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Abstract
Human skeleton, as a compact representation of hu-

man action, has received increasing attention in recent
years. Many skeleton-based action recognition methods
adopt GCNs to extract features on top of human skele-
tons. Despite the positive results shown in these attempts,
GCN-based methods are subject to limitations in robust-
ness, interoperability, and scalability. In this work, we pro-
pose PoseConv3D, a new approach to skeleton-based ac-
tion recognition. PoseConv3D relies on a 3D heatmap vol-
ume instead of a graph sequence as the base representa-
tion of human skeletons. Compared to GCN-based methods,
PoseConv3D is more effective in learning spatiotemporal
features, more robust against pose estimation noises, and
generalizes better in cross-dataset settings. Also, PoseC-
onv3D can handle multiple-person scenarios without ad-
ditional computation costs. The hierarchical features can
be easily integrated with other modalities at early fusion
stages, providing a great design space to boost the perfor-
mance. PoseConv3D achieves the state-of-the-art on five
of six standard skeleton-based action recognition bench-
marks. Once fused with other modalities, it achieves the
state-of-the-art on all eight multi-modality action recog-
nition benchmarks. Code has been made available at:
https://github.com/kennymckormick/pyskl.

1. Introduction
Action recognition is a central task in video understand-

ing. Existing studies have explored various modalities for
feature representation, such as RGB frames [6, 54, 59], op-
tical flows [47], audio waves [62], and human skeletons
[60, 64]. Among these modalities, skeleton-based action
recognition has received increasing attention in recent years
due to its action-focusing nature and compactness. In prac-
tice, human skeletons in a video are mainly represented as
a sequence of joint coordinate lists, where the coordinates
are extracted by pose estimators. Since only the pose infor-
mation is included, skeleton sequences capture only action
information while being immune to contextual nuisances,
such as background variation and lighting changes.

(a) 2D poses estimated with HRNet.

(b) 3D poses collected with Kinect. (c) 3D poses estimated with VIBE.

Figure 1. PoseConv3D takes 2D poses as inputs. In general, 2D
poses are of better quality than 3D poses. We visualize 2D poses
estimated with HRNet for videos in NTU-60 and FineGYM in (a).
Apparently, their quality is much better than 3D poses collected
by sensors (b) or estimated with state-of-the-art estimators (c).

Table 1. Differences between PoseConv3D and GCN.

Previous Work PoseConv3D
Input 2D / 3D Skeleton 2D Skeleton

Format Coordinates 3D Heatmap Volumes
Architecture GCN 3D-CNN

Among all the methods for skeleton-based action
recognition [15, 57, 58], graph convolutional networks
(GCN) [64] have been one of the most popular approaches.
Specifically, GCNs regard every human joint at every
timestep as a node. Neighboring nodes along the spatial
and temporal dimensions are connected with edges. Graph
convolution layers are then applied to the constructed graph
to discover action patterns across space and time. Due to
the good performance on standard benchmarks for skeleton-
based action recognition, GCNs have been a standard ap-
proach when processing skeleton sequences.

While encouraging results have been observed, GCN-
based methods are limited in the following aspects: (1) Ro-
bustness: While GCN directly handles coordinates of hu-
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man joints, its recognition ability is significantly affected
by the distribution shift of coordinates, which can often oc-
cur when applying a different pose estimator to acquire the
coordinates. A small perturbation in coordinates often leads
to completely different predictions [66]. (2) Interoperabil-
ity: Previous works have shown that representations from
different modalities, such as RGB, optical flows, and skele-
tons, are complementary. Hence, an effective combination
of such modalities can often result in a performance boost
in action recognition. However, GCN is operated on an ir-
regular graph of skeletons, making it difficult to fuse with
other modalities that are often represented on regular grids,
especially in the early stages. (3) Scalability: In addition,
since GCN regards every human joint as a node, the com-
plexity of GCN scales linearly with the number of persons,
limiting its applicability to scenarios that involve multiple
persons, such as group activity recognition.

In this paper, we propose a novel framework PoseC-
onv3D that serves as a competitive alternative to GCN-
based approaches. In particular, PoseConv3D takes as input
2D poses obtained by modern pose estimators shown in Fig-
ure 1. The 2D poses are represented by stacks of heatmaps
of skeleton joints rather than coordinates operated on a hu-
man skeleton graph. The heatmaps at different timesteps
will be stacked along the temporal dimension to form a 3D
heatmap volume. PoseConv3D then adopts a 3D convolu-
tional neural network on top of the 3D heatmap volume to
recognize actions. Main differences between PoseConv3D
and GCN-based approaches are summarized in Table 1.

PoseConv3D can address the limitations of GCN-based
approaches stated above. First, using 3D heatmap volumes
is more robust to the up-stream pose estimation: we empir-
ically find that PoseConv3D generalizes well across input
skeletons obtained by different approaches. Also, PoseC-
onv3D, which relies on heatmaps of the base representa-
tion, enjoys the recent advances in convolutional network
architectures and is easier to integrate with other modali-
ties into multi-stream convolutional networks. This charac-
teristic opens up great design space to further improve the
recognition performance. Finally, PoseConv3D can han-
dle different numbers of persons without increasing com-
putational overhead since the complexity over 3D heatmap
volume is independent of the number of persons. To ver-
ify the efficiency and effectiveness of PoseConv3D, we
conduct comprehensive studies across several datasets, in-
cluding FineGYM [43], NTURGB-D [34], UCF101 [51],
HMDB51 [26], Kinetics400 [6], and Volleyball [22], where
PoseConv3D achieves state-of-the-art performance com-
pared to GCN-based approaches.

2. Related Work
3D-CNN for RGB-based action recognition. 3D-CNN is
a natural extension of 2D-CNN for spatial feature learning

to spatiotemporal in videos. It has long been used in ac-
tion recognition [23, 54]. Due to a large number of param-
eters, 3D-CNN requires huge amounts of videos to learn
good representation. 3D-CNN has become the mainstream
approach for action recognition since I3D [6]. From then
on, many advanced 3D-CNN architectures [17, 18, 55, 56]
have been proposed by the action recognition community,
which outperform I3D both in precision and efficiency. In
this work, we first propose to use 3D-CNN with 3D heatmap
volumes as inputs and obtain the state-of-the-art in skeleton-
based action recognition.

GCN for skeleton-based action recognition. Graph con-
volutional network is widely adopted in skeleton-based ac-
tion recognition [3,7,19,49,50,64]. It models human skele-
ton sequences as spatiotemporal graphs. ST-GCN [64] is
a well-known baseline for GCN-based approaches, which
combines spatial graph convolutions and interleaving tem-
poral convolutions for spatiotemporal modeling. Upon the
baseline, adjacency powering is used for multiscale model-
ing [30, 36], while self-attention mechanisms improve the
modeling capacity [28, 45]. Despite the great success of
GCN in skeleton-based action recognition, it is also lim-
ited in robustness [66] and scalability. Besides, for GCN-
based approaches, fusing features from skeletons and other
modalities may need careful design [13].

CNN for skeleton-based action recognition. An-
other stream of work adopts convolutional neural networks
for skeleton-based action recognition. 2D-CNN-based ap-
proaches first model the skeleton sequence as a pseudo im-
age based on manually designed transformations. One line
of works aggregates heatmaps along the temporal dimen-
sion into a 2D input with color encodings [10] or learned
modules [1, 63]. Although carefully designed, information
loss still occurs during the aggregation, which leads to infe-
rior recognition performance. Other works [2,24,25,29,37]
directly convert the coordinates in a skeleton sequence to a
pseudo image with transformations, typically generate a 2D
input of shape K×T , where K is the number of joints, T is
the temporal length. Such input cannot exploit the locality
nature of convolution networks, which makes these meth-
ods not as competitive as GCN on popular benchmarks [2].
Only a few previous works have adopted 3D-CNNs for
skeleton-based action recognition. To construct the 3D in-
put, they either stack the pseudo images of distance ma-
trices [21, 32] or directly sum up the 3D skeletons into a
cuboid [33]. These approaches also severely suffer from
information loss and obtain much inferior performance to
the state-of-the-art. Our work stacks heatmaps along the
temporal dimension to form 3D heatmap volumes, preserv-
ing all information during this process. Besides, we use
3D-CNN instead of 2D-CNN due to its good capability for
spatiotemporal feature learning.
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3. Framework
We propose PoseConv3D, a 3D-CNN-based approach

for skeleton-based action recognition, which can be a com-
petitive alternative to GCN-based approaches, outperform-
ing GCN under various settings in terms of accuracy with
improved robustness, interoperability, and scalability. An
overview of PoseConv3D is depicted in Figure 2, and details
of PoseConv3D will be covered in the following sections.
We begin with a review of skeleton extraction, which is the
basis of skeleton-based action recognition but is often over-
looked in previous literature. We point out several aspects
that should be considered when choosing a skeleton extrac-
tor and motivate the use of 2D skeletons in PoseConv3D1.
Subsequently, we introduce 3D Heatmap Volume that is the
representation of a 2D skeleton sequence used in PoseC-
onv3D, followed by the structural designs of PoseConv3D,
including a variant that focuses on the modality of human
skeletons as well as a variant that combines the modalities
of human skeletons and RGB frames to demonstrate the in-
teroperability of PoseConv3D.

3.1. Good Practices for Pose Extraction

Being a critical pre-processing step for skeleton-based
action recognition, human skeleton or pose extraction
largely affects the final recognition accuracy. However,
its importance is often overlooked in previous literature, in
which poses estimated by sensors [34, 42] or existing pose
estimators [4,64] are used without considering the potential
effects. Here we conduct a review on key aspects of pose
extraction to find a good practice.

In general, 2D poses are of better quality compared to 3D
poses, as shown in Figure 1. We adopt 2D Top-Down pose
estimators [39, 53, 61] for pose extraction. Compared to its
2D Bottom-Up counterparts [5, 8, 38], Top-Down methods
obtain superior performance on standard benchmarks such
as COCO-keypoints [31]. In most cases, we feed proposals
predicted by a human detector to the Top-Down pose es-
timators, which is sufficient enough to generate 2D poses
of good quality for action recognition. When only a few
persons are of interest out of dozens of candidates 2, some
priors are essential for skeleton-based action recognition to
achieve good performance, e.g., knowing the interested per-
son locations at the first frame of the video. In terms of
the storage of estimated heatmaps, they are often stored as
coordinate-triplets (x, y, c) in previous literature, where c
marks the maximum score of the heatmap and (x, y) is the
corresponding coordinate of c. In experiments, we find that
coordinate-triplets (x, y, c) help save the majority of storage

1PoseConv3D can also work with 3D skeletons. An example solution
is to divide a 3D skeleton (x, y, z) into three 2D skeletons respectively
using (x, y), (y, z) and (x, z).

2In FineGym, there exists dozens of audience, while only the pose of
the athlete matters.

space at the cost of little performance drop. The detailed ab-
lation study is included in Appendix Sec 4.1.

3.2. From 2D Poses to 3D Heatmap Volumes

After 2D poses are extracted from video frames, to feed
into PoseConv3D, we reformulate them into a 3D heatmap
volume. Formally, we represent a 2D pose as a heatmap of
size K ×H ×W , where K is the number of joints, H and
W are the height and width of the frame. We can directly
use the heatmap produced by the Top-Down pose estima-
tor as the target heatmap, which should be zero-padded to
match the original frame given the corresponding bounding
box. In case we have only coordinate-triplets (xk, yk, ck)
of skeleton joints, we can obtain a joint heatmap J by com-
posing K gaussian maps centered at every joint:

Jkij = e−
(i−xk)2+(j−yk)2

2∗σ2 ∗ ck, (1)

σ controls the variance of gaussian maps, and (xk, yk) and
ck are respectively the location and confidence score of the
k-th joint. We can also create a limb heatmap L:

Lkij = e−
D((i,j),seg[ak,bk])2

2∗σ2 ∗min(cak
, cbk). (2)

The kth limb is between two joints ak and bk. The func-
tion D calculates the distance from the point (i, j) to the
segment [(xak

, yak
), (xbk , ybk)]. It is worth noting that al-

though the above process assumes a single person in ev-
ery frame, we can easily extend it to the multi-person case,
where we directly accumulate the k-th gaussian maps of
all persons without enlarging the heatmap. Finally, a 3D
heatmap volume is obtained by stacking all heatmaps (J or
L) along the temporal dimension, which thus has the size
of K × T ×H ×W .

In practice, we further apply two techniques to reduce
the redundancy of 3D heatmap volumes. (1) Subjects-
Centered Cropping. Making the heatmap as large as the
frame is inefficient, especially when the persons of interest
only act in a small region. In such cases, we first find the
smallest bounding box that envelops all the 2D poses across
frames. Then we crop all frames according to the found box
and resize them to the target size. Consequently, the size of
the 3D heatmap volume can be reduced spatially while all
2D poses and their motion are kept. (2) Uniform Sam-
pling. The 3D heatmap volume can also be reduced along
the temporal dimension by sampling a subset of frames.
Unlike previous works on RGB-based action recognition,
where researchers usually sample frames in a short tempo-
ral window, such as sampling frames in a 64-frame temporal
window as in SlowFast [18], we propose to use a uniform
sampling strategy [59] for 3D-CNNs instead. In particular,
to sample n frames from a video, we divide the video into
n segments of equal length and randomly select one frame
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Figure 2. Our Framework. For each frame in a video, we first use a two-stage pose estimator (detection + pose estimation) for 2D human
pose extraction. Then we stack heatmaps of joints or limbs along the temporal dimension and apply pre-processing to the generated 3D
heatmap volumes. Finally, we use a 3D-CNN to classify the 3D heatmap volumes.

Table 2. Evalution of PoseConv3D variants. ‘s’ indicates shal-
low (fewer layers); ‘HR’ indicates high-resolution (double height
& width); ‘wd’ indicates wider network with double channel size.

Backbone Variant NTU60-XSub FLOPs Params

SlowOnly - 93.7 15.9G 2.0M
SlowOnly HR 93.6 73.0G 8.0M
SlowOnly wd 93.7 54.9G 7.9M

C3D - 93.0 25.2G 6.9M
C3D s 92.9 16.8G 3.4M

X3D - 92.6 1.1G 531K
X3D s 92.3 0.6G 241K

from each segment. The uniform sampling strategy is better
at maintaining the global dynamics of the video. Our empir-
ical studies show that the uniform sampling strategy is sig-
nificantly beneficial for skeleton-based action recognition.
More illustration about generating 3D heatmap volumes is
provided in Appendix Sec 2.

3.3. 3D-CNN for Skeleton-based Action Recogni-
tion

For skeleton-based action recognition, GCN has long
been the mainstream backbone. In contrast, 3D-CNN, an
effective network structure commonly used in RGB-based
action recognition [6, 18, 20], is less explored in this direc-
tion. To demonstrate the power of 3D-CNN in capturing
spatiotemporal dynamics of skeleton sequences, we design
two families of 3D-CNNs, namely PoseConv3D for the
Pose modality and RGBPose-Conv3D for the RGB+Pose
dual-modality.
PoseConv3D. PoseConv3D focuses on the modality of hu-
man skeletons, which takes 3D heatmap volumes as in-
put and can be instantiated with various 3D-CNN back-
bones. Two modifications are needed to adapt 3D-CNNs

to skeleton-based action recognition: (1) down-sampling
operations in early stages are removed from the 3D-CNN
since the spatial resolution of 3D heatmap volumes does not
need to be as large as RGB clips (4× smaller in our setting);
(2) a shallower (fewer layers) and thinner (fewer channels)
network is sufficient to model spatiotemporal dynamics of
human skeleton sequences since 3D heatmap volumes are
already mid-level features for action recognition. Based
on these principles, we adapt three popular 3D-CNNs:
C3D [54], SlowOnly [18], and X3D [17], to skeleton-based
action recognition (Appendix Table 11 demonstrates the ar-
chitectures of the three backbones as well as their variants).
The different variants of adapted 3D-CNNs are evaluated
on the NTURGB+D-XSub benchmark (Table 2). Adopting
a lightweight version of 3D-CNNs can significantly reduce
the computational complexity at the cost of a slight recog-
nition performance drop (≤ 0.3% for all 3D backbones).
In experiments, we use SlowOnly as the default backbone,
considering its simplicity (directly inflated from ResNet)
and good recognition performance. PoseConv3D can out-
perform representative GCN / 2D-CNN counterparts across
various benchmarks, both in accuracy and efficiency. More
importantly, the interoperability between PoseConv3D and
popular networks for RGB-based action recognition makes
it easy to involve human skeletons in multi-modality fusion.

RGBPose-Conv3D. To show the interoperability of PoseC-
onv3D, we propose RGBPose-Conv3D for the early fusion
of human skeletons and RGB frames. It is a two-stream
3D-CNN with two pathways that respectively process RGB
modality and Pose modality. While a detailed instantia-
tion of RGBPose-Conv3D is included in Appendix Sec 3.2,
the architecture of RGBPose-Conv3D follows several prin-
ciples in general: (1) the two pathways are asymmetrical
due to the different characteristics of the two modalities:
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Compared to the RGB pathway, the pose pathway has a
smaller channel width, a smaller depth, as well as a smaller
input spatial resolution. (2) Inspired by SlowFast [18],
bidirectional lateral connections between the two pathways
are added to promote early-stage feature fusion between
two modalities. To avoid overfitting, RGBPose-Conv3D
is trained with two individual cross-entropy losses respec-
tively for each pathway. In experiments, we find that early-
stage feature fusion, achieved by lateral connections, leads
to consistent improvement compared to late-fusion only.

4. Experiments

4.1. Dataset Preparation

We use six datasets in our experiments: FineGYM [43],
NTURGB+D [34, 42], Kinetics400 [6, 64], UCF101 [51],
HMDB51 [26] and Volleyball [22]. Unless otherwise spec-
ified, we use the Top-Down approach for pose extrac-
tion: the detector is Faster-RCNN [40] with the ResNet50
backbone, the pose estimator is HRNet [53] pre-trained
on COCO-keypoint [31]. For all datasets except Fine-
GYM, 2D poses are obtained by directly applying Top-
Down pose estimators to RGB inputs. We report the
Mean Top-1 accuracy for FineGYM and Top-1 accuracy
for other datasets. We adopt the 3D ConvNets implemented
in MMAction2 [11] in experiments.
FineGYM. FineGYM is a fine-grained action recognition
dataset with 29K videos of 99 fine-grained gymnastic ac-
tion classes. During pose extraction, we compare three dif-
ferent kinds of person bounding boxes: 1. Person bounding
boxes predicted by the detector (Detection); 2. GT bound-
ing boxes for the athlete in the first frame, tracking boxes
for the rest frames (Tracking). 3. GT bounding boxes for
the athlete in all frames (GT). In experiments, we use hu-
man poses extracted with the third kind of bounding boxes
unless otherwise noted.
NTURGB+D. NTURGB+D is a large-scale human action
recognition dataset collected in the lab. It has two ver-
sions, namely NTU-60 and NTU-120 (a superset of NTU-
60): NTU-60 contains 57K videos of 60 human actions,
while NTU-120 contains 114K videos of 120 human ac-
tions. The datasets are split in three ways: Cross-subject
(X-Sub), Cross-view (X-View, for NTU-60), Cross-setup
(X-Set, for NTU-120), for which action subjects, camera
views, camera setups are different in training and valida-
tion. The 3D skeletons collected by sensors are available
for this dataset. Unless otherwise specified, we conduct ex-
periments on the X-sub splits for NTU-60 and NTU-120.
Kinetics400, UCF101, and HMDB51. The three datasets
are general action recognition datasets collected from the
web. Kinetics400 is a large-scale video dataset with 300K
videos from 400 action classes. UCF101 and HMDB51
are smaller, contain 13K videos from 101 classes and 6.7K

videos from 51 classes, respectively. We conduct experi-
ments using 2D-pose annotations extracted with our Top-
Down pipeline.
Volleyball. Volleyball is a group activity recognition
dataset with 4830 videos of 8 group activity classes. Each
frame contains approximately 12 persons, while only the
center frame has annotations for GT person boxes. We use
tracking boxes from [41] for pose extraction.

4.2. Good properties of PoseConv3D

To elaborate on the good properties of 3D convolu-
tional networks over graph networks, we compare Pose-
SlowOnly with MS-G3D [36], a representative GCN-based
approach in multiple dimensions. Two models take exactly
the same input (coordinate-triplets for GCN, heatmaps gen-
erated from coordinate-triplets for PoseConv3D).
Performance & Efficiency. In performance comparison
between PoseConv3D and GCN, we adopt the input shape
48×56×56 for PoseConv3D. Table 3 shows that under
such configuration, PoseConv3D is lighter than the GCN
counterpart, both in the number of parameters and FLOPs.
Though being light-weighted, PoseConv3D achieves com-
petitive performance on different datasets. The 1-clip test-
ing result is better than or comparable with a state-of-the-
art GCN while requiring much less computation. With
10-clip testing, PoseConv3D consistently outperforms the
state-of-the-art GCN. Only PoseConv3D can take advan-
tage of multi-view testing since it subsamples the entire
heatmap volumes to form each input. Besides, PoseConv3D
uses the same architecture and hyperparameters for differ-
ent datasets, while GCN relies on heavy tuning of architec-
tures and hyperparameters on different datasets [36].
Robustness. To test the robustness of both models, we can
drop a proportion of keypoints in the input and see how such
perturbation will affect the final accuracy. Since limb key-
points3 are more critical for gymnastics than the torso or
face keypoints, we test both models by randomly dropping
one limb keypoint in each frame with probability p. In Ta-
ble 4, we see that PoseConv3D is highly robust to input
perturbations: dropping one limb keypoint per frame leads
to a moderate drop (less than 1%) in Mean-Top1, while for
GCN, it’s 14.3%. Someone would argue that we can train
GCN with the noisy input, similar to the dropout opera-
tion [52]. However, even under this setting, the Mean-Top1
accuracy of GCN still drops by 1.4% for the case p = 1. Be-
sides, with robust training, there will be an additional 1.1%
drop for the case p = 0. The experiment results show that
PoseConv3D significantly outperforms GCN in terms of ro-
bustness for pose recognition.
Generalization. To compare the generalization of GCN
and 3D-CNN, we design a cross-model check on FineGYM.

3There are eight limb keypoints: bow, wrist, knee, ankle (left/right).
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Table 3. PoseConv3D v.s. GCN. We compare the performance of PoseConv3D
and GCN on several datasets. For PoseConv3D, we report the results of 1/10-clip
testing. We exclude parameters and FLOPs of the FC layer, since it depends on
the number of classes.

MS-G3D Pose-SlowOnly
Dataset Acc Params FLOPs 1-clip 10-clip Params FLOPs

FineGYM 92.0 2.8M 24.7G 92.4 93.2

2.0M 15.9GNTU-60 91.9 2.8M 16.7G 93.1 93.7
NTU-120 84.8 2.8M 16.7G 85.1 86.0

Kinetics400 44.9 2.8M 17.5G 44.8 46.0

Table 4. Recognition performance w. different dropping KP probabilities.
PoseConv3D is more robust to input perturbations.

Method / p 0 1/8 1/4 1/2 1
MS-G3D 92.0 91.0 90.2 86.5 77.7

+ robust training 90.9 91.0 91.0 91.0 90.6
Pose-SlowOnly 92.4 92.4 92.3 92.1 91.5

Table 5. Train/Test w. different pose annotations.
PoseConv3D shows great generalization capability in
the cross-PoseAnno setting (LQ for low-quality; HQ for
high-quality).

Train → Test
HQ → LQ LQ → HQ LQ → LQ

MS-G3D 79.3 87.9 89.0
PoseConv3D 86.5 91.6 90.7

(a) Train/Test w. Pose from different estimators.

Train → Test
HQ → LQ LQ → HQ LQ → LQ

MS-G3D 78.5 89.1 82.9
PoseConv3D 82.1 90.6 85.4

(b) Train/Test w. Pose extracted with different boxes.

Specifically, we use two models, i.e., HRNet (Higher-
Quality, or HQ for short) and MobileNet (Lower-Quality,
LQ) for pose estimation and train two PoseConv3D on top,
respectively. During testing, we feed LQ input into the
model trained with HQ one and vice versa. From Table 5a,
we see that the accuracy drops less when using lower-
quality poses for both training & testing with PoseConv3D
compared to GCN. Similarly, we can also vary the source
of person boxes, using either GT boxes (HQ) or tracking
results (LQ) for training and testing. The results are shown
in Table 5b. The performance drop of PoseConv3D is also
much smaller than GCN.
Scalability. The computation of GCN scales linearly with
the increasing number of persons in the video, making it
less efficient for group activity recognition. We use an
experiment on the Volleyball dataset [22] to prove that.
Each video in the dataset contains 13 persons and 20
frames. For GCN, the corresponding input shape will be
13×20×17×3, 13 times larger than the input for one per-
son. Under such configuration, the number of parame-
ters and FLOPs for GCN is 2.8M and 7.2G (13×). For
PoseConv3D, we can use one single heatmap volume (with
shape 17×12×56×56) to represent all 13 persons4. The
base channel-width of Pose-SlowOnly is set to 16, lead-
ing to only 0.52M parameters and 1.6 GFLOPs. Despite
the much smaller parameters and FLOPs, PoseConv3D
achieves 91.3% Top-1 accuracy on Volleyball-validation,
2.1% higher than the GCN-based approach.

4.3. Multi-Modality Fusion with RGBPose-Conv3D

The 3D-CNN architecture of PoseConv3D makes it more
flexible to fuse pose with other modalities via some early fu-
sion strategies. For example, in RGBPose-Conv3D, lateral

4In experiments, we find that using a single heatmap volume to repre-
sent all people is the best practice (compared to using one heatmap volume
for each person). Please refer to Appendix Sec 4.4 for more details.

Table 6. The design of RGBPose-Conv3D. Bi-directional lat-
eral connections outperform uni-directional ones in the early stage
feature fusion.

late fusion RGB → Pose Pose → RGB RGB ↔ Pose

1-clip 92.6 93.0 93.4 93.6
10-clip 93.4 93.7 93.8 94.1

Table 7. The universality of RGBPose-Conv3D. The early+late
fusion strategy works both on RGB-dominant NTU-60 and Pose-
dominant FineGYM.

RGB Pose late fusion early+late fusion

FineGYM 87.2 / 88.5 91.0 / 92.0 92.6 / 93.4 93.6 / 94.1
NTU-60 94.1 / 94.9 92.8 / 93.2 95.5 / 96.0 96.2 / 96.5

connections between the RGB-pathway and Pose-pathway
are exploited for cross-modality feature fusion in the early
stage. In practice, we first train two models for RGB and
Pose modalities separately and use them to initialize the
RGBPose-Conv3D. We continue to finetune the network for
several epochs to train the lateral connections. The final
prediction is achieved by late fusing the prediction scores
from both pathways. RGBPose-Conv3D can achieve better
fusing results with early+late fusion.

We first compare uni-directional lateral connections and
bi-directional lateral connections in Table 6. The result
shows that bi-directional feature fusion is better than uni-
directional ones for RGB and Pose. With bi-directional fea-
ture fusion in the early stage, the early+late fusion with
1-clip testing can outperform the late fusion with 10-clip
testing. Besides, RGBPose-Conv3D also works in situa-
tions when the importance of two modalities is different.
The pose modality is more important in FineGYM and vice
versa in NTU-60. Yet we observe performance improve-
ment by early+late fusion on both of them in Table 7. We
demonstrate the detailed instantiation of RGBPose-Conv3D
we used in Appendix Sec 2.
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Table 8. PoseConv3D is better or comparable to previous state-of-the-arts. With estimated high-quality 2D skeletons and the great
capacity of 3D-CNN to learn spatiotemporal features, PoseConv3D achieves superior performance across 5 out of 6 benchmarks. J ,L
means using joint/limb-based heatmaps. ++ denotes using the same human skeletons as ours. Numbers with * are reported by [43].

Method NTU60-XSub NTU60-XView NTU120-XSub NTU120-XSet Kinetics FineGYM

ST-GCN [64] 81.5 88.3 70.7 73.2 30.7 25.2*
AS-GCN [30] 86.8 94.2 78.3 79.8 34.8 -
RA-GCN [48] 87.3 93.6 81.1 82.7 - -

AGCN [45] 88.5 95.1 - - 36.1 -
DGNN [44] 89.9 96.1 - - 36.9 -
FGCN [65] 90.2 96.3 85.4 87.4 - -

Shift-GCN [9] 90.7 96.5 85.9 87.6 - -
DSTA-Net [46] 91.5 96.4 86.6 89.0 - -
MS-G3D [36] 91.5 96.2 86.9 88.4 38.0 -

MS-G3D ++ 92.2 96.6 87.2 89.0 45.1 92.6

PoseConv3D (J) 93.7 96.6 86.0 89.6 46.0 93.2
PoseConv3D (J +L) 94.1 97.1 86.9 90.3 47.7 94.3

Table 9. Comparison to the state-of-the-art of Multi-Modality Action Recognition. Strong recognition performance is achieved on
multiple benchmarks with multi-modality fusion. R, F, P indicate RGB, Flow, Pose.

(a) Mulit-modality action recognition with RGBPose-Conv3D.

Dataset Previous state-of-the-art Ours

FineGYM-99 87.7 (R) [27] 95.6 (R + P)

NTU60 (X-Sub / X-View) 95.7 / 98.9 (R + P) [14] 97.0 / 99.6 (R + P)

NTU120 (X-Sub / X-Set) 90.7 / 92.5 (R + P) [12] 95.3 / 96.4 (R + P)

(b) Mulit-modality action recognition with LateFusion.5

Dataset Previous state-of-the-art Ours (Pose) Ours (Fused)

Kinetics400 84.9 (R) [35] 47.7 85.5 (R + P)

UCF101 98.6 (R + F) [16] 87.0 98.8 (R + F + P)

HMDB51 83.8 (R + F) [16] 69.3 85.0 (R + F + P)

4.4. Comparisons with the state-of-the-art

Skeleton-based Action Recognition. In Table 8, we
compare PoseConv3D with prior works for skeleton-based
action recognition. Prior works (Table 8 upper) use 3D
skeletons collected with Kinect for NTURGB+D, 2D skele-
tons extracted with OpenPose for Kinetics (details for Fin-
eGYM skeleton data are unknown). PoseConv3D adopts
2D skeletons extracted with good practices introduced in
Sec 3.1, which have better quality. We instantiate PoseC-
onv3D with the SlowOnly backbone, feed 3D heatmap vol-
umes of shape 48×56×56 as inputs, and report the accu-
racy obtained by 10-clip testing. For a fair comparison, we
also evaluate the state-of-the-art MS-G3D with our 2D hu-
man skeletons (MS-G3D++): MS-G3D++ directly takes
the extracted coordinate-triplets (x, y, c) as inputs, while
PoseConv3D takes pseudo heatmaps generated from the
coordinate-triplets as inputs. With high quality 2D human
skeletons, MS-G3D++ and PoseConv3D both achieve far
better performance than previous state-of-the-arts, demon-
strating the importance of the proposed practices for pose
extraction in skeleton-based action recognition. When both
take high-quality 2D poses as inputs, PoseConv3D outper-
forms the state-of-the-art MS-G3D across 5 of 6 bench-
marks, showing its great spatiotemporal feature learning ca-
pability. PoseConv3D achieves by far the best results on 3
of 4 NTURGB+D benchmarks. On Kinetics, PoseConv3D

surpasses MS-G3D++ by a noticeable margin, significantly
outperforming all previous methods. Except for the base-
line reported in [43], no work aims at skeleton-based action
recognition on FineGYM before, while our work first im-
proves the performance to a decent level.
Multi-modality Fusion. As a powerful representation
itself, skeletons are also complementary to other modal-
ities, like RGB appearance. With multi-modality fusion
(RGBPose-Conv3D or LateFusion), we achieve state-of-
the-art results across 8 different video recognition bench-
marks. We apply the proposed RGBPose-Conv3D to Fin-
eGYM and 4 NTURGB+D benchmarks, using R50 as the
backbone; 16, 48 as the temporal length for RGB/Pose-
Pathway. Table 9a shows that our early+late fusion
achieves excellent performance across various benchmarks.
We also try to fuse the predictions of PoseConv3D directly
with other modalities with LateFusion. Table 9b shows that
late fusion with the Pose modality can push the recognition
precision to a new level. We achieve the new state-of-the-
art on three action recognition benchmarks: Kinetics400,
UCF101, and HMDB51. On the challenging Kinetics400
benchmark, fusing with PoseConv3D predictions increases
the recognition accuracy by 0.6% beyond the state-of-the-
art [35], which is strong evidence for the complementarity
of the Pose modality.

5For K400, we fuse PoseConv3D Pose predictions (Top1 acc 47.7%)
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4.5. Ablation on Heatmap Processing

Subjects-Centered Cropping. Since the sizes and lo-
cations of persons can vary a lot in a dataset, focusing on
the action subjects is the key to reserving as much infor-
mation as possible with a relatively small H × W budget.
To validate this, we conduct a pair of experiments on Fine-
GYM with input size 32×56×56, with or without subjects-
centered cropping. We find that subjects-centered cropping
is helpful in data preprocessing, which improves the Mean-
Top1 by 1.0%, from 91.7% to 92.7%.
Uniform Sampling. The input sampled from a small tem-
poral window may not capture the entire dynamic of the
human action. To validate this, we conduct experiments on
FineGYM and NTU-60. For fixed stride sampling, which
samples from a fixed temporal window, we try to sample 32
frames with the temporal stride 2, 3, 4; for uniform sam-
pling, we sample 32 frames uniformly from the entire clip.
In testing, we adopt a fixed random seed when sampling
frames from each clip to make sure the test results are repro-
ducible. From Figure 3, we see that uniform sampling con-
sistently outperforms sampling with fixed temporal strides.
With uniform sampling, 1-clip testing can even achieve bet-
ter results than fixed stride sampling with 10-clip testing.
Note that the video length can vary a lot in NTU-60 and
FineGYM. In a more detailed analysis, we find that uniform
sampling mainly improves the recognition performance for
longer videos in the dataset (Figure 4). Besides, uniform
sampling also outperforms fixed stride sampling on RGB-
based recognition on the two datasets6.
Pseudo Heatmaps for Joints and Limbs. GCN ap-
proaches for skeleton-based action recognition usually en-
semble results of multiple streams (joint, bone, etc.) to
obtain better recognition performance [45]. The practice
is also feasible for PoseConv3D. Based on the coordi-
nates (x, y, c) we saved, we can generate pseudo heatmaps
for joints and limbs. In general, we find that both joint
heatmaps and limb heatmaps are good inputs for 3D-CNNs.
Ensembling the results from joint-PoseConv3D and limb-
PoseConv3D (namely PoseConv3D (J + L)) can lead to
noticeable and consistent performance improvement.
3D Heatmap Volumes v.s 2D Heatmap Aggregations.
The 3D heatmap volume is a more ‘lossless’ 2D-pose
representation, compared to 2D pseudo images aggregat-
ing heatmaps with colorization or temporal convolutions.
PoTion [10] and PA3D [63] are not evaluated on popu-
lar benchmarks for skeleton-based action recognition, and
there are no public implementations. In the preliminary
study, we find that the accuracy of PoTion is much infe-

with VideoSwin [35] RGB predictions. For UCF101 and HMDB51, we
fuse PoseConv3D Pose predictions (with K400 PoseConv3D pre-training,
87% Top1 acc on UCF101, 69.3% Top1 acc on HMDB51, details in Ap-
pendix Sec 4.2) with OmniSource [16] RGB+Flow predictions.

6Please refer to Appendix Sec 4.5 for details and discussions.

32 × 2

32 × 3

32 × 4

Uni-32 [1c]

Uni-32

FineGYM NTU-60

Fix Stride Sampling Uniform Sampling

Figure 3. Uniform Sampling outperforms Fix-Stride Sampling.
All results are for 10-clip testing, except Uni-32[1c], which uses
1-clip testing.
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Figure 4. Uniform Sampling helps in modeling longer videos.
L: The length distribution of NTU60-XSub val videos. R: Uniform
Sampling improves the recognition accuracy of longer videos.

Table 10. An apple-to-apple comparison between 3D heatmap
volumes and 2D heatmap aggregations.

Method HMDB51 UCF101 NTU60-XSub FLOPs Params

PoTion [10] 51.7 67.2 87.8 0.60G 4.75M

PA3D [63] 53.5 69.1 88.6 0.65G 4.81M

Pose-SlowOnly (Ours) 58.6 79.1 93.7 15.9G 2.0M
Pose-X3D-s (Ours) 55.6 76.7 92.3 0.60G 0.24M

rior (≤ 85%) to GCN or PoseConv3D (all ≥ 90%). For
an apple-to-apple comparison, we also re-implement Po-
Tion, PA3D (with higher accuracy than reported) and evalu-
ate them on UCF101, HMDB51, and NTURGB+D. PoseC-
onv3D achieves much better recognition results with 3D
heatmap volumes, than 2D-CNNs with 2D heatmap ag-
gregations as inputs. With the lightweight X3D, PoseC-
onv3D significantly outperforms 2D-CNNs, with compara-
ble FLOPs and far fewer parameters (Table 10).

5. Conclusion
In this work, we propose PoseConv3D: a 3D-CNN-

based approach for skeleton-based action recognition,
which takes 3D heatmap volumes as input. PoseConv3D re-
solves the limitations of GCN-based approaches in robust-
ness, interoperability, and scalability. With light-weighted
3D-ConvNets and compact 3D heatmap volumes as input,
PoseConv3D outperforms GCN-based approaches in both
accuracy and efficiency. Based on PoseConv3D, we achieve
state-of-the-art on both skeleton-based and multi-modality-
based action recognition across multiple benchmarks.
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