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Figure 1. Given an unpaired image collection (with known camera poses) of an object category at training time, our approach learns to: (a)
reconstruct the underlying 3D given only a single image at test time, and (b) model dense 3D correspondences across category instances.
The learned correspondence field is articulation-aware, topologically-aware and inherently captures structural properties of the category,
enabling the task of unsupervised texture transfer. Videos and code at https://shivamduggal4.github.io/tars-3D/

Abstract

We present a new framework to learn dense 3D re-
construction and correspondence from a single 2D image.
The shape is represented implicitly as deformation over a
category-level occupancy field and learned in an unsuper-
vised manner from an unaligned image collection without
using any 3D supervision. However, image collections usu-
ally contain large intra-category topological variation, e.g.
images of different chair instances, posing a major challenge.
Hence, prior methods are either restricted only to categories
with no topological variation for estimating shape and corre-
spondence or focus only on learning shape independently for
each instance without any correspondence. To address this
issue, we propose a topologically-aware deformation field
that maps 3D points in object space to a higher-dimensional
canonical space. Given a single image, we first implicitly
deform a 3D point in the object space to a learned category-
specific canonical space using the topologically-aware field
and then learn the 3D shape in the canonical space. Both
the canonical shape and deformation field are trained end-
to-end using differentiable rendering via learned recurrent
ray marcher. Our approach, dubbed TARS, achieves state-of-
the-art reconstruction fidelity on several datasets: ShapeNet,
Pascal3D+, CUB, and Pix3D chairs.

1. Introduction

Learning to understand the 3D geometric world under-
lying our 2D observation snapshots has been a longstand-
ing problem in computer vision, yet the generalization is
nowhere close to that in learning to recognize 2D con-
cepts [15, 22, 23]. The reason is rather unsurprising: the
lack of scalable ways to obtain 3D supervision in the wild,
be it multiple views of the same object or GT shape. Unlike
the current visual systems, humans can infer 3D structure
just from a single image (even under large occlusions). If
our (deep) learning models have to develop such a capability,
we must first figure out how to understand the 3D structures
from just an unaligned and diverse 2D image collection – the
kind of data available in abundance on the web. However,
any such approach must answer a fundamental question first
– how should one represent the 3D structure?

Looking at the research in recent years, there is an
overwhelming evidence in support of implicit representa-
tions credited to the advancement in neural implicit mod-
eling [9, 36, 43, 44, 47, 53, 56]. While these implicit repre-
sentations have attained the gold standards of high-fidelity
reconstruction, they still rely on either 3D GT shape or dense
multi-view supervision not only during training but some-
times also at inference [44], making them difficult to apply
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Figure 2. Overview of TARS. Given a single image, we first map a 3D point in object space to a higher-dimensional canonical space using
our learned topologically-aware deformation field. The canonical point is then mapped to its SDF value using the Canonical Shape Generator
module. We leverage an LSTM-based differentiable renderer to guide the learning of deformation and signed distance fields.

to the internet of images. Recent works [10, 26, 79, 82] have
attempted to cut down the requirement of multi-view images
from 100s to 2� 10. However, as long as any method needs
more than a single image, it can not be used to 3D-fy trillions
of images on internet – the setting considered in this paper.
What kind of signals can we exploit from 2D image collec-
tion of a category at training time, that can help generate 3D
for an unseen 2D image at test time? We turn to Plato.

Plato’s philosophy of “Theory of Forms” relates every
object in reality to a particular form or an idea (a platonic
ideal). His famous example of “cupness” says that while
there exists many cups, there is only one “idea” of cupness.
We believe this is closely tied to human perception of ob-
jects. For instance, when we play the game of pictionary [1],
given just a category-level description of an object, we can
generally draw its high-level (category-level) representation.
Only when we are provided with more observations or prop-
erties of an object (eg: a chair “with arms”, “an SUV” car,
an airplane “with wider wings”), we are able to draw that
specific instance of the category. This philosophy has been
classically adopted in deformable models [6] but require 3D
supervision. More recently, with the advent of differentiable
renderers [8,29,35], this has been adopted for estimating 3D
from a single image [5, 19, 27, 32]. However, these methods
are restricted to categories with minimal to no intra-category
topological variations because of fixed mesh connectivity
and absolute reconstructions are also of lower fidelity com-
pared to implicit methods (see CMR results in Figure 6).

3D objects that belong to the same (“platonic”) category
generally inherit similar structural and semantic properties.
In this work, we follow this ideology and propose a 3D re-
construction algorithm, which can: (a) learn from just an
unaligned 2D image collection without any 3D or multi-view
supervision at training and inference; (b) generalize to topo-
logically diverse categories like chairs which mesh-based
approaches can’t; and (c) can learn dense 3D correspondence
across different instance shapes for free by mapping the ob-
ject instances to the category mean, allowing the model to
exploit cross-image similarity. These intra-category cor-

respondences are very beneficial for numerous vision and
graphics tasks: geometry/shape understanding [3, 39, 70, 84],
3D manipulation [6, 39, 84], 2D image synthesis [10, 65, 74],
2.5D depth estimation [42, 57, 81], etc.

However, simply extending implicit models and learning
implicit dense correspondences between topologically vary-
ing objects with just single view supervision is not straight-
forward. This is because of inherent continuous nature of
MLPs used by implicit shape modeling techniques and the
inherent discontinuities in correspondence field between any
two topologically different objects. For any two instances
with different topologies, correspondence field has to be
dis-continuous in order to map one structure to the another.
Please refer to supp. section B for more understanding. To
overcome this issue of implicitly learned deformation fields,
we propose topologically-aware deformation fields.

Given an object image, we first map a 3D point in the
object space to the corresponding 3D-point in the category-
level canonical space using our DeformNet module. Then, to
address the above issue of implicit deformation fields and to
learn correspondences between topologically varying shapes,
we take inspiration from Level Set Method (LSM) [50, 51].
Level Set Methods support topological merging/breaking of
shapes by representing any shape as a zero-level crossing
of a higher-dimensional function. Inspired from them, we
transform our 3D canonical points to a higher-dimension
by concatenating them with learned object-space point fea-
tures. We then estimate the underlying shape by mapping the
higher-dimensional canonical points to the corresponding
SDF values using the Canonical Shape Generator module.
A high-level overview of our approach is shown in Figure 2.

We dub our approach TARS (Topologically-Aware
Reconstruction from Single-view), see overview in Figure 2.
We utilize a differentiable renderer in our pipeline to learn
both the deformation and the shape reconstruction modules
using image collections containing single-view RGB obser-
vation, corresponding GT camera pose and object silhouette.
Our differentiable render (inspired from SRN [60]) is a form
of a neural render [64] which takes in features of a 3D point

1537



CMR SDF-SRN TARS (ours)Input Image

Figure 3. 3D Reconstruction on CUB-200-2011. Compared to prior works, not only our reconstructions are of higher fidelity, but the learned
(color-coded) deformation fields are also articulation aware (eg: rotated heads, open wings). Unlike CMR, we do not hard-code symmetry.

in the object space (visible from the input viewpoint) and
predicts its corresponding depth value as seen from the input
view point. Thus, during training we learn the object shape
in two ways: (a) 2.5D depth representation learned using
object-level features (via differentiable renderer), (b) 3D
SDF learned using canonical shape features (via canonical
shape generator). By enforcing the consistency between the
two shape representations, we are able to effectively learn
the correspondence field. Since this shape consistency is
the courtesy of the differentiable renderer, we term it as the
differentiable render consistency in the following sections.

The closest approach to ours is SDF-SRN [33], a neu-
ral implicit shape modeling approach for single-view 3D
reconstruction. Unlike us, they directly map a point in the
object space to the corresponding SDF value and hence do
not output dense correspondences across object instances.

We validate the effectiveness of our learned shapes on
multiple datasets: ShapeNet [7], Pascal3D+ [77], CUB-200-
2011 [73] and Pix3D chairs [61]. Our method, TARS, out-
performs priors works in term of 3D reconstruction fidelity
and generates shapes with better global structure and finer
instance-specific details. Unlike prior deformable single-
view reconstruction works [19, 27, 32], which are restricted
to categories like cars/ cubs, we take the first major step in
modeling topologically-challenging categories (chairs). The
learned topologically-aware deformation field captures struc-
tural properties of the category (without any supervision),
thus enabling unsupervised texture-transfer (Figure 1).

2. Related Work
Reconstructing 3D from 2D observations has been an

actively studied problem [9,30,43,45,53,57]. Until recently,
the majority of the high-fidelity reconstruction results were
credited to the availability of some form of 3D data [25, 45],
and because of this, the majority of the success had been

restricted to synthetic datasets [7]. Reconstruction of real-
world 3D shapes was either done by transferring the learned
synthetic models to real-world objects [4, 16, 75, 76] or re-
quired special 3D sensors [16, 45, 80]. However, collect-
ing dense 3D data is cumbersome, challenging, and even
not possible for certain categories (eg: birds). With ad-
vancements in inverse graphics and differentiable render-
ing [8, 29, 35, 37, 38, 68], the requirement of 3D supervision
has been significantly reduced. More recently, significant
progress has been made in this direction and the reconstruc-
tion quality has reached its golden standard, particularly
thanks to the combination of neural implicit representations
and differentiable rendering [44, 48, 60, 78]. However, the
majority of these works still require dense supervision in
form of paired multi-view images. Such a setting may not be
possible for the internet of images. Our work, TARS, focuses
on further mitigating the dependency on dense supervision
by operating only on single-view data.

3D Reconstruction with Single-view Supervision: The
task of single-view 3D reconstruction has been compara-
tively less-explored. Kar et al. [28], Kanazawa et al. [27]
took a major step in this direction by learning 3D structures
from a large collection of unpaired images. They learned
to reconstruct the underlying shape by learning the defor-
mations on top of a (learned) category-specific mean mesh.
Further research along this direction focused on reducing
supervision [19, 32], enhancing geometry [8, 67] and texture
fidelity [5]. However, these works are restricted to the re-
construction of object categories with topologically similar
instances (eg: birds). Like CMR [27], we leverage the struc-
tural knowledge embedded in image collection in form of
learned deformations to a learned category-specific mean
shape but overcome their topological restrictions. Recently,
Lin et al. [33] directed the success of neural implicit mod-
eling [60] to the task of single-view 3D reconstruction and
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Figure 4. 3D Reconstruction on Shapenet. Compared to mesh-based SoftRas, both neural implicit approaches yield higher 3D fidelity. Our
approach additionally provides correspondences (even across topologically-varying structures), while matching SDF-SRN’s shape fidelity.

achieved state of the art results in terms of geometric fidelity.
Our work further boosts the fidelity standards by jointly
learning category-specific deformations and SDF fields.
Neural Rendering: Recent works [36,44,48,49,60,71,78]
for rendering implicit surfaces have majorly leveraged some
form of ray-tracing (ray marching, volumetric or surface ren-
dering). The recent survey on neural rendering [63] classi-
fies the rendering as: (a) image-based rendering approaches,
which generate 2D content without explicitly modeling 3D
(by transforming/ warping the input images) (b) explicit 3D
based approaches. In our work, we utilize SRN [60] as our
neural renderer. SRN [60] performs LSTM-based ray march-
ing to implicitly generate a 2.5D depth map corresponding
to the input image. Therefore, SRN lies at the intersection
of image-based and explicit rendering approaches. By using
SRN [60] as image-based renderer, we learn shapes in two
ways: image to depth map translation learned using object-
space features, and image to SDF learned using canonical-
space features. Consistency between the two shape represen-
tations is the key contributor to our performance.
3D Reconstruction with Dense Correspondences: Learn-
ing category-specific deformable shapes have been found to
be prominently useful for 3D reconstruction [6,17,27,28,39].
These approaches generally learn instance shapes as defor-
mations to the initial shape bases. Prior works along this
line (reconstruction via deformation) have reconstructed 3D
shapes either in volumetric grid representation [17, 72] or
mesh representation [27, 28, 40]. We learn both the deforma-
tion field and the 3D shape (signed distance field) implicitly.
Unlike deformations to mesh, learning deformations to an
implicit field is much more challenging, because of the loss
of explicit structure (mesh connectivity). Recently, [13, 83]
learned category specific deformation and signed distance
fields implicitly. However, unlike our approach (TARS), they
require dense 3D supervision during training.

3. Method
Given a single image of an object, our goal is to recon-

struct the underlying 3D shape. Rather than directly re-

constructing the shape, we learn to reconstruct the object’s
3D shape by implicitly mapping it to a (learned) category-
specific canonical shape. In order to do so, we leverage a
category-specific collection of unpaired object images (along
with camera poses and object silhouettes) as our training cor-
pus. This allows us to incorporate category-specific knowl-
edge into our shape reconstruction pipeline. Our pipeline (as
shown in Figure 2) consists of three core components: (a) De-
formnet, for prediction of topologically-aware deformation
fields, (b) Canonical Shape Generator, for reconstruction
of object’s 3D shape (as SDF) and, (c) Differentiable Ren-
derer module, to render the learned SDF and hence guide
the learning of Deformnet and Canonical Shape Generator
during the training phase. In the following sections, we first
discuss these modules and then stick them together to define
our inference and training regimes.

3.1. Topologically-Aware Deformation Fields
Learning Implicit Deformation Fields: The goal of De-
formNet (g) is to learn dense 3D point deformations from
object-space to canonical-space. More formally, given an
image I , and a 3D point (xobject) in object space, the defor-
mation estimation task is defined as:

xobject + g(xobject, I) = xcanonical:3D (1)

where xcanonical:3D is the corresponding point in the canon-
ical space. The mapping between the two points (xobject

and xcanonical:3D) is learned by leveraging signed distance
function (SDF) as the functional map [52] between the two
spaces i.e. SDF of xobject w.r.t object’s surface should be
same as SDF of xcanonical:3D w.r.t canonical shape surface.

We implement DeformNet module as an MLP. To learn
the deformation field, we condition the DeformNet module
on the input image through a hyper-network. The input
image is first passed through ImageNet pre-trained ResNet
encoder [23] to generate a latent-code. Inspired from [33,
58–60], the computed latent code is then used by the hyper-
network to predict the weights for the DeformNet MLP. We
observe that using the hyper-network rather than directly
learning the weights of the MLP leads to smoother shapes.

1539



Input Image CMR SDF-SRN TARS (ours)Input Image CMR SDF-SRN TARS (ours)

Figure 5. 3D Reconstruction on Pascal3D+ planes. Compared to prior works, our approach performs well even with the challenging
real-world observations, generating 3D shapes which are less noisy and better represent the overall structure of the ground-truth shapes.

Point-features for Learning Topologically-Aware Defor-
mation Fields: Unlike prior works [5, 19, 27, 32], our goal
is to reconstruct 3D shapes even for object categories with
large intra-category topological variations (eg: see chairs in
Figure 1, Figure 6 and Figure 7). In order to do so, we need
to ensure that our deformation field can map any input object
with an arbitrary topology to the canonical shape with a fixed
topology. However, learning such a deformation field using
an MLP is a challenging task. This is because of the continu-
ous nature of the MLP. While the continuous nature of MLP
assists in learning the 3D shapes implicitly, such a prop-
erty hurts the learning of cross-object deformations. This is
because the deformation field between objects of different
topologies could be discontinuous (supp. Figure 9). To over-
come this issue and effectively learn both the deformation
and the shape fields, we take inspiration from the level-set
methods (LSM) theory. LSM [50] allow topological merg-
ing and breaking of structures by modeling any surface as
a zero-level crossing of a higher-dimensional function. We
take inspiration from these works [14, 24, 50, 51], and learn
a higher-dimension deformation field (7D in our implemen-
tation) instead of previously learned 3D deformation fields.
Concurrently, Park et al. [55] proposed similar insights for
learning deformations between multiple views of the same
object instance. To learn the higher-dimensional deformation
field, we also learn object-space point features, h(xobject)
using the intermediate-level features of DeformNet, along-
side learning the above-defined 3D deformation field (Eq. 1).
Thus, we deform a point (xobject 2 R3) in object space to a
higher-dimensional canonical point (xcanonical:HD 2 R3+k)
(k equals the dimension of the learned point features), where
xcanonical:HD is simply the concatenation of 3D canonical
point (xcanonical:3D) and learned point features, h(xobject).
We notice that learning these point features leads to recon-
structions with sharper details and better preservation of
topology of GT shape (see Figure 8).

We also predict view-independent RGB value of the input
3D point using intermediate-level features of DeformNet.

3.2. Canonical Shape Reconstruction

Now that we have deformed the 3D points in object space
to the corresponding points in canonical space, our next
task is to learn the 3D shape in form of SDF field. To
estimate the SDF value of the 3D object point (xobject),
we pass the corresponding higher-dimensional canonical

point (xcanonical:HD) through the Canonical Shape Generator
module (f ). We learn the weights of shape generator using
a hyper-network. The hyper-network is conditioned on a
canonical shape latent-code (L), which is jointly learned
during training. The canonical reconstruction task is defined:

f(xcanonical:HD, L) = s

, where s is the signed-distance value of xcanonical:3D w.r.t
the canonical shape surface (also equals signed distance
value of xobject w.r.t input object’s surface by the property
of the established functional map).

3.3. Differentiable Renderer Consistency
In this section, we define the differentiable renderer and

our proposed differentiable renderer consistency term which
are used in our training pipeline (Figure 2). The differ-
entiable renderer is used to generate 2D renderings of the
learned 3D shape during training, which are then compared
against input object’s GT 2D observations (RGB map and
silhouette). Following [33], we utilize SRN [60] as our
LSTM-based differentiable renderer. The renderer works
by performing the ray marching procedure, where every
marching step is learned in form of a depth estimate from
the current 3D point along the current camera ray direction.
Please refer to SRN paper [60] for more details.

Prior works on deformation-driven inverse graphics
[19, 27, 54, 66] rendered the learned 3D shape (be it mesh,
density field or signed distance field) to compute the loss
terms for training. Unlike them, instead of rendering the
signed-distance field (like [36, 71]) learned by the Canonical
Shape Generator, we utilize SRN as an image-based neural
renderer. It takes as inputs the intermediate-level object fea-
tures of the DeformNet module and predicts a 2.5D depth
map of the input object (as viewed from input viewpoint).
This allows us to enforce consistency between the two shape
representations learned in our training pipeline: (a) 2.5D
depth map learned via object-space point features, (b) 3D
signed distance value learned via canonical-space point fea-
tures. We enforce the signed distance value of the last and
the second last 3D points along the (renderer’s) marched rays
(for rays hitting the object) to be �ve and +ve respectively.
The consistency term has been adopted from SDF-SRN [33].
However, they established this consistency between the two
shape representations learned in the same object space. Un-
like them, our purpose to utilize such a consistency to allow
efficient learning of the deformation field.
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Input Image CMR SDF-SRN TARS (ours)
Figure 6. 3D Reconstruction on Pascal3D+ (default) Chairs. Compared to the implicit approaches, CMR completely fails to model the
topologically-varying chairs category. (Color denotes mapping to canonical space)

3.4. Inference and Training regimes
Inference: In order to reconstruct the 3D shape underlying
the input image, we first densely sample points within a unit-
cube and map them from object space to canonical-space
using the topologically-aware deformation field. The SDF
values of the deformed object points are then estimated using
Canonical Shape Generator. Finally, we utilize marching
cubes [41] to generate a 3D mesh from the learned SDF field.
Training: Our training procedure is similar to the recent
image-based implicit shape modeling and novel-view syn-
thesis works [33, 44, 60]. We begin with shooting variable
number of camera rays from the input camera viewpoint. We
iteratively march along each camera ray and for each 3D
point (xi

object
) along the ray, we predict: (a) corresponding

canonical point (xi
canonical:HD

) using the DeformNet, (b) cor-
responding SDF value of the canonical point using the shape
generator and, (c) the ray marching step (di) using the LSTM
renderer. The next 3D point along the ray is then estimated
as: xi+1

object
= xi

object
+di�!r (�!r is the unit ray direction). The

above procedure is repeated n times (i 2 n) along all rays
(where n = # of ray marching steps). Our training objective
is similar to SDF-SRN’s [33] and is defined as:

`total = `rgb + `sdf + `reg

RGB loss term (`rgb) is simply the mean-squared error
between a 3D point’s predicted RGB value and the GT pixel
intensity of the corresponding rendered pixel.

SDF loss term (`sdf) enforces the proposed differentiable
renderer consistency. For camera rays intersecting the
3D object (guided by the GT object silhouette), SDF loss
term enforces all points other than the last ray point to

have SDF > 0 (outside the object surface) and the last
ray point to have SDF < 0 (inside the surface). SDF
value is penalized to be greater than 0, for all points on
non-intersecting rays. Following SDF-SRN [33], we also
utilize the distance transform of the input object mask to
penalize the lower-bound of the SDF values of points lying
outside the surface. Please check SDF-SRN [33] for more
details on the distance-transform loss term.

Regularization terms (`reg): We utilize two regulariza-
tion terms: Eikonal loss (`eik) and Deformation smooth-
ness (`def). We apply eikonal loss on canonical points
(xcanonical:3D) and def. smoothness on object-space points.

`eik =
X

x2⌦

||rf(x+ g(x, I))� 1||2
2

`def =
X

x2⌦

||rgx(x) +rgy(x) +rgz(x)||22

For both the regularization terms, we sample from the unit
cube (⌦) bounding a normalized 3D object.

4. Experiments Details
Datasets We train and evaluate our proposed approach
as well as the baselines on following datasets: Shapenet
[7], Pascal3D+ [77], CUB-200-2011 [73] and Pix3D chairs
[61]. Each training example consists of cropped RGB image
(centered around the object), corresponding segmentation
map and camera pose. At inference time, we only need the
object image as input. Please check supp. for more details.
Baselines We compare against the state-of-the-art meth-
ods on the task of 3D reconstruction: (a) SoftRas [35]:
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Figure 7. 3D Reconstruction on Pix3D (trained on Shapenet).

rasterization-based differentiable mesh renderer. (b) SDF-
SRN [33]: neural implicit modeling approach for single-view
reconstruction. It is closest to ours but does not learn any cor-
respondences across instances. (c) CMR [27]: deformation-
driven mesh reconstruction approach which uses NMR [29]
as the differentiable renderer and also learns dense correspon-
dences. We achieve state-of-the-art quantitative results (or
are at par) for most categories on all datasets while jointly
learning dense correspondences. The qualitative compar-
isons with baselines highlight the efficiency of our approach.
Evaluation Metrics: Correctly and efficiently evaluating
the reconstruction quality has been a point of debate [2, 34,
46, 62]. In this work, we evaluate the reconstruction quality
by comparing the reconstructed shape with GT using (a)
Chamfer distance (b) Earth Mover’s Distance (EMD) and (c)
Precision, Recall, F-score at 0.1 threshold.

5. Experimental Results
5.1. Qualitative and Quantitative Comparisons
3D reconstruction on CUBS-200-2011: We compare
against CMR [27] and SDF-SRN [33] on the CUBS dataset
in Figure 3. While SDF-SRN independently reconstructs
each 3D object given the input image, CMR reconstructs
each instance shape by deforming the category-specific mean
mesh. On the other hand, TARS learns to reconstruct 3D
instances implicitly by deforming the object space points to
the canonical space. Compared to both deformation based re-
construction approaches, SDF-SRN generates noisy shapes
(see noisy wings of the bird in row 2, Figure 3). Credited to
the implicit nature of our approach, the reconstructed shapes
better respect the articulations of the GT objects (see rotated
heads in Figure 1, open wings in Figure 3 row 2).
3D reconstruction on Shapenet: Figure 4 and Table 1
showcase qualitative and quantitative comparison of the re-
constructed shapes on the Shapenet dataset. As a mesh-based
reconstruction algorithm, SoftRas [35] is able to reconstruct
cars and planes, but fails on the chairs category, reason being
the large intra-category topological variations. It fails to

Cat. Method Chamfer # EMD # Precision " Recall F score "
acc. cov. overall (%) (%) (%)

SoftRas [35] 0.372 0.302 0.337 0.723 93.04 96.62 94.80
SDF-SRN [33] 0.141 0.144 0.142 0.452 99.76 99.84 99.80Car
TARS (ours) 0.141 0.140 0.140 0.446 99.70 99.81 99.75
SoftRas [35] 0.572 0.475 0.523 1.017 82.56 89.18 85.74
SDF-SRN [33] 0.352 0.315 0.333 0.854 94.18 95.21 94.69Chair
TARS (ours) 0.353 0.312 0.332 0.817 93.43 95.39 94.40
SoftRas [35] 0.215 0.207 0.211 0.588 98.74 98.42 98.58
SDF-SRN [33] 0.193 0.154 0.173 0.576 98.55 99.11 98.83Airplane
TARS (ours) 0.194 0.152 0.173 0.533 98.79 99.34 99.06

Table 1. 3D reconstruction results on ShapeNet. Compared to mesh
based SoftRas algorithm, both the implicit approaches: SDF-SRN
and our approach perform significantly better on all metrics.

capture the details and only recovers the global shape under-
lying the input image. Being a neural implicit reconstruction
approach, SDF-SRN [33] captures both the global structure
and the fine details. TARS matches the reconstructed shape
fidelity of the SDF-SRN reconstructions, both quntitatively
and qualitatively (see the tail of the airplane, arms of the
revolving chair in Figure 4), and also learns cross-instance
structural correspondences for free. Thanks to the proposed
higher-dimensional deformation field, our reconstructions
respect the topology of the GT shape (both the arms of the
couch in Figure 4 have holes in them).

3D reconstruction on Pascal3D+: The default Pascal3D+
dataset provides 2D-3D paired data by associating PASCAL
VOC [18] and Imagenet [12] images with the closest match-
ing CAD model. Since, the same set of CAD models are
used for both training and test set objects, generating ob-
ject silhouettes (used both during training and inference) by
rendering the 3D CAD models creates a bias between the
train and the test sets. Thus, generalization results of prior
reconstruction methods [11, 33] on the Pascal3D+ dataset
should be taken with a grain of salt. Unlike prior works [33],
we demonstrate qualitative comparison on both the default
biased Pascal3D+ dataset and an unbiased version of the
same dataset. The main purpose to showcase results on both
the default and the unbiased datasets is to dis-entangle the
inherent limitations of prior works from the lack of general-
ization. Please refer to supp. dataset section for more details.
We compare against CMR [27] and SDF-SRN [33] on three
categories of Pascal3D+ dataset (cars, planes, and chairs).
As shown in Figure 6, CMR [27] suffers significantly on the
chairs category and even fails to capture the global shape,
the reason being their mesh representation which doesn’t
allow breaking the initial mesh connectivity (/ topology).
Even on the planes category of both the default dataset (supp.
Figure 21) and the unbiased dataset (Figure 5, supp. Fig-
ure 13, supp. Figure 14), CMR fails to capture the details
and rather generates self-intersecting and similar-looking
meshes for different plane instances. SDF-SRN [33] does
capture the overall shape details well. However, because of
the challenging nature of the real-world images, compared
to its performance on Shapenet dataset [7], it under-performs
and generate much noisier reconstructions on the real-world
Pascal dataset (see noise on the reconstructed planes in Fig-
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Figure 8. Ablation of dimensionality (k+3) of deformation field
on Pascal3D+ (default) chairs. k equals the dimensionality of the
additional point features.

ure 5, ripples on the reconstructed SDF-SRN cars in supp.
Figure 20, noisy reconstructed sofa in Figure 6). Further, it
fails to maintain the topological details of the GT 3D shapes
(eg: lack of details on the back of the chair in row 3, missing
arms of chairs in row 2, 3 of Figure 6). In comparison, as can
be seen from the results on both the default dataset (Figure 6,
supp. Figure 20, 21, 22) and the unbiased dataset (supp.
Figure 13, 14), our reconstructions are (a) much less noisier,
(b) respect the topology of the underlying shapes, and (c)
better captures both the global shape and the finer details.

3D reconstruction on Pix3D Chairs: To showcase the
generalization capability of our proposed approach, we
demonstrate qualitative comparisons on the Pix3D chairs
dataset. Figure 7 compares shapenet-trained SDF-SRN [33]
and our approach on the Pix3D test split. Despite the chal-
lenging nature of Pix3D dataset (diverse 3D shapes, vari-
able texture, material and environment conditions), both the
approaches generalizes well from the synthetic Shapenet
dataset to the real-world Pix3D dataset. Further, thanks
to the topologically-aware deformation field, our approach
maintains the topological structure of the GT shapes (see
reconstructed holes in chairs in row 2, 3 of Figure 7). Please
refer to supp. for comparison of reconstruction approaches
trained only on real-world chairs (Pix3D train + Pascal3D).

Learned deformation field: We visualize our learned de-
formation fields in Figure 1, 3 and supp. Figure 10. The
color codes denote the corresponding canonical 3D points
obtained by mapping the 3D object space points to the canon-
ical space using the learned deformation fields. Our deforma-
tion field consistently learns to deform similar object parts
to similar regions of the learned mean shape without any
form of part supervision (eg: legs of all chairs in supp. Fig-
ure 10 are consistently painted similarly with yellow, green,
blue and pinkish-white). Similar deformation consistency
is observed in the cubs category, despite the structural and
non-rigid articulation dependent variations (see Figure 3).
This validates that deformation-based approaches can inher-
ently learn category-specific structural relations (without any
supervision) leveraging just single-view image collections.

Category Method Chamfer # EMD # Precision " Recall F score "
acc. cov. overall (%) (%) (%)

Ours (w/o point features) 0.379 0.473 0.426 0.949 96.97 91.77 94.30Car Ours 0.363 0.386 0.374 0.763 97.00 95.63 96.31
Ours (w/o point features) 0.539 0.485 0.512 1.291 86.95 91.44 89.14Chair Ours 0.527 0.426 0.476 1.171 89.75 94.83 92.22
Ours (w/o point features) 0.576 0.561 0.568 1.341 87.77 93.16 90.38Airplane
Ours 0.547 0.530 0.538 1.302 88.50 93.76 91.05

Table 2. Point features ablation on Pascal 3D+ chairs dataset.

Leveraging deformation fields for texture transfer: We
showcase the utility of the learned deformation field for
the task of texture transfer in Figure 1. We first manually
paint a 3D mesh and then transfer the painted texture to
other meshes using the learned deformation field of the two
meshes. As can be seen in the figure, structurally similar
parts of both the source and the target meshes are painted
similarly. The checkered stripe patterns and the parallel
stripe patterns of the source meshes of row 2 and 3 respec-
tively, are maintained in the target meshes, highlighting the
structural details captured by the learned deformation fields.

5.2. Ablation Study

We ablate the efficiency of the learned point features on
Pascal3D+ categories in Table 2 and Figure 8. Despite the
bias in Pascal3D+ default dataset, such an ablation is useful
as it helps understand the inherent limitation of the implicit
deformation approaches, by ruling out the lack of general-
ization as a potential factor for the lack of fidelity. As can
be seen from the table, learning higher-dimensional defor-
mation field leads to considerable improvement in chamfer
coverage and EMD metric (while still improving chamfer
accuracy metric). This highlights that point features are
contributing in the enhancement of details and structures
present in GT shapes, and are thus crucial for reconstructing
topologically varying categories. Figure 8 qualitatively vali-
dates this fact. We didn’t observe significant improvements
for k > 4, where k equals point features dimensionality.

6. Conclusion
In this work, we presented an approach which can learn to

reconstruct 3D shapes, given a (category-specific) collection
of unpaired 2D images. The proposed approach, TARS, tack-
les the problem of single-view reconstruction by implicitly
learning to deform different object instances to a learned
category specific mean shape. By transforming the 3D defor-
mation field to a higher-dimensional field, we corroborated
that the learned-deformation field is topologically-aware. As
a result, our reconstructed shapes capture the global struc-
ture of the underlying GT shape and also resembles the GT
shapes much than than the prior works in terms of fine struc-
tural and topological details. Furthermore, the learned defor-
mation field implicitly captures the structural properties of
the category, without any explicit supervision. Overall, our
results represent an encouraging step towards generalization
of reconstruction systems to the internet of images.
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