This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

What do navigation agents learn about their environment?

Kshitij Dwivedi, Gemma Roig
Goethe University Frankfurt

dwivedi@em.uni-frankfurt.de,

roig@cs.uni-frankfurt.de

Aniruddha Kembhavi, Roozbeh Mottaghi
PRIOR @ Allen Institute for Al

anik@allenai.org,

Abstract

Today’s state of the art visual navigation agents typi-
cally consist of large deep learning models trained end to
end. Such models offer little to no interpretability about the
learned skills or the actions of the agent taken in response to
its environment. While past works have explored interpret-
ing deep learning models, little attention has been devoted
to interpreting embodied Al systems, which often involve
reasoning about the structure of the environment, target
characteristics and the outcome of one’s actions. In this pa-
per, we introduce the Interpretability System for Embodied
agEnts (iSEE) for Point Goal and Object Goal navigation
agents. We use iSEE to probe the dynamic representations
produced by these agents for the presence of information
about the agent as well as the environment. We demonstrate
interesting insights about navigation agents using iSEE, in-
cluding the ability to encode reachable locations (to avoid
obstacles), visibility of the target, progress from the initial
spawn location as well as the dramatic effect on the behav-
iors of agents when we mask out critical individual neurons.

1. Introduction

The research area of Embodied Al — teaching embodied
agents to perceive, communicate, reason and act in their en-
vironment — continues to receive a lot of interest from the
computer vision, natural language processing and robotics
communities. A growing body of work has resulted in the
emergence of several powerful and visually rich simulators
including AI2-THOR [20], Habitat [25] and iGibson [37];
works that require agents to navigate [2], reason [5], collab-
orate [18], manipulate [12] and follow instructions [3].

While fast progress is being made across a variety of
tasks and benchmarks, most solutions being employed are
black box neural networks trained to either imitate a se-

roozbehm@allenai.org

a) Agent Initial observation b) Stherean
obstacle o
in front? istance to
1 target?
<'>
. . Agent's N
e O hidden - N ave | visited
A= ‘k representation this
7% location before?
= <T> N
Goal: ﬁz o .o o. - : "
i O S 4 1 Y s Apple(targe
Navigate to =6 A4 Fj\k el
Apple/(x,y,z) SN N A

R,

c) d)
>
> i
> RO o
050 lL
5
Shpple(argel & %2 .—*—-—._
visible? 0.00

Target visibility

F
kS

°
S
3

rrelation
Hidden unit's
value

c

&
H

Impact on target visibility prediction

Figure 1. The iSEE framework. (a) An agent learns to perform
the OBJECTNAYV or POINTNAV tasks. (b) We wish to explore what
information is encoded in the hidden representations of the agent.
(c) To achieve this, we evaluate how well the agent’s hidden repre-
sentation can predict human interpretable concepts e.g. target vis-
ibility in ObjectNav. (d) Then we apply an explainablity method
SHAP [23] to identify the top-k relevant units.

quence of human/oracle actions or trained via reinforce-
ment learning with a careful selection of positive and nega-
tive rewards. These models offer little to no interpretability
out-of-the-box about the concepts and skills learned by the
model or about the actions taken by the model in response to
a task or observation. Developing interpretable systems is
particularly important in embodied Al since we expect these
systems to eventually be deployed onto robots that will nav-
igate the real physical world and interact with people in it.

In the image classification literature, a number of inter-
pretability methods have been developed over the past few
years [7, 14,28,49]. These methods rely on probing model
activations via various inputs or generating synthetic inputs
that lead to a spike in an activation. While such methods
are useful in probing Embodied Al models, they do not take
into account the rich metadata (such as perfect segmenta-
tion, depth maps, precise object localization, etc.) available
in synthetic environments commonly used to train these

10276

models. Simulated worlds provide us a unique opportunity
to expand interpretability research to embodied agents and
develop new methods that take advantages of rich metadata.

We propose a framework to interpret the hidden repre-

sentations of embodied agents trained in simulated worlds.
We apply our framework to two navigation tasks (Fig-
ure la): Object Navigation (OBJECTNAV) [6], the task of
navigating to a target object and Point Goal Navigation
(POINTNAV) [2], the task of navigating to a specified rela-
tive co-ordinate, within the AI2THOR environment; but our
methods are general and can be easily applied to more tasks
and other environments. We train agents to perform these
tasks and then probe their hidden representations to evaluate
if they encode aspects of their task, progress and surround-
ings (Figure 1b and Ic). We then apply the model interpre-
tation method SHAP [23] to identify which hidden units are
most relevant for predicting these concepts (Figure 1d). Our
framework allows us to gather evidence towards answering
two fundamental questions about a trained model: (1) Has
the model learned a particular concept ? (2) Which units
within a recurrent layer encode this concept ? Using this
framework, we were able to find several interesting insights
about OBJECTNAV and POINTNAV agents.

The key contributions of this work are:

* A new interpretability framework specialized for nav-
igation agents with no linearity assumptions between
concepts and hidden units.

» New insights about what navigation agents encode and
in which units:

— sparse target representation in OBJECTNAV
(50/512 units) and POINTNAV (5/512 units);

— learning of concepts such as reachable locations
and visit history by OBJECTNAV agents; encod-
ing of progress towards target and less reliance
on visual information by POINTNAV agents.

* Ablation experiments showing no impact on model
performance after removal of 10% units suggesting re-
dundancy in the representation.

2. Related Work

We explore representations stored within an agent’s hid-
den units by predicting a human interpretable piece of in-
formation about the agent and its environment. Our work is
related to two directions in interpretability research: (1) In-
terpretability of individual hidden units and (2) Explaining
model’s predictions.

Interpretability of hidden units. A common approach to
investigate what a hidden unit encodes is to find the input
image also referred to as “preferred image” that leads to a
maximal activation of the unit of interest. The preferred im-
age can be from within the examples in a dataset [49, 50]
or obtained using gradient descent by optimizing over the
input [13,16,28,29,39,42]. One disadvantage of the meth-

ods using preferred images is that it is difficult to quantify
the association of a unit with a concept. To address this
issue, NetDissect [7,51] uses overlap of a unit’s spatial ac-
tivation with groundtruth segmentation maps of a human
interpretable concept as a measure to quantify a unit’s as-
sociation with a concept. The idea was further extended in
Net2vec [14] to investigate whether a single unit or a group
of units encode a concept. However, these approaches re-
quire groundtruth pixel-level annotation for every concept
of interest and therefore for new concepts, new annotations
are required. On the other hand, simulation environments
[20,25,37] have annotations readily available as a part of
the metadata. However, given the vast amount of metadata
beyond simply object information, there is a need to develop
new methods for these environments to interpret embodied
agents. Recent embodied Al works [43, 48] have started
focusing in interpretability by linear decoding of concepts
from hidden units [43] and finding computational structure
of the agent’s recurrent units using fixed point analysis [48].
Patel et al. [3 1] explored interpretation of emergent commu-
nication in collaborative embodied agents. However these
works do not focus on identifying which hidden units en-
code a given concept which is one of the main contributions
of the present work.

Explaining model predictions. Saliency methods [4, 30,

,35,40] use gradients to find which pixels of an image are
relevant for model’s prediction. Additive feature attribution
methods [24,34,38] investigate the effect of adding an input
feature in model prediction. A disadvantage of these meth-
ods is that they focus on explaining the model predictions
on raw pixel level. To explain the model prediction using
human-interpretable concepts, TCAV [19] and subsequent
works [15,17,21] were proposed that use concept vectors
instead of raw pixels to explain model prediction. To find
concept vectors additional human annotations are required.
In the embodied environments [20, 25, 37], we have the ad-
vantage of already annotated human interpretable concepts.

The above two directions of research have been consid-
ered as independent directions of interpretability research
— one focusing on interpreting what the hidden units learn
and the other on interpreting the decisions made by the
model. In this work, we observe the potential of linking
two approaches to interpret what the hidden units learn by
using human interpretable concepts. Specifically, we train
an interpretable model (Gradient boosted Tree) to predict
human intepretable concepts from the hidden units of the
model and then apply a global model explainability method
SHAP [23] to explain which units are relevant for which
concept prediction. In this work, we use SHAP because (a)
it provides a unique solution with three desirable proper-
ties: local accuracy, missingness and consistency [24], (b)
it unifies several model agnostic [34,38] and tree based ex-
planation methods [!], and (c) it provides explanation on

10277

both local (single example) and global (dataset) levels.
Embodied tasks. Several approaches have been proposed
[8-11,22,26,27,32,37,41,45-47,52] to tackle the navi-
gation problem, which is a core task in Embodied Al. In
this paper, we analyze standard base models for two popu-
lar navigation tasks, PointNav [2] and ObjectNav [6].

3. Interpretability Framework

We introduce the Interpretability System for Embodied
agEnts (iISEE). iSEE probes agents at their understanding
of the task given to them, their progress at this task and the
environment they act in. This probing is done via training
simple machine learning models that input network activa-
tions and output the desired information. Simulated envi-
ronments provide us with a gamut of metadata about the
agent, task and surroundings, allowing us to train a series of
models for probing this information. iSEE also helps iden-
tifying specific neural units that store this information. This
is done via computing the SHapley Additive exPlanations
(SHAP) [36] values for individual neural units. Finally we
study the effect of switching off individual neural units on
the downstream tasks that the agents are trained for.

We study embodied agents trained for POINTNAV [2]
(navigation towards a specific coordinate in a room) and
OBJECTNAV [6] (navigation towards a specific object). Our
agents encode their visual observations via a convolutional
neural network and encode their target/goal via an embed-
ding layer. The outputs of the visual and goal encoders are
fed into a gated recurrent unit (GRU) to add memory. The
hidden units of the GRU are then linearly transformed into
the policy (distribution over actions) (Figure 2a). There are
more complex, customized models for each of these tasks
that achieve higher performance. However, we utilize these
simple, generic models that can be applied to various tasks
and make the comparisons across tasks more fair. In this
work, we use iSEE to probe the hidden units in the GRU and
use gradient boosted trees (GBT) as the ML model to deter-
mine the presence of relevant information within these hid-
den units (Figure 2b). We focus here specifically on GRU
units since (a) we are interested in analyzing dynamic vi-
sual representations (GRU units) as opposed to static visual
representations (CNN visual encoder) and (b) some of our
models use a frozen visual encoder and only optimize the
parameters within the GRU.

We now describe the metadata extracted from the simu-
lator, probing for this metadata via building GBTs and using
SHAP to identify individual hidden units that store the rel-
evant information.

3.1. Metadata

We probe agents at their understanding of the target, their
position in the scene, the reachability of objects in their
surroundings and their memory of visited locations as they

navigate their world. This information is easily extracted by
us from the metadata provided by the simulator.

Target Information: Agents trained for the OBJECT-
NAV and POINTNAV tasks must navigate to the location of
a specified object or a point, respectively. In either case, one
might expect an agent to be able to estimate its positioning
with respect to the goal. Therefore, at a given timestep ¢,
we extract metadata containing the distance ([2;) and ori-
entation (6;) of the agent from the target (Figure 2¢). In
OBJECTNAYV, an agent is successful if the object lies within
1m of the agent and is visible; thus we additionally extract
target visibility (visible;). Since an object may be visible
in the frame but not within the specified distance to deter-
mine success, we also extract the percent of pixels covered
by the target object using segmentation masks provided by
AI2-THOR (Areay).

Agent’s information: Memory of how far and in what
direction one has travelled can be relevant to avoiding re-
visiting locations in the scene. Therefore, we extract the
agent’s distance (R,) and orientation (f,) with respect to
its starting location (Figure 2c).

Reachability: For an agent to successfully navigate in
a scene it should be able to detect obstacles and its path
around them. Thus, we extract metadata to detect whether a
particular location with respect to the agent’s current loca-
tion is reachable or not. Given an agent’s location, we first
extract all reachable gridpoints in the scene. Then, with the
agent’s location as the center we consider three concentric
circles with radii=2, 4,and 6 times the grid size and locate
points on these circle that are at angles from 0 to 360 in the
steps of the agents rotation angle (=30 degrees). For each
of these points R, 84ng1c, Where 1 is the radius and angle
is the orientation of the grid point with respect to agent in
degrees, we check whether the closest reachable gridpoint
is within gridSize/ V/2 or not. Figure 2d illustrates such
reachable gridpoints in the scene.

Visited History: The metadata extracted above captures
a global summary of the agent’s movements. We also ex-
tract its local visit history. This is done by checking if a
location (visited;), rotation (visited.) and camera
horizon (visited ;) has been visited by the agent or not.

3.2. Metadata extraction

As the agent traverses around in a scene, we extract the
GRU activations of the agent along with the agent and scene
metadata described above. This is done within the train-
ing and validation scenes. The latest model architectures
and training algorithms for POINTNAV and OBJECTNAV
lead to very capable agents that (a) exhibit little variabil-
ity in their trajectories (b) do not collide often (c) make few
mistakes such as revisiting locations. Such trajectories are
less useful to probe agents, since the events of interest oc-
cur sparsely. Hence we use human trajectories (trajectories

10278

a)
X
m 3
AI2THER o 3
®
Metadata "3”
Goal: &
Navigateto —>» &
Apple/ (x.y,z) S
«Q

c)

O Agent’s initial
location

Agent’s current
[l |
| O location
\

- |:| Target location

d)

b)

Gradient

Boosted Metadata

Tree

SHAP

value

-
o .*__._

Impact on metadata prediction

Hidden unit's

Reachable Grid Positions

oo o all_reachable

° e reachable
see = unreachable
° e agent

.

cem e oo
®e° °

°
°

-
o

Figure 2. iSEE: a) At a given timestep, AI2THOR generates an observation that is fed as input to the agent along with a goal embedding.
For that time step, we also extract relevant event metadata from AI2THOR which is unseen by the agent. b) After sampling rollouts from
multiple training and validation episodes, we train a gradient boosted tree to predict metadata from the agent’s hidden representation (GRU
units). We then apply SHAP, an explainability method that identifies the top-k most relevant units for predicting a given metadata type.
¢) At a given timestep, we extract agent’s orientation with respect to its initial spawn location (R, 6,) and target location (R, 6:). d) We
extract reachable positions at distance 2,4,6 times the grid size and different angles with step size of 30 degrees to identify whether these

locations can be reached by the agent or not.

specified by humans navigating around) that encourage ex-
ploration and have intentional collisions and mistakes. Us-
ing a pre-defined set of human trajectories also enables us
to fairly compare findings across agents.

3.3. Metadata prediction

We train GBTs to predict specific metadata concepts us-
ing the GRU’s hidden units as inputs. GBTs are trained us-
ing episodes within the training scenes and evaluated using
correlation between the predicted metadata and groundtruth
metadata on the validation episodes. For a given model, we
trained one GBT of depth = 10 for each concept using
xgboost library. For binary variables (such as target visi-
bility) we use the logistic loss function and for continuous
variables (such as distance from target/agent’s initial posi-
tion) we use the mean squared error loss function. Total
training and evaluation time of GBT was 8 seconds on a
single NVIDIA RTX 2070 GPU. We use GBTs because:
(1) they are more interpretable in comparison to many other
ML models when the mapping from inputs to outputs is not

linear; (2) allow exact computation of SHAP values as com-
pared to other models where SHAP values can only be ap-
proximated [23].

3.4. Identifying explainable units using SHAP

Given a set of hidden units, SHAP computes the impor-
tance of each individual unit by quantifying its contribution
towards predicting a concept. SHAP values are based on a
game theory concept called Shapley values [36]. We first
train a GBT to predict a concept using all hidden units. We
then use a subset of hidden units and mask other units to
predict a concept using pretrained GBT. Then we add in
a new hidden unit and compute the change in the model’s
prediction capability. This difference quantifies the contri-
bution of a hidden unit with regards to the chosen subset.
By averaging this contribution over all possible subsets of
hidden units, we get the Shapley value of the unit of inter-
est. For instance, we use this method to compute the con-
tribution of a specific GRU hidden unit towards predicting
the visibility of the specified target. Note that the obtained

10279

Top-4 relevant units for predicting target visibility

Shapley value of GRU unit High
10 for one example
10

1) ()
= =
g 477 h g

S5 :
T 217 ’— 2
o B
2
305 .’_ >
O]

6 -4 0 2 a 6 8
SHAP values distribution on validation set

Figure 3. Schematic to read a SHAP plot: The plot shows the
top-4 relevant GRU units to predict the target visibility. Each row
shows the distribution of SHAP values of a given GRU unit for all
the examples in the validation set with each dot in the row corre-
sponding to an individual data point. The color of the dot indicates
whether the GRU unit’s output was low or high for that data point.

Shapley value indicates the impact of the hidden unit on
the model’s outcome for a single example. To quantify the
global impact of hidden unit on model’s outcome we calcu-
late the mean of absolute SHAP values over all examples in
the validation set (for more details please see Appendix A).

Figure 3 is a SHAP beeswarm plot to visualize the global
contribution of the top-k relevant GRU units. We use this
plot to explain how one can interpret SHAP plots. This
plot visualizes the contribution of the top 4 relevant units
to predict target visibility. Each row corresponds to a given
GRU unit, and each dot in the row corresponds to the GRU
unit’s Shapley value for a given example. Each row dis-
plays the distribution of SHAP values on all the samples of
the validation set. The location of a dot on the x axis shows
whether the impact of the GRU unit on model’s prediction
(i.e. Shapley value) is positive or negative. The GRU unit’s
value for a sample is visualized using the colorbar on right.
As an example, for the circled dot in Figure 3, the Shap-
ley value of GRU unit 10 is negative and the color of the
dot indicates that GRU unit 10’s value is also low. For the
examples on the right side of x-axis the shapley values are
positive and the GRU unit’s values are also higher. This
means that GRU unit 10 is positively correlated with target
visibility. Using a similar logic GRU unit 477 seems to be
negatively correlated with target visibility. In a nutshell, the
SHAP plot shows the global contribution of a GRU unit in
prediction of a concept (rows sorted by contribution), dis-
plays the distribution over the validation examples (points
in each row) and indicates whether a unit is positively or
negatively correlated with the concept (colors of the points
in accordance with the x-axis values).

4. Experimental Setup

We use the AllenAct [44] framework to train models for
the tasks OBJECTNAV and POINTNAV tasks in the iTHOR
rooms within AI2THOR [20]. For both tasks, we use the

Prediction by OBJECTNAV agents

— RNon RNoy SCon SCow
" b) : c) -

.00 reachability_close .00 target_info 1.00 visited
075 075 2075
S S S
50.50 ©0.50 ®0.50
[3 o
50.25 S0.25 50.25

0.00 0.00 0.00

& & g

Area
Visibles-
visited,

visited,
visitedm-

Figure 4. Metadata prediction by OBJECTNAV GRU units: a)
Reachability b) Target information c) Visited history

same split of rooms for training and validation.
4.1. OBJECTNAV Models and Baselines

We consider two models for OBJECTNAV. The first
model uses a frozen ResNet18 as the visual encoder and is
named RN,,, while the second uses a 5 layer CNN (re-
ferred to as SimpleConv) as the visual encoder, denoted
by SC,y. In SC,,, the visual encoder is optimized using
the gradients of the actor critic loss. The visual representa-
tion is concatenated with the goal embedding which is then
fed to a GRU. The GRU is connected to two linear layers
predicting the policy and value. To ascertain if the repre-
sentations learned by OBJECTNAV agents are due to train-
ing, we consider two randomly initialized models with the
same architetcures as the baselines. For the random ResNet
model, named RNZN, we initialize ResNet with ImageNet
weights and initialize the GRU randomly. For the random
SimpleConv model, named SC7_, both the visual encoder
and GRU are initialized randomly. RN, and SC,, are
trained for 300 Million steps using the default hyperparam-
eters from the AllenAct framework.

4.2. POoINTNAV Models and Baselines

Similar to OBJECTNAV models we consider a ResNet
based model (RN,,) and a SimpleConv based model
(SC.y). The distance and orientation to target are used as a
sensory input to the model for target information. The cor-
responding random baselines are named RN, and SCT..
RN, and SC,, are trained for 300 Million steps using the
default hyperparameters from AllenAct.

ObjectNav PointNav
ResNetl8 SimpleConv ~ ResNetl8 SimpleConv
Trained RNon SCon RNpy SCpry
Random RN, sor, RN, RNT,

4.3. Human Trajectories

After training the OBJECTNAV and POINTNAV mod-
els, we collect human sampled trajectories for the training
and validation rooms. The training trajectories contain 59
episodes with average episode length of 480 while valida-
tion trajectories contain 42 episodes with average episode

10280

a) Target units

| High
10 +—
477 —— E
g
217 <
2
305 ki
other features . P
T T T T T T T T Low
-6 -4 -2 0 2 4 6 8
b) SHAP value (impact on model output)

FloorPlan21_Bowl_7
RNN output
1.0 Agents Orientation wrt target

05 45° 15
0.0 90° p70
-0.5
-1.0
—
C) FloorPlan21_Bowl_7

RNN output
1.0
RGB

os ‘
I .
e
—0.5 \ @ ¢
| LT

-1.0

=1

d) Reachability units
| High
402
365 E
©
>
165 o
2
234 ki
other features - .
T T T T T T Low
-4 -2 0 2 4 6
e SHAP value (impact on model output)
FloorPlan21_Toaster_6
RNN output
1.0 Reachable positions
RGB 0°
0.5 45° 15°
0.0 90° P70°
135° 25

180°

FloorPlan21_Toaster_6

Reachable positions
RGB 0°

Figure 5. Visualization of hidden units. a) Target Visibility Unit: Top-4 most relevant units to predict target distance. b) The bar plot on
left shows unit 10’s (target unit) response. The center image is agent’s current observation. The polar plot on right shows the distance (in
meters) and orientation of the agent (in degrees) wrt target. In this case, the agent is at around 3 meters away from the target and is oriented
around 0 degrees. The response of unit 10 is negative. c) In this case, the agent is now closer to target (around 1 meters) and unit 10’s
(target unit) response is positive. d) Reachability Unit: Top-4 most relevant hidden units to predict reachability at distance 2 X gridSize
and theta zero. e) The bar plot on the left shows unit 402’s (reachability unit) response. The polar plot on right shows if the locations
at radii of 2,4,6 x gridSize and a given orientation in degrees are reachable or not. In this case, all the locations ahead are green i.e.
reachable. The response of unit 402 is negative. f) All the locations ahead are red i.e. not reachable. The response of unit 402 is positive.

length of 470. The subject was encouraged to completely
explore the rooms with intentional collisions and visits to
previously visited locations with an episode length upper
limit of 500. All 8 models are forced to follow these trajec-
tories. The corresponding metadata and GRU activity was
extracted resulting in 28,000 training samples and 20,000
validation samples for GBT training.

5. Results

5.1. OBJECTNAV

The validation performance of OBJECTNAV models sat-
urates at around 50 million steps, therefore we select a
checkpoint right after 50 million steps from both models.
RN, (success = 0.458, SPL = 0.23) significantly outper-
forms SC,, (success = 0.124, SPL = 0.056). Here suc-
cess indicates the fraction of episodes the agent success-
fully reached the target and SPL refers to Success weighted
by Path Length introduced in [2]. We consider concepts de-

rived from metadata that are related to target information
(R¢,0p,visibley,Areay) , reachability (R,0.ng1e Where
r is the radius and angle is the orientation of the neighboring
grid point w.r.t. the agent), agent’s information (R,,0,) and
visited history (visited;,visited.,visitedp).

Metadata prediction: We train GBTs to predict meta-
data from the GRU units. We observe that RN,, pre-
dicts reachability much better than the other three OBJECT-
NAV models (Figure 4a) with a correlation of 0.45 and
ROC_AUC=0.75 for reachability in front (R260009). We also
observe an interesting pattern that prediction of reachabil-
ity drops as one moves from O (front of the agent) to 180
(behind) degree then it starts increasing from 180 to 330
degrees suggesting the reachability of locations in front is
more predictable than behind the agent. In Figure 4a, we
show the results for reachability with radius = 2 X gridsize.
We observe a similar pattern for radius = 4 x gridsize and
radius = 6 X gridsize (refer to Appendix B).

10281

SPL Success
FZ:‘“T?,""?*"" 050 '+
4 ;»’#+ 4 250

0.45 200

Episode Length
0.20 Ty

0.15
150
0.40{ -+- random

target 100 :

0.10 -+~ reachability P
0.35 b

0 20 40 0 20 40 0 20 40
No. of units removed No. of units removed No. of units removed

Figure 6. Impact of removing units from RN,y.

For the target information (R;,0:,Area,visibley)
RN,, shows a higher correlation than the other
three models (Figure 4b). Visited history also
(visited;,visited,,visitedy.,) shows a higher
correlation for RN, (Figure 4c). The agent’s information
(Rg4,0,) is not predicted well and RN,, model shows a
correlation similar to baselines suggesting this informa-
tion is not learned by the agent during training (refer to
Appendix B). Overall, we observe that RN, learns the
reachability, target relevant information and visited history
from OBJECTNAV training. This suggests that these three
features are very crucial for performing this task.

While we present the results only on four concepts we
also considered collision but found that it was poorly pre-
dicted for all 4 models (refer to Appendix B).

Hidden unit visualization: To identify which hidden
units are relevant to the mentioned concepts we apply
SHAP on the two most interesting concepts (visibley
and Rs0pg0). In Figure 5a we show the top-4 units that are
most relevant in predicting the target visibility. On observ-
ing the SHAP plot of unit 10 (Figure 5a) we see that when
the unit’s value is higher it has a positive impact on target
visibility and vice-versa suggesting that the unit’s value is
high when the target is visible (for aggregate SHAP values
over units see Appendix E). The polar plots show the agent’s
trajectory (Figure 5 b,c), blue line represents trajectory and
green dot indicates the agent’s current location wrt target.
Bar plot shows the RNN unit’s response for current obser-
vation. Here, the target is a bowl; when the agent is away
from the target its response is negative (Figure 5b) and when
it is closer its response is positive (Figure 5c). These results
also suggest that this unit might be positively correlated to
target visibility.

In Figure 5d, we show the top-4 units most relevant in
predicting R26go¢ (for distribution of aggregate SHAP val-
ues over units see Appendix E). On observing the SHAP
plot of unit 402 (Figure 5d) we can see that when the unit’s
value is higher it has negative impact on Rs6yoo and vice-
versa suggesting that the unit value is high when the loca-
tion ahead is not reachable. In Figure 5e.f, the dots are
located at radii = 2,4,6 X stepsize from the agent and at
angles from 0 to 330 in steps of 30°, where O is the front
of the agent. Dot color indicates if the location is reachable

(green) or not (red). Here, when the location in front of the
agent is reachable the unit’s response is negative (Figure 5e)
and when there is an obstacle in front the unit’s response
is positive (Figure 5f). These results suggest that this unit
might be detecting obstacles ahead.

Unit ablation: While SHAP provides a way to quantify
the impact of hidden units on the prediction of a particu-
lar metadata concept, it does not imply causality. To iden-
tify causality we perform an ablation and measure the im-
pact on the evaluation metrics. We remove units relevant to
visible, and R20ygo prediction and measure the impact
on the model’s performance in terms of SPL, success, and
episode length. We compare the ablation results to remov-
ing a random selection of units as a baseline. To remove a
unit, we set the unit’s activity as a constant that is equal to
the mean of that unit’s activity over the training episodes.

In Figure 6, we observe that removing only 10 target
units leads to a huge drop in SPL as compared to removing
as many as 50 random units or units encoding reachability.
As we remove more target units, the success also begins
to drop. This suggests that target units are crucial and re-
moving them first deteriorates the agents ability to identify
targets thus leading to longer episodes and low SPL scores
and beyond a certain point, the agent ability to be successful
is also affected. Removing reachability units also leads to
drop in SPL but the impact is not as drastic as in the case of
target units. Interestingly removing reachability units lead
to increase in success rate potentially due to an increase in
exploration. Removing randomly selected units do not sig-
nificantly impact any of the performance measures.

5.2. POINTNAV

Similar to OBJECTNAV, we choose checkpoints after 50
million steps for our POINTNAV models. RN, (success
=0.925, SPL = 0.755) and SC,, (success = 0.878, SPL =
0.712) are highly successful at this task. We consider con-
cepts derived from metadata that are related to target infor-
mation (£2;,0,) , reachability (12,.04n41. Where r is the radius
and angle is the orientation of the neighboring grid point
with respect to the agent), agent’s information (R,,0,) and
visited history (visited;,visited.,visited.p).

Metadata prediction: We train the GBTs to predict
metadata from the GRU units. We first observe from Figure
7a (left) that reachability is predicted at all the angles well.
Another interesting thing to note is that models that are not
even trained on the POINTNAV task (RN and SCT) can
predict reachability. This result is surprising as compared to
OBJECTNAYV, where the only model that predicted reach-
ability well was the one that performed well on the OB-
JECTNAV task (RN,,). Further, RN,, only predicted the
reachability in the view of the agent. Our intuition for the
above result is that this could be due to additional informa-
tion from GPS + compass sensor that provides the distance

10282

— RNpy

a) POINTNAV (target + visual) POINTNAV (visual)

RNy

POINTNAV (target)

SCpn
b)

SChy

POINTNAV (target + visual)) POINTNAV (target + visual)

1.00 reachability_close 1.00 reachability_close 1.00 reachability_close 1.00 target_info 1.00 agents_info
075 075 075 2075 2075
S S S S S
©0.50 ©0.50 ©0.50 ©0.50 ©0.50
< IS I IS g
g |11 TTTT TR 1Y TR T TTTTT TR
0.00} 0.00] i § 0.00] 0.00 0.00
scobooboobas ccobooboobas cocobooboobas L & o o
S883N08TIRBR S883N88IIRBR S883N88IIRBR < « @
DPODDDDDDDD DD DPODDDDDDDDDD DPODDDDDDDDDD
RRARRRIRRARRRRR RRARVRBRYRARRRARRR RRARVRBRYRARRRUARRY
xroxxxoxxxowaxoo oo Xxxoxoxxowooooo

Figure 7. Metadata prediction by POINTNAV GRU units: a) Reachability b) Target information and c) Agent information

SPL Success Episode Length

(S S [P —— s 500
0.6 0.8

' 400
0.6

0.4 300
0.4

0.2 ~+- random 200
agent 0.2

-+~ reachability 100

0.0 0.0 e

20 40
No. of units removed

0 20 40

No. of units removed

0 20 40

No. of units removed

Figure 8. Impact of removing units from SCpy.

and orientation of the target. To tease apart the prediction
due to visual sensor and GPS sensor we perform an ablation
study where in one case we replace the output of the GPS
sensor by random noise (visual-only; Figure 7a center) and
in the other we replace the image with all zeros (only GPS;
Figure 7a right).

In the visual-only case, we now observe a pattern simi-
lar to OBJECTNAV where reachability in the field of view
is more predictable than out of view. However, it is impor-
tant to note that prediction of reachability does not improve
with training RN, suggesting that ResNet with ImageNet
weights is sufficient to predict reachability required to solve
POINTNAV. SCT however does not seem to predict front
reachability (R26y00) as effectively as SC,., suggesting that
a random initialization is not sufficient to predict reachabil-
ity required to solve POINTNAV.

In the target-only case, we observe that the reachability
of the backside of the agent is more predictable compared
to the angles in the field of view. One possible explanation
for this could be that when the distance between target and
the agent changes in a given step that means the position
at the back was reachable since the agent was there in the
previous step. Therefore, using the change in GPS sensor
values reachability at back can be predicted in some cases.

The target distance and orientation is predictable when
the GPS sensor is available for all the models (Figure 7b
and Appendix C). This finding is expected as we provide
this information as input, and when the GPS sensor is noise
it can not be predicted (refer to Appendix C). Interestingly
when the GPS sensor is available (Figure 7c and Appendix
(), hidden units in trained POINTNAV models can predict
the distance of the agent (R,) from the initial spawn loca-

tion. When using the SHAP method to find the relevant
units for predicting R,, we observe that top most relevant
units have a constant value (refer to Appendix D) at almost
every step in the episode and show very low variance in its
output. On further inspection, we found that the 2 units in
top-20 most relevant units for R, prediction were also rele-
vant for target distance R, prediction. To predict R,, GBT
might be using a combination of a constant unit(s) and unit
that encodes the target information.

Unit ablation: Similar to OBJECTNAV we perform ab-
lations by removing units and measuring the impact on the
metrics. As shown in Figure 8 removing random and reach-
ability units have almost no impact on the performance.
Even after removing 50 units we observe similar perfor-
mance on all three metrics. Removing the units that are
relevant for predicting R, causes a significant drop in the
performance and on dropping 50 units both SPL and suc-
cess rate almost reach zero. The episode length also reaches
the highest possible value (500) set in the task definition i.e.
the episode ends if agent takes 500 steps. On further inspec-
tion, we found that in top-50 R, units, there are 6 units from
the top-50 R; units. This is the key reason why POINTNAV
performance dropped as the target distance information is
lost. We further performed an ablation by removing only
these 6 target units, which resulted in a drastic drop.

6. Conclusion

We propose iSEE to investigate if concepts about the
agent, environment and task are encoded in the hidden rep-
resentation of embodied agents. While we focus on visual
navigation agents trained in AI2-THOR, the framework is
generic and can be applied to agents trained on any task in
any virtual environment with relevant metadata available.
Our analysis shows the OBJECTNAV agent encodes target
orientation, reachability and visited locations history in or-
der to avoid obstacles and visiting the same locations re-
peatedly. POINTNAV agents encode target orientation and
its progress towards the target and show less reliance on vi-
sual information.

10283

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

Treeinterpreter. https://github.com/andosa/
treeinterpreter. [Accessed Nov, 2021]. 2

Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir Roshan Zamir. On evaluation of embodied navi-
gation agents. arXiv, 2018. 1,2,3,6

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark
Johnson, Niko Siinderhauf, Ian Reid, Stephen Gould, and
Anton Van Den Hengel. Vision-and-language navigation:
Interpreting visually-grounded navigation instructions in real
environments. In CVPR, 2018. 1

Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Miiller, and Wojciech
Samek. On pixel-wise explanations for non-linear classi-
fier decisions by layer-wise relevance propagation. PloS one,
2015. 2

Dhruv Batra, Angel X. Chang, Sonia Chernova, Andrew J.
Davison, Jia Deng, Vladlen Koltun, Sergey Levine, Jitendra
Malik, Igor Mordatch, Roozbeh Mottaghi, Manolis Savva,
and Hao Su. Rearrangement: A challenge for embodied Al
arXiv, 2020. 1

Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Olek-
sandr Maksymets, Roozbeh Mottaghi, Manolis Savva,
Alexander Toshev, and Erik Wijmans. Objectnav revisited:
On evaluation of embodied agents navigating to objects.
arXiv, 2020. 2, 3

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and
Antonio Torralba. Network dissection: Quantifying inter-
pretability of deep visual representations. In CVPR, 2017. 1,
2

Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Ab-
hinav Gupta, and Russ R Salakhutdinov. Object goal naviga-
tion using goal-oriented semantic exploration. In NeurIPS,
2020. 3

Prithvijit Chattopadhyay, Judy Hoffman, Roozbeh Mot-
taghi, and Aniruddha Kembhavi. Robustnav: Towards
benchmarking robustness in embodied navigation. ArXiv,
abs/2106.04531, 2021. 3

Changan Chen, Ziad Al-Halah, and Kristen Grauman. Se-
mantic audio-visual navigation. In CVPR, 2021. 3

Heming Du, Xin Yu, and Liang Zheng. Learning object re-
lation graph and tentative policy for visual navigation. In
ECCV, 2020. 3

Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt,
Luca Weihs, Eric Kolve, Aniruddha Kembhavi, and Roozbeh
Mottaghi. Manipulathor: A framework for visual object ma-
nipulation. In CVPR, 2021. 1

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal
Vincent. Visualizing higher-layer features of a deep network.
University of Montreal, 1341(3):1, 2009. 2

Ruth Fong and Andrea Vedaldi. Net2vec: Quantifying and

explaining how concepts are encoded by filters in deep neural
networks. In CVPR, 2018. 1,2

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

10284

Amirata Ghorbani, James Wexler, James Y Zou, and Been
Kim. Towards automatic concept-based explanations. In
NeurIPS, 2019. 2

Gabriel Goh, Nick Cammarata T, Chelsea Voss f, Shan
Carter, Michael Petrov, Ludwig Schubert, Alec Radford, and
Chris Olah. Multimodal neurons in artificial neural net-
works. Distill, 2021. 2

Yash Goyal, Amir Feder, Uri Shalit, and Been Kim. Explain-
ing classifiers with causal concept effect (cace). arXiv, 2019.
2

Unnat Jain, Luca Weihs, Eric Kolve, Ali Farhadi, Svetlana
Lazebnik, Aniruddha Kembhavi, and Alexander Schwing.
A cordial sync: Going beyond marginal policies for multi-
agent embodied tasks. In ECCV, 2020. 1

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai,
James Wexler, Fernanda Viegas, et al. Interpretability be-
yond feature attribution: Quantitative testing with concept
activation vectors (tcav). In ICML, 2018. 2

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D
Environment for Visual Al. arXiv, 2017. 1,2, 5

Chih kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li,
Pradeep Ravikumar, and Tomas Pfister. On completeness-
aware concept-based explanations in deep neural networks.
In NeurIPS, 2020. 2

Juncheng Li, Xin Wang, Siliang Tang, Haizhou Shi, Fei Wu,
Yueting Zhuang, and William Yang Wang. Unsupervised re-
inforcement learning of transferable meta-skills for embod-
ied navigation. In CVPR, 2020. 3

Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex De-
Grave, Jordan M. Prutkin, Bala Nair, Ronit Katz, Jonathan
Himmelfarb, Nisha Bansal, and Su-In Lee. From local expla-
nations to global understanding with explainable ai for trees.
Nature Machine Intelligence, 2020. 1,2, 4, 11

Scott M Lundberg and Su-In Lee. A unified approach to
interpreting model predictions. In NeurIPS, 2017. 2
Manolis Savva*, Abhishek Kadian*, Oleksandr
Maksymets*, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi
Parikh, and Dhruv Batra. Habitat: A Platform for Embodied
Al Research. In ICCV, 2019. 1,2

Bar Mayo, Tamir Hazan, and Ayellet Tal. Visual navigation
with spatial attention. In CVPR, 2021. 3

Arsalan Mousavian, Alexander Toshev, Marek FiSer, Jana
Kosecka, Ayzaan Wahid, and James Davidson. Visual rep-
resentations for semantic target driven navigation. In ICRA,
2019. 3

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas
Brox, and Jeff Clune. Synthesizing the preferred inputs for
neurons in neural networks via deep generator networks. In
NeurIPS, 2016. 1,2

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert.
Feature visualization. Distill, 2017. 2

Daniel Omeiza, Skyler Speakman, Celia Cintas, and Kom-
minist Weldermariam. Smooth grad-cam++: An enhanced
inference level visualization technique for deep convolu-
tional neural network models. arXiv, 2019. 2

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

Shivansh Patel, Saim Wani, Unnat Jain, Alexander Schwing,
Svetlana Lazebnik, Manolis Savva, and Angel X. Chang.
Interpretation of emergent communication in heterogeneous
collaborative embodied agents. In /CCV, 2021. 2

Santhosh K Ramakrishnan, Ziad Al-Halah, and Kristen
Grauman. Occupancy anticipation for efficient exploration
and navigation. In ECCV, 2020. 3

Sylvestre-Alvise Rebuffi, Ruth Fong, Xu Ji, and Andrea
Vedaldi. There and back again: Revisiting backpropagation
saliency methods. In CVPR, 2020. 2

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
why should i trust you?” explaining the predictions of any
classifier. In KDD, 2016. 2

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In ICCV, 2017. 2

Lloyd S Shapley. 17. A value for n-person games. 2016. 3,
4

Bokui Shen, Fei Xia, Chengshu Li, Roberto Mart’in-Mart’in,
Linxi (Jim) Fan, Guanzhi Wang, S. Buch, Claudia. Pérez
D’ Arpino, Sanjana Srivastava, Lyne P. Tchapmi, Micael Ed-
mond Tchapmi, Kent Vainio, Li Fei-Fei, and Silvio Savarese.
igibson, a simulation environment for interactive tasks in
large realistic scenes. In IROS, 2021. 1,2, 3

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje.
Learning important features through propagating activation
differences. In ICML, 2017. 2

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Deep inside convolutional networks: Visualising image clas-
sification models and saliency maps. arXiv, 2013. 2

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas,
and Martin Wattenberg. Smoothgrad: removing noise by
adding noise. arXiv, 2017. 2

Saim Wani, Shivansh Patel, Unnat Jain, Angel X. Chang,
and Manolis Savva. Multion: Benchmarking semantic map
memory using multi-object navigation. In NeurIPS, 2020. 3
Donglai Wei, Bolei Zhou, Antonio Torrabla, and William
Freeman. Understanding intra-class knowledge inside cnn.
arXiv, 2015. 2

Luca Weihs, Aniruddha Kembhavi, Kiana Ehsani, Sarah
Pratt, Winson Han, Alvaro Herrasti, Eric Kolve, Dustin
Schwenk, Roozbeh Mottaghi, and Ali Farhadi. Learning
generalizable visual representations via interactive game-
play. In ICLR, 2021. 2

Luca Weihs, Jordi Salvador, Klemen Kotar, Unnat Jain, Kuo-
Hao Zeng, Roozbeh Mottaghi, and Aniruddha Kembhavi.
Allenact: A framework for embodied ai research. arXiv,
2020. 5

Erik Wijmans, Abhishek Kadian, Ari S. Morcos, Stefan Lee,
Irfan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra.
Dd-ppo: Learning near-perfect pointgoal navigators from 2.5
billion frames. In /CLR, 2020. 3

Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari,
Ali Farhadi, and Roozbeh Mottaghi. Learning to learn how to
learn: Self-adaptive visual navigation using meta-learning.
In CVPR, 2019. 3

”

[47]

(48]

[49]

(501

(51]

[52]

10285

Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and
Roozbeh Mottaghi. Visual semantic navigation using scene
priors. In ICLR, 2019. 3

Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans.
Auxiliary tasks and exploration enable objectgoal naviga-
tion. In /ICCV, 2021. 2

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and
Hod Lipson. Understanding neural networks through deep
visualization. arXiv, 2015. 1,2

Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In ECCV, 2014. 2

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Object detectors emerge in deep scene
cnns. 2015. 2

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Ab-
hinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven vi-
sual navigation in indoor scenes using deep reinforcement
learning. In ICRA, 2017. 3

