proposals provide a good representation to describe
the context. However, adopting relations between all the
object or patch proposals for detection is inefficient, and
an imbalanced combination of local and global relations
brings extra noise that could mislead the training. Rather
than working with all relations, we find that training with
relations only between the most representative ones, or an-
chors, can significantly boost the detection performance.
Good anchors should be semantic-aware with no ambigu-
ity and able to describe the whole layout of a scene with
no redundancy. To find the anchors, we first perform a pre-
liminary relation anchor module with an objectness-aware
sampling approach and then devise a displacement based
module for weighing the relation importance for better uti-
lization of contextual information. This light-weight rela-
tion module leads to significantly higher accuracy of ob-
Jject instance detection when being plugged into the state-of-
the-art detectors. Evaluations on the public benchmarks of
real-world scenes show that our method achieves the state-
of-the-art performance on both SUN RGB-D and Scan-
Net V2. The code and models are publicly available at
https://github.com/YaraDuan/DisARM.

1. Introduction

Detecting objects directly from the 3D point cloud is
challenging yet imperative in many computer vision tasks,
such as autonomous navigation, path planning for robotics,
as well as some AR applications. The goal of 3D object
detection is to localize all valid shapes and recognize their
semantic label simultaneously, which puts forward high re-
quirements for understanding the whole input scene.
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Figure 1. Illustration of the importance of DisARM. (b) It is easy
to mistake the cabinet as a table when the point cloud is incom-
plete and featureless. (c) Redundant relations are usually incom-
plete and lose the important displacement information of the target
object. (d) The network can recognize and locate the cabinet eas-
ily with the help of DisARM which provides valid surrounding
environment information.

With the rapid development of deep learning and the in-
creasing scale of the online 3D dataset, data-driven methods
such as CNN have been widely adopted for object detection.
The critical observation of these methods is that the context
is as important as the object itself for accurate detection.
However, the extra information provided by 3D brings noise
and irregularity, which makes it more challenging to apply
convolution to gather the correct context for detection.

To avoid irregularity while applying convolution for 3D
object detection, the community recently introduces two
typical categories of methods. [17, 37, 45] are trying to
project the raw point cloud onto aligned structures such as
voxel grids which can apply 3D convolution naturally. In
an alternative way, [25] adopts max-pooling to fuse infor-
mation of an irregular point cloud directly. These methods
can achieve good performance while the input scene is com-
plete and clean. However, the real scanned data is usually
incomplete and noisy, making it difficult to extract the key
information through this intrinsic context fusion approach.

To further release the power of context, some meth-
ods try to adopt the context explicitly for object detection.
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Building a relation graph between objects is a natural way
to utilize the context. [32] leverages inference on scene
graphs to enhance 3D scene understanding. However, it
requires additional supervision for regression of a correct
scene graph. Some methods intend to utilize all the possi-
ble relations among the scene to avoid this extra labeling
labor. [34] introduces a multi-level framework to fuse all
the local and global neighborhoods for 3D object detection.
Even a hierarchical architecture is proposed to maintain the
context, considering all the relations is still redundant. Fur-
thermore, most methods that adopt context explicitly have
their customized network architecture, making it difficult to
enhance existing detection methods.

We believe that context fusion is critical for 3D under-
standing, which can improve object detection performance.
We introduce a novel neural network module named Dis-
placement Aware Relation Module (DisARM). It can be
easily assembled with most existed object detection meth-
ods and achieves state-of-the-art performance on existing
benchmarks. The key idea is that context should not only be
a structure for information fusion. The relation itself is also
a critical feature for 3D understanding. Unlike some pre-
vious methods, we try to encode the most critical relations
explicitly for potential proposals to allow richer information
to be included during the training.

To avoid the redundant relation features that mislead the
training and extract the information that matters, we select
and collect the most critical context from two aspects. First,
we introduce a relation anchor module, which only sam-
ples the most representative and informative proposals as
anchors through an objectness-aware Furthest Point Sam-
pling (FPS) on feature space. The insight of this design is
that the relation anchors for context encoding should dis-
tribute uniformly over the feature space while being com-
plete and clean. Our experiments demonstrate that adopting
these relation anchors instead of the whole set of relations
for context fusion is more efficient and accurate. To maxi-
mize the utilization of the proposed relation anchors, we in-
troduce a dynamic weighing mechanism depending on spa-
tial and feature displacement. The key insight here is that
the importance of each anchor should be variant regarding
recognizing different objects. The importance should de-
pend on the spatial layout and semantic relations between
the object and the anchors since the object placement usu-
ally go with some specific organization pattern for indoor
scenes. In summary, the contributions of this paper include:

e We propose a portable network module that can be as-
sembled with most existing 3D object detection meth-
ods to further improve the performance, which can be
easily implemented as a plug-in for widely used object
detection toolbox like MMdetection3D [5].

e We introduce a method describing 3D context as a set

of weighted representative anchors. This method can
effectively extract valid information from the redun-
dant relations in a complex scene.

e Our method is simple but effective, which achieves
state-of-the-art performances on ScanNet V2 and
mAP@0.25 on SUN RGB-D.

2. Related Work
2.1. 3D object detection on point clouds

3D object detection on point clouds is challenging due
to the irregular and sparse distribution of points. Earlier
attempts project the point clouds onto grids [2] and vox-
els[12,17,27,37,45], so that the convolutional networks can
be directly applied. But these methods often suffer from the
computational cost and quantization errors. Other methods
localize the objects with the help of shape templates [39]
or sliding shapes [30,31]. As an alternative, some meth-
ods rely on the candidates from RGB-driven 2D proposal
generation [16,24] or segmentation hypotheses [15,28].

PointNet [25] has pioneered the processing of irregular
point clouds. Since then, point based detection methods
have been proposed to directly compute features from point
clouds for 3D object detection. PointRCNN [26] applies the
idea of R-CNN [ 1] to 3D object detection which generates
and refines proposals by the points within 3D boxes to ob-
tain the final detection results. VoteNet [23] generates the
points lying close to object centers by voting, which can
be grouped and aggregated to compute proposal features
by PointNet [25]. Some follow-up works further imporve
the vote and point group generation procedure [4, 43] or
the object box localization and recognition procedure [1].
GroupFree3D [19] computes object features from points by
attention mechanism for more accurate detection results.

2.2. Relation information in 3D object detection

Contextual information has been demonstrated to be
helpful in variety of computer vision tasks, including 2D
object detection [13, 40], point cloud semantic segmenta-
tion [9, 38] and 3D scene understanding [18, 35, 41, 42].
Moreover, the relationships between objects can be treated
as special contextual information which can help the net-
work to improve the performance on computer vision tasks.

A line of works [33, 44] incorporate graph structures
to describe the relationships or exploit the graph convo-
lution networks for relation feature learning. [14] models
the graph structure of furniture in indoor scenes by defining
five types of relations, which, however, is time-consuming
for computation of relations. [10] uses the pair-wise rela-
tionship information to construct 3D object-object relation
graph but needs extra supervision. 3DSSG [32] defines a
rich set of relationships and generates a graph to describe
the objects in the scene as well as their relationships which
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Figure 2. DisARM network architecture. Taking K proposals generated by backbone network as input, we first sample M relation
anchors with rich information of the scene’s layout. For each of proposals, we get the weights relative to the anchors by considering spatial-
aware and feature-aware displacement . At last, the relation feature is obtained by fusing the weighted proposal-anchor pair features. Note
that there is a skip connection operation of relation feature and proposal feature for final detection. In the bottom of figure, c(p;), c(p;) and
f(pi), f(p;) indicate locations and features of proposals and anchors respectively ; 7, 8, ¢ and @ are the functions consisting of MLPs.

heavily depends on the ground-truth of instance segmenta-
tion. HGNet [1] leverages a graph convolution network to
promote performance by reasoning on proposals, while it
might be useless if the features for detecting an object had
not been adequately learned.

Another line of works capture the relation information
by incorporating features of objects in a variety of ways
by neural networks which usually are accompanied by at-
tention mechanisms. SRN [7] models the geometrical and
locational relations of the local regions by considering the
inner interactions of the object, which is not suitable for
large indoor scenes understanding. MLCVNet [34] ad-
dresses the 3D object detection task by incorporating multi-
level contextual information with the self-attention mech-
anism and multi-scale feature fusion by considering rela-
tions of all objects which results in information redundancy.
MonoPair [3] learns the pair-wise relationship by only con-
sidering the spatial information.

3. DisARM module
3.1. Overview

Some cognitive psychology theories [9, 13,41,42] sug-
gest that context can enhance the perception ability for
detection. This paper proposes a portable network mod-
ule, say DisARM, to utilize the 3D context effectively,

which can be easily assembled with existing object detec-
tion methods to enhance performance.

In our case, we argue that useful contextual information
for detection in indoor scenes needs to meet two criteria:
it can reflect the intra-relationship between objects and im-
plicitly represent the layout. Therefore, an end-to-end net-
work framework is proposed to extract the context effec-
tively. As demonstrated in Figure 2, the former module of
DisARM samples the relation anchors between the learned
deep feature of each potential object proposal and the fol-
lowing module takes the relative displacement of each pro-
posal between anchors to encode the scene layout. More
specifically, the core of former module is locating the most
representative and informative proposals for relation feature
construction. We denote these selected proposals as anchors
(see Section 3.2). The following 2-way module calculates
the weights for each anchor through the analysis of spa-
tial and feature displacement (see Section 3.3). Our experi-
ments demonstrate that the proposed framework can extract
the context for detection effectively and improve the perfor-
mance significantly over some state-of-the-art alternatives.

3.2. Relation anchors

Initial proposals Our DisARM requires initial object
proposals P = {pg, p1, ..., px } t0 boost the relation analy-
sis. VoteNet [23] is a widely used 3D detection network that
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Figure 3. Anchors. In order to show the results more intuitively,
we draw the anchors in red circles and objects in rectangles. An-
chors without sampling in (b) are redundant. But some anchors
sampled by FPS are incomplete and invalid(Figure 3, (c)), such
as anchor (D which contains parts of the tables. Therefore, we
sample on the high objectness anchors. Best view in (a).

can provide good object proposals. However, it lacks the
consideration of the relationships between objects and sur-
roundings. We adopt VoteNet [23] as the backbone to pro-
duce the input object proposals for DisARM. Note that Dis-
ARM can also aggregate with some other detection meth-
ods [4,19,22]. The evaluation are demonstrated in Table 5.

Each proposal p; is represented with its center point. The
feature encoder network has several multi-layer perception
(MLP) layers and feature propagation layers with skip con-
nections. The output feature f(p;) is an F' dimension vec-
tor, which is the aggregation of the learned deep feature of
each vote that supports the proposal p;.

Proposal objectness As shown in Figure 3, the whole set
of P is somehow redundant and contains massive incom-
plete and invalid proposals. Considering all the possible
relations in a scene to formulate a context feature is ineffec-
tive and may introduce too much noisy information. There-
fore, the key to designing a mechanism for utilizing these
relations effectively is locating the most representative and
informative ones. Figure 3 demonstrates only few proposals
given by the backbone are complete. We introduce the con-
cept of objectness to filter the incomplete and noisy ones.
Given a proposal p; and its corresponded feature f(p;),
we denote its objectness as o(p; ). Then top-N proposals are
selected by the objectness scores as candicate anchors P
The network module calculating the objectness is a simple
MLP network with fully connected layers, sigmoid activa-
tion and batch normalization. Since most datasets only label
the valid objects Py in a scene, we define the objectness loss

lossob; = [|o(pi) — xp. (i)l (M

00

Figure 4. Displacement weights.
points and anchors with different colors correspond to different
weights. The bed has different perception of cabinets and shelves

We show the proposal in red

which is effected by spatial displacement. Cabinet in the same
scene is more interested in another cabinet which is determined by
feature displacement.

Pi € Py <= 3p € Py — IoU(p;,p) >0.25 (2)

where xp, (p;) is a function indicating whether a pro-
posal p; belongs to a ground-truth object. As demonstrated
in Figure 3, o(p;) can indicate the completeness of a given
proposal which is critical for locating the proposal anchors.

Anchor sampling Even we only focus on complete pro-
posals, the aggregation of P appears to be redundant. Pre-
vious works such as KPS in [19] which only focus on high
objectness proposals will still introduce redundant infor-
mation. We find that conducting Furthest Point Sampling
(FPS) on P’ with the assistance of objectness evaluation
can help us locate the most representative proposal anchors.

In details, a proposal po with the highest objectness score
is first sampled in P

anchor The next sampling would be pro-
cessed as below,

k+1 k
'Pafnchor) = {Pa(nc)hor’ argmax Z
7;<k>

anchor

o(pi)|l f(pi)—

3)

Eq. 3 indicates the metric adopting in our Furthest Point
Sampling (FPS) is upon the feature space f(-) weighted by
the objectness score o(-) and distance offsets Ac. Then
the farthest proposal p; to the already-chosen proposal set
Paffc)hor is iteratively selected until the number of chosen pro-
posals meets the candidate budget A, which is 15 for all
our evaluations. Though it is simple, the finally selected an-

chors are representative and distributed in the whole scene.
3.3. Displacement based context feature fusion

Spatial displacement The proposal anchors Pynchor Can
effectively describe the context of the whole input scene.
However, they should not contribute equally for detection
of different objects as demonstrated in Figure 4. Adopt-
ing appropriate anchors is critical to utilize context in de-
tection. Inspired by [36], spatial layout patterns can effec-
tively describe the representative substructures in an indoor
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scene. Therefore, we think the context for detection should
be weighted by layout-aware spatial displacement as well.

We argue that an object has different perceptions towards
different proposal anchors regarding with different spatial
displacement. For example, cabinets are usually placed next
to bed and chairs are most commonly placed in front of a
desk or table. These patterns can be reflected by spatial dis-
placement among proposal-anchor pairs. Thus, we regard
the importance of different displacement around proposals
as displacement weights which encourages networks to pay
different levels of attention. For details, given the target
proposal p; with location ¢(p;) and a proposal anchor p;
with location ¢(p,), the spatial displacement between them
is formulated as dypagial (Pi, p;) = 7(c(pi) — ¢(p;)), where T
is a perception function given by an MLP network.

Feature displacement Similar with the spatial displace-
ment, the feature displacement f(p;) — f(p,) given by the
target proposal p; and proposal anchor p; should be also
considered while measuring the importance of the proposal-
anchor pair. The insight here is, layout patterns are some-
times semantic-aware. For example, the existence of a bath-
tub would always indicate a washbasin in the scene. This
characteristic can be reflected by the pre-encoded features
f(pi) and f(p;) since objects with similar semantic label
would also be close on the feature space and vice versa.
Therefore, given the target proposal p; and a proposal an-
chor p;, the feature displacement between them is formu-
lated as dfeature (i, 0j) = o(f(pi) — f(p;)), where o is a
perception function given by an MLP network.

Aggregated weights We concatenate spatial displace-
ment dspaial (i, p;) and feature displacement deeature (Pi; P;)
together to fuse the perceived information before putting
them into an MLP network as shown in Figure 2. We can
get final aggregated weights as below,

’LU(pz', pj) = tanl’l(qs[dspatial (pi y Dy ) ; dfeature (pia Pj )]) “4)

where ¢ is a perception function enabled by several MLP
layers. To further normalize the weights between p; and
all the anchors in Pypchor, We adopt softmax function and
normalization operation y(-) in the end.

w(pi, pj)
P EPar W (P2 Pk)
Finally, We formulate the fused relation feature 7; of an

object proposal p; by a perception function ¢ for detection
as below,

ri=o( > wpnp) - [f@)i f(p)]) (6
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Figure 5.  Precision-Recall Curves of different backbones
equipped with our DiSARM on mAP@(.5. We show the results
on ScanNet V2 dataset in the first row and the results on SUN
RGB-D dataset in the second row.

However, it is obvious that training f(-), w(-) and find-
ing the optimal Pychor are highly correlated which makes it
a challenging optimization problem. The network finds the
optimal r; going through three stages during training. At
the warm-up stage, w(p;, p;) is inactive and the proposed
module focus on locating the optimal Pynchor and training
f(pi). The insight of this stage is w(p;, p;) would only
be functional while the network can already extract some
reasonable proposal anchors. At the next stage, Pynchor and
f(p;) are semantic enough and network focus on optimizing
w(p;, ;). This stage would fully utilize layout information
extracted from the scene to measure the anchor importance.
After these two stages, w(pi, p;), Panchor and f(p;) are fine-
tuned together to achieve the final optimality.

4. Experiments

As our method can be applied to several backbones, we
describe the implementation based on VoteNet [23] in brief.
More details of other backbones are listed in the Supple-
mentary. In our DisARM, we take the 256 output proposals
of VoteNet [23] with 128-dimension features as input. And
then we use a MLP network to predict objectness and sub-
sample N = 64 candidate anchors according the scores.
The MLP is realized with FC output sizes of 64, 32, 32, 1,
where the final objectness scores are obtained by the output
of last layer followed by sigmoid function. The function
7 for spatial displacement has 3 layers of 8, 16, 32 hidden
dimensions and function ¢ for feature displacement has 2
layers of 64, 32 hidden dimensions. The MLP hidden di-
mensions are 32, 1 of function ¢ for aggregated weights.
The relation encoder ¢ for relation feature r; has 4 layers of
256, 128, 128, 128 hidden dimensions.
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Figure 6. Qualitative results on ScanNet V2 dataset. We denote VoteNet+DisARM as applying our method to VoteNet. The first column is
ground truth and the rest columns are detections of different methods. Best viewed on screen.

bathtub bed bookshelf chair desk dresser nightstand sofa table toilet | mAP

VoteNet [23] 744  83.0 28.8 75.3
BRNet [4] 76.2 86.9 29.7 77.4
GroupFree3D [19] 80.0 87.8 32.5 79.4
imVoteNet [22] 759 87.6 413 76.7

22.0 298 62.2 64.0 473 90.1 | 57.7
296 359 65.9 664 51.8 91.3 ]| 61.1
326 36.0 66.7 70.0 53.8 91.1 | 63.0
28.7 414 69.9 70.7 51.1 90.5 | 63.4

VoteNet*+DisARM 76.7  86.2 354 78.4
imVoteNet"+DisARM | 79.9  87.5 43.7 80.7

31.0 346 66.3 68.1 51.2 869 | 61.5
333 398 69.5 74.1 527 91.6 | 65.3

Table 1. 3D object detection results on SUN RGD-D val dataset with mAP@0.25. Notations: * denotes that the model is implemented on
MMDetection3D. VoteNet*+DisARM and imVoteNet*+DisARM indicate applying our method to the 3D object detectors respectively.

We evaluate our method on two widely-used 3D object
detection datasets: ScanNet V2 [6] and SUN RGB-D [29].
Standard data splits in [23] are adopted. Our network is end-
to-end optimized with the batch size of 8. The initial learn-
ing rate is 0.008 and the network is trained for 220 epochs
on both datasets. The Cosine Annealing [20] is adopted as
the learning rate schedule. We implement our method on
MMDetection3D [5] with one NVIDIA TITAN V GPU.

4.1. Comparisons

In this section, we compare our method with previous
state-of-the-arts on ScanNet V2 and SUN RGB-D dataset,
such as VoteNet [23] and its successors MLCVNet [34],
HGNet [ 1], H3DNet [43], BRNet [4] and so on.
Quantitative results. The detection results of ScanNet
V2 dataset are shown in Table 5. Applying our DisARM
to VoteNet [23] achieves 66.1 on mAP@0.25 and 49.7
on mAP@(.5 over the implementation in MMDetection3D
[5], which is 7.5 and 16.2 higher than the performance of
VoteNet reported in [23].

Applying our DiSARM to better 3D object detectors

like H3DNet [43], BRNet [4], GroupFree3D [19], we ob-
tain 0.4, 0.6, 0.7 improvement on mAP@0.25 and 0.8,
1.4, 2.9 improvement on mAP@(.5 respectively. Further-
more, DisARM applied to GroupFree3D [19] with the best-
performance backbone achieves the state-of-the-art perfor-
mance.

It is noteworthy that VoteNet*+DisARM outperforms
GroupFree3D™* using 12 attention modules on mAP@0.5,
which indicates that our method is simple but more effective
than those methods with complicated architectures. The re-
sults of more improved performance on mAP@0.5 which
is a fairly challenging metric show that DisARM helps the
backbones to detect the objects more accurately attributing
success to our method eliminating ambiguity with the rela-
tional context information. We also draw the PR curves of
different methods equipped with DisARM in Figure 5.

As shown in Table 1, we compare with previous state-of-
the-arts on SUN RGB-D dataset. In the same way, we eval-
uate our method on VoteNet which outperforms the back-
bone on mAP@0.25 by 3.8 and mAP@0.5 by 5.5 (results
in Supplementary). In particular, our DisARM applied to
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VoteNet+DisARM

VoteNet

Figure 7. Qualitative results on SUN RGB-D dataset. We denote VoteNet+DisARM as applying our method to VoteNet. The first column
is ground truth and the rest columns are detections of different methods. Best viewed on screen.

Settings mAP@0.25 mAP@O0.5
@ Global 63.3 47.7
@ Local 64.3 48.2
(® Random 65.0 48.7
@ D-FPS 65.1 487
G) F-FPS 65.3 49.7
(© D-FPS+F-FPS 65.0 48.8
(@ F-FPS+D-FPS 65.3 48.4
K-means 65.2 48.2
(© K-means+D-FPS 65.0 48.7
(10 K-means+F-FPS 64.4 48.3
@ Ours 66.1 49.7

Table 2. Ablation studies of sampling relation anchors strategies.
Note that the experiments (D to 3 indicate selecting relation an-
chors by taking all proposals (Global), nearest 15 proposals (Lo-
cal) and random 15 proposals (Random) as anchors. Experiments
@ to @ use different combinations of FPS on distances(D-FPS)
and features(F-FPS). Experiments to (0 sample anchors on
clusters generated by K-means. Experiment @) conducts F-FPS
on the anchors filtered by objectness score (OS).

imVoteNet [22] achieves 65.3 on mAP@0.25, which out-
performs all previous state-of-the-arts. More quantitative
results on ScanNet V2 and SUN RGB-D datasets can be
found in Supplementary.

Qualitative results. In Figure 6 and Figure 7, we visual-
ize the representative 3D object detection results from our
method and the baseline methods. These results demon-
strate that applying our method to baseline detector achieves
more reliable detection results with more accurate bound-
ing boxes and orientations. Our method also eliminates
false positives and discovers more missing objects com-
pared with the baseline methods. For example, the results in

DCFF|window desk showr toil sink | mAP5q
wlo | 227 444 36.8 86.4 37.5| 47.1
S-DW| 26.2 463 31.4 89.7 37.3| 47.9
F-DW| 20.2 48.6 45.7 89.2 36.7| 489
Ours | 27.5 551 49.8 914 44.5| 49.7

Table 3. DisARM with different components in displacement
based context feature fusion (DCFF). The first row indicates fusing
features of proposals and anchors without weighting. We denote
the S-DW, F-DW as learning weights by spatial displacement and
feature displacement respectively.

Method Model size| time |GFLOPs|mAP@0.5
VoteNet™ 11.6MB | 0.095s | 5.781 44.2
BRNet 13.2MB | 0.132s | 7.97 50.9
GroupFree3D* 113.0MB | 0.170s | 31.05 52.6
VoteNet*+DisARM| +IMB |+0.001s| +0.034 49.7
BRNet+DisARM +1IMB  |+0.008s| +0.034 52.3
Table 4. Comparison of efficiency for different meth-

ods. * denotes the model implemented in MMDetection3D
[5]. GroupFree3D [19] reported here is configured with best-
performance setting.

the second row of Figure 7 show that there are two tables in
the scene, and the left one is complete while the right one is
missing partially. Our method VoteNet+DisARM can basi-
cally detect two tables (red boxes), while BRNet misses the
challenging one. This proves that our method can provide
rich and effective context to boost the performance of 3D
object detectors. More qualitative visualizations are shown
in Supplementary.

4.2. Ablation Study

We conduct extensive ablation experiments to analyze
the effectiveness of different components of DisARM. All
experiments are trained and evaluated on the ScanNet V2
dataset and take VoteNet [23] as backbone method. The
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Method mAP>5; mAP5,
HGNet [1] 613 344
GSPN [39] 62.8 348
Pointformer+ [21] 64.1 -
3D-MPA [8] 642 492
MLCVNet [34] 64.7 42.1
VoteNet [23] 58.6 335
VoteNet*+DisARM 66.1 1 49.7
BRNet [4] 66.1 509
BRNet+DisARM 66.7 17 52.3
H3DNet™ [43] 66.4  48.0
H3DNet*+DisARM 66.8 7 48.8
GroupFree3D* (L6, 0256) [19] 66.3 478
GroupFree3D*(L12, 0256) [19] 66.6 482
GroupFree3D*(w2x, L12, 0512) [19] 68.2 52.6
GroupFree3D* (L6, 0256)+DisARM 67.07 50.7
GroupFree3D*(L12, 0256)+DisARM 67.27 525
GroupFree3D*(w2x, L12, 0512)+DisARM 69.3 | 53.6

Table 5. 3D object detection results on ScanNet V2 dataset. No-
tations: We report the detection performance using mean Av-
erage Precision (mAP) at IoU thresholds of 0.25 and 0.5, de-
noted as mAP25 and mAPs(. Pointformer+ indicates the VoteNet
equipped with Pointformer and * denotes that the model is im-
plemented on MMDetection3D. We denote VoteNet*+DisARM,
BRNet+DisARM and GroupFree3D*+DisARM as enhanced ver-
sions with our method respectively, | indicates the performance is
improved with the equipment of DisSARM.

network is implemented in MMDetection3D [5].
Strategies of sampling relation anchors. As shown in Ta-
ble 2, applying DisARM to VoteNet using our sample strat-
egy achieves the highest performance. Experiment () and
experiment (2) shows that both global and local context can
not provide effective information which introduce redun-
dant information or limited information. We also find that
conducting FPS on proposal features can keep the diversity
of anchors which can provide more useful context through
experiments »03).

Clustering by K-means is a common way to aggregate
information. Thus we try to conduct D-FPS and F-FPS
on clusters generated by K-means as shown in experi-
ments ®)©@{0. Those strategies can not perform best on
mAP@0.5 since the aggregated context of clusters loses the
key information of objects for accurate detection. We argue
that complete objects are more representative and informa-
tive, and experiments (3@ prove our argument.

Effects of displacement based context feature fusion. We
evaluate the contribution of displacement weights in Dis-

ARM on ScanNet V2 dataset. The quantitative results are
shown in the Table 3. It is clear that the proposed displace-
ment weights are useful and can distribute accurate weights
for context from different relation anchors, providing more
helpful and robust context for better performance. We find
that displacement weights are sensitive to the objects usu-
ally placed in special space or scenes, such as window,
shower curtain, toil and sink. The large improved perfor-
mance on mAP@0.5 also indicates the effectiveness of our
displacement weights design. Therefore, DisARM can help
the backbones to detect these hard ones more accurately.

Model size, speed and computational complexity. The
comparison of efficiency is shown in Table 4. For a fair
comparison, all experiments are running on the same work-
station (a single Titan V GPU) and implemented with
MMDetection3D. It is obvious that our proposed method
is effective with increasing very few training parameters to
backbone methods. The model size of BRNet equipped
with DisARM is 10x smaller than that of GroupFree3D
only with little performance dropping. Note that DiSARM’s
computational complexity is 1000x faster than that of
GroupFree3D. All the numbers demonstrate our lightweight
model provides significant performance boosts over the
backbone methods for 3D object detection.

5. Conclusion

In this paper, we present a simple, lightweight yet ef-
fective method for enhancing the performance of 3D object
detection. Unlike previous methods detect objects individ-
ually or use context information inefficiently, our method
samples representative relation anchors and captures the re-
lation information with the contribution of each relation an-
chor weighted by the spatial-aware and feature-aware dis-
placements. The proposed method achieves state-of-the-art
performance on ScanNet V2 with both metrics and SUN
RGB-D in terms of mAP@(.25.

Limitation Our approach is designed for the indoor
scenes with some specific organization patterns, and it is
not suitable for outdoor scenes with irregular displacement.
However, we will explore more relation information for all
kinds of scenes in the future.
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