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Abstract

The availability of large-scale video action understand-
ing datasets has facilitated advances in the interpretation
of visual scenes containing people. However, learning to
recognise human actions and their social interactions in an
unconstrained real-world environment comprising numer-
ous people, with potentially highly unbalanced and long-
tailed distributed action labels from a stream of sensory
data captured from a mobile robot platform remains a sig-
nificant challenge, not least owing to the lack of a reflective
large-scale dataset. In this paper, we introduce JRDB-Act,
as an extension of the existing JRDB, which is captured by
a social mobile manipulator and reflects a real distribution
of human daily-life actions in a university campus environ-
ment. JRDB-Act has been densely annotated with atomic
actions, comprises over 2.8M action labels, constituting a
large-scale spatio-temporal action detection dataset. Each
human bounding box is labeled with one pose-based action
label and multiple (optional) interaction-based action la-
bels. Moreover JRDB-Act provides social group annota-
tion, conducive to the task of grouping individuals based
on their interactions in the scene to infer their social ac-
tivities (common activities in each social group). Each an-
notated label in JRDB-Act is tagged with the annotators’
confidence level which contributes to the development of re-
liable evaluation strategies. In order to demonstrate how
one can effectively utilise such annotations, we develop
an end-to-end trainable pipeline to learn and infer these
tasks, i.e. individual action and social group detection. The
data and the evaluation code will be publicly available at
https://jrdb.erc.monash.edu/.

1. Introduction

Understanding and predicting human actions and inten-
tions are essential tasks in tackling many real-world prob-
lems such as autonomous driving, robot navigation safety,
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Figure 1. An illustration of a single frame of the JRDB-Act
dataset. As shown, the data captured with a 2D and 3D multi-
modal sensory platform is accompanied with a new set of anno-
tations including individual actions and social group formation
leading to infer social activities (common activities in each social
group) to further complement the 2D and 3D detection and track-
ing annotation in the JRDB.

human-robot interaction, and detection of perilous behav-
iors in surveillance systems. Developing an AI model per-
forming these tasks is challenging due to the high variations
of human actions in an unconstrained real-world environ-
ment. Moreover, dealing with daily actions which resem-
bles a highly unbalanced, long-tailed distribution poses new
challenges for many existing approaches.
Recently, great progress has been made to create large-
scale video datasets for human activity understanding [3,
9,20,26,45]. While these popular datasets have contributed
significantly to the recent advances in human activity un-
derstanding from visual data, their primary application is
not targeting robotics domain and therefore rarely reflect
the challenges in problems such as human-robot interaction
and robot navigation in human crowded environments, e.g.
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shopping malls, university campus, etc. Such environments
include not only many individuals, but also often groups of
people connected to each other through some form of inter-
action, e.g. engaging in common activities or goals, which
form the concept of social groups and activities. Moreover,
in many robotics problem, e.g. for safe navigation and colli-
sion risk prediction in human environments, it is essential to
anticipate every individual’s action and intention way ahead
of time, considering their social interactions. To this end,
the availability of a spatio-temporally dense annotated hu-
man action data is indispensable for the development and
evaluation of a robotic perception system.
With this motivation, we introduce JRDB-Act, a large-scale
dataset captured from a mobile robot platform, containing
dense spatio-temporal individual action and social group
annotation. JRDB-Act is an extension of the recently in-
troduced JRDB [35,43]. We now elaborate the unique char-
acteristics of JRDB-Act and our proposed method.
New Annotations. We provide a set of atomic action la-
bels for each person at each frame from the three categories
of human pose, human-human, and human-object interac-
tions, as shown in Fig. 1. Our action vocabulary contains
common daily human actions including 11 human pose,
3 human-human, and 12 human-object interaction classes.
Since these action labels are densely annotated over space
and time, JRDB-Act contains over 2.8M action labels, mak-
ing it one of the large-scale spatio-temporal action datasets
publicly available. Furthermore, the dataset provides new
unique annotations, i.e. social group labels, by assigning a
group ID to each person in each frame such that individuals
with the same ID represent a social group. We further pro-
vide social activity annotation for each group by inferring
it from the annotated individual actions and social groups.
Another novel aspect of JRDB-Act is the difficulty level an-
notation, e.g. easy, moderate, and difficult, for each anno-
tated label which reflects the confidence level of annotators
for the corresponding label. The provided difficulty level
can be conducive to more reliable evaluation paradigms.
Unique Challenges. The sequences in JRDB-Act are cap-
tured from human daily-life in different indoor and outdoor
places of a university campus as an unconstrained environ-
ment [35] by a mobile robotic platform. Thus, they reflect
the highly unbalanced distribution of human actions in real-
world scenarios. Moreover, the sequences naturally include
diverse levels of human population density. The average
number of people per frame in JRDB-Act is 30, which is
significantly higher than most popular action datasets. Fur-
ther, the robot motion and the perspective view of the cap-
tured sequences makes this dataset challenging. Consid-
ering the aforementioned compelling attributes, dense an-
notations, and natural complexities, JRDB-Act introduces
means to study new problems and challenges in human un-
derstanding for computer vision and robotics community.

Our Proposed Method. In order to showcase the potential
research directions and challenges required to be tackled in
JRDB-Act, we develop an end-to-end trainable pipeline for
both individual action and social group detection tasks. Our
method uses the panoramic video clips as input and adopts a
similar backbone as [13] to extract spatio-temporal individ-
ual features. However, we fuse additional pair-wise geomet-
rical features and incorporate a novel eigenvalue-based loss
function to improve the social group detection performance
compared to [13]. We also suggest a simple, yet effective
strategy to handle the unbalanced nature of action labels by
partitioning and balancing action loss functions based on
the occurring frequency of action classes in the dataset.

2. Related Work
Datasets. Over the last decade, multiple video action
datasets such as HMDB-51 [28] and UCF101 [47] have
been introduced which consist of short clips for the video
classification task [18, 34, 42]. Since these datasets are
not large and diverse enough to train deep models, large-
scale video datasets such as Sports1M [25], YouTube-
8M [1], Something-something [19] and Kinetics [26] have
been introduced for the task of video action classifica-
tion. Some other video datasets such as ActivityNet [3],
THUMOS [23], MultiTHUMOS [53], Charades [45] and
HACS [57] contain untrimmed videos for the task of tem-
poral action localization. Few datasets, such as CMU [27],
MSR Actions [54], UCF Sports [40] and JHMDB [24] pro-
vide spatial as well as temporal localization. The small
number of action categories and the limited number of short
video clips motivated the community to introduce AVA [20]
and AVA-Kinetics [29], two large-scale spatio-temporal ac-
tion detection datasets. In AVA, spatio-temporal action la-
bels are provided for one frame per second, in which every
person is annotated with a bounding box and at least one ac-
tion. The AVA-Kinetics dataset extends Kinetics with AVA-
style annotation. There are also a number of video datasets
such as SOA [37] and HVU [11] that provide multi-label
annotation by providing scene, object, event, attribute and
concept labels in a video, still limited to the video classifica-
tion task. As another group of datasets, instructional video
analysis datasets [2, 9, 41, 49] have been released which
are focused on a specific domain such as cooking or fur-
niture assembly. Volleyball [22] and Collective Activity
Dataset (CAD) [7] have been introduced with a focus on
group activity recognition. In these datasets, actors are an-
notated with an action label and the whole scene is anno-
tated with one group activity label. However, a real scene
generally comprises several groups of people with poten-
tially different social activities. Recently, CAD has been
extended in terms of annotations to Social-CAD [13], in
which different social groups and their corresponding so-
cial activities have been annotated. While Social-CAD is
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the first attempt to tackle spatio-temporal action and so-
cial group detection tasks, it only contains 44 sequences
with limited labels. Although all these datasets have vastly
contributed to the recent advances in human action under-
standing in videos, they are not capable of reflecting chal-
lenges in robotics applications in human crowded environ-
ments. To target such specific application domains e.g. so-
cial robot navigation and human-robot interaction, we pro-
pose JRDB-Act, a large-scale spatio-temporal human ac-
tion, social group and per-group social activity detection
dataset captured from a mobile robot which has been an-
notated densely in space and time.
Action Analysis Frameworks. Over the past few years,
there have been extensive studies on video classification [4,
12,46,55] and temporal action detection [44,45,52,58]. Re-
cently, by introducing spatio-temporally annotated datasets
such as AVA [20], the spatio-temporal action detection
task [15–17, 30, 48, 50] has received considerable attention.
In parallel, there also exist works focusing on group activity
recognition on datasets, e.g. Volleyball [22] and CAD [7],
where the aim is to predict a single group activity label for
the entire scene [5, 6, 8, 31, 32]. Although these approaches
try to recognise the interactions between people for group
activity recognition, they are not capable of inferring social
groups. Recently, CAD [7] has been augmented with so-
cial group and social activity label per group in [13] and a
corresponding framework is proposed to detect individuals’
action, social groups, and social activity for each group in
the scene. However, as substantiated by our experiments,
this framework does not generalize well to the natural com-
plexities of JRDB-Act. To improve upon this framework’s
performance, we (i) exploit the bounding box locations to
derive pair-wise geometrical features and further incorpo-
rate an eigenvalue-based loss to enhance the social group
detection task and, (ii) suggest a simple strategy, i.e. a loss
partitioning approach, to handle the unbalanced nature of
action labels in the dataset.

3. The JRDB-Act Dataset

The multi-modal JRDB dataset [35] is composed of 64
minutes of sensory data captured by the mobile JackRab-
bot robot, containing 54 sequences of indoor and outdoor
scenes in a university campus environment, covering dif-
ferent human poses and social interactions. JRDB provides
1) over 2.4 million 2D bounding boxes for all the people vis-
ible in the five stereo RGB cameras, capturing a panoramic
cylindrical 360°image view, 2) over 1.8 million 3D oriented
bounding boxes in the point-clouds captured from the two
16-array LiDAR sensors, 3) association of all the 3D bound-
ing boxes with the corresponding 2D boxes, and 4) track ID
of all the 2D and 3D boxes over time. While the provided
annotations are useful for human localization and tracking,
JRDB lacks sufficient information for social human activ-

ity analysis. Therefore we propose JRDB-Act by providing
additional individuals’ human action and social group an-
notation on top of the existing JRDB. All these annotations
make JRDB-Act the only available dataset for multi-task
learning of human detection, tracking, individual action, so-
cial group and per-group social activity detection. JRDB-
Act is manually annotated by a group of annotators, in-
structed for each task to ensure consistency over the dataset.
Then, it has been inspected by another group, instructed for
the quality assessment of the provided annotations. The rest
of this section provides details of JRDB-Act regarding an-
notations, benchmarking, and statistics.
A. Action Vocabulary. Since JRDB is collected in a uni-
versity campus environment, our action vocabulary includes
common daily human actions. Through a comprehensive
inspection of the dataset, we concluded 11 pose-based, 3
human-human interaction and 12 human-object interaction
action labels. Fig. 2 demonstrates the list of existing action
labels per category in JRDB-Act.
B. Action Annotation. Action annotation is densely pro-
vided per-frame (7 fps) and per-box for both the LiDAR and
video sequences. However, the panoramic videos are used
to annotate the action labels. During the annotation process,
we utilised JRDB annotated 2D-bounding boxes and track-
IDs; for each bounding box, one (mandatory) pose-based
and an arbitrary number of (optional) interaction-based ac-
tion labels were selected from the available list of action
vocabulary. If none of the classes in the list were descrip-
tive for a bounding box, annotators were able to tag the box
as miscellaneous-[description] for each label category, and
the descriptions were later used to expand the action vo-
cabulary with the newly discovered labels. Annotators also
tagged each action label with its corresponding difficulty
level indicating the annotator’s confidence level for the cor-
responding label. There are scenarios where 1) action label
is obvious, 2) there is uncertainty in the action label but we
can take a probable guess, and 3) the person is far away
from the camera or occluded, however the action could be
inferred from some evidences such as its past history and its
current movement. We respectively tag these scenarios as
easy, moderate, and difficult. In some cases, it is not possi-
ble to infer the action as the bounding box is fully-occluded
in the duration of the video or the person is very far from
the robot. Here, both the pose-based action label and its
corresponding difficulty level are tagged as impossible. The
provided difficulty level can be conducive to more reliable
and fair evaluation protocols.
C. Social Group Annotation. People in a scene may form
different social groups [13], while each group is engaged
with a social activity. To provide group annotation, a unique
group ID is assigned to those belonging to the same so-
cial group in each frame and this assignment may vary over
time. Each group label is tagged with a difficulty level to re-
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Figure 2. Left: The distribution of action classes in log-scale sorted by descending order, with colors indicating action types. Right: The
distribution of different difficulty levels in action label annotations.

Figure 3. Left: The distribution of social group size for each social activity label shown in individual bars, with colors indicating the size.
Right: The distribution of social group size for the entire dataset.

flect the annotator’s confidence level. We used easy, moder-
ate, and difficult for the cases where the group membership
was respectively 1) easily recognisable, 2) could be esti-
mated based on some visual and temporal cues, 3) could not
be inferred due to the distance from the camera or occlusion.
Given the annotated social groups and individuals’ action
labels in each frame, we generated a pseudo groundtruth
social activity label for each group using the most frequent
individual action labels in that group. We also assign a diffi-
culty level to the inferred social activity labels by averaging
the corresponding individual actions’ difficulty levels.

D. JRDB-Act splits. Following JRDB splits, JRDB-Act is
divided into training, validation, and test sets at video level,
thus, all the frames of a video sequence appear in one spe-
cific split. The 54 video sequences are split into 20 train-
ing, 7 validation, and 27 test videos. For the purpose of

consistency with the standard evaluation of other relevant
datasets, we evaluate all the task on the key-frames, which
are sampled every one second, resulting in 1419 training,
404 validation, and 1802 test samples.

E. Benchmark and Metrics. Our evaluation is performed
on the key-frame level following the standard practice
in [20]. We adopt the widely used average precision (AP)
using an IoU threshold of 0.5, following the standard PAS-
CAL VOC [14] challenge, and customize it to report the
performance of each task. To report the performance of so-
cial grouping on a set of detected bounding boxes, we first
calculate a list of true positive boxes (TP) for each detec-
tion confidence threshold. Then, similar to [13, 51], we de-
termine a correspondence between the predicted and truth
group IDs by solving an ID assignment between the re-
fined prediction (TP) list and the groundtruth list. Finally
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we re-calculate the final number of true positives consid-
ering the group IDs and use AP to report the final results.
Mean AP (mAP) is also used to report the performance of
individual action and social activity detection tasks, follow-
ing the same practice as in [20]. See supp. material for a
comprehensive explanation of our evaluation strategy.
F. JRDB-Act Statistics. Fig. 2 shows the JRDB-Act’s dis-
tribution of annotated individuals’ action labels in log-scale
representing a long-tailed distribution in the dataset. Fur-
ther, in the pie chart of Fig. 2, difficulty level distribution in
action labels is reflected in which only 61.4% of action la-
bels are annotated with respect to the visual cues (tagged as
easy and moderate) and the remaining 38.6% are inferred
based on the bounding box history or movement (tagged
as difficult). Fig. 3 demonstrates the distribution of so-
cial activity labels with respect to the size of social groups.
The donut chart in Fig. 3 indicates the distribution of so-
cial group size in the dataset. As illustrated, 75.5%, 16.6%,
5%, 1.2% of social groups consist of one, two, three, and
four members respectively and only 1% of the data contain
groups with five or more members (maximum 29 members).

4. Proposed Baseline

We propose an end-to-end trainable baseline for spatio-
temporal detection of individuals’ actions, social groups,
and social activities per group in videos. The architecture
of our model is illustrated in Fig. 4. We utilise the same
backbone fθ(x) as in [13] including the I3D feature extrac-
tor, the self-attention, and the graph attention modules to
extract rich spatio-temporal feature map for each individual
in which social interactions are encoded. To further enhance
the social grouping performance and to reduce the discrep-
ancy between train and inference compared to [13], we pro-
pose to incorporate an eigenvalue-based loss function [10]
on the similarity matrix extracted from the visual features
and geometrical relations between the detected bounding
boxes. Further, in order to overcome the highly unbalanced
nature of action labels in the data, we propose to utilise soft-
max/sigmoid loss partitioning approach inspired by [33].
Learning Social Group Formation. Social groups in a
scene can be shown as a graph in which nodes are the
individuals and the edges indicate the connectivities be-
tween them. The graph of the groundtruth social groups
can be presented by a matrix Â consisting of 0 and 1 in
which Âi,j indicates whether the pair (i, j) belongs to the
same social group. Aθ is formed by the model in which
for each pair of bounding boxes i and j, the normalised
GIoU [39], DG(i, j), representing a geometrical similarity
between each pair is calculated such that 0 and 1 represent
far and close boxes, respectively. The normalised similarity
between the visual features (extracted from fθ(x)) of two
bounding boxes i and j is also calculated as DV (h

i
θ, h

j
θ).

The final Ai,j
θ is then attained by the concatenation of

DV (h
i
θ, h

j
θ) and DG(i, j) and utilising a MLP layer to

project the 2-dim vector to a 1-dim vector. The training ob-
jective in learning social groups is to reduce the discrepancy
between the predicted Aθ and Â. To this end, we utilise a
binary cross entropy loss between the elements of Aθ and
Â denoted by LBCE in Eq. 2. Further, since the number
of connected components (social groups) in the groundtruth
matrix Â is equal to the number of zero eigenvalues of its
laplacian matrix L̂, we want the laplacian matrix of Aθ de-
noted by Lθ to have the same number of zero eigenvalues
as in L̂. To this end, we utilise Leig(θ) denoted by Eq. 1,

Leig(θ) = êTLT
θ Lθ ê+ α exp(−βtr(L̄T

θ L̄θ)) (1)
in which ê is the groundtruth eigenvector corresponding to
the zero eigenvalue, Lθ is the laplacian matrix correspond-
ing to the predicted similiraty matrix Aθ and α and β are
coefficients. The proof of Eq. 1 is stated in the supp. ma-
terial. The loss in Eq. 1 is inspired by the fully differ-
entiable, eigendecomposition-free loss proposed in [10] to
train a deep network whose loss depends on the eigenvec-
tor corresponding to the single zero eigenvalue of a matrix
predicted by the network. We extend it to our problem with
multiple zero eigenvalues indicating the number of social
groups. To learn the number of social groups, as a cardinal-
ity loss, we utilise a mean square error function between the
groundtruth number of social groups and the 1-dim learned
feature from the concatenation of hθ (max-pool of boxes’
visual features) and the summation of the Aθ elements de-
noted by LMSE in Eq. 2.

LG = LBCE(Aθ, Â) + Leig(Lθ, L̂)+

LMSE((hθ||
∑
i

Ai
θ), GTcardinality)

(2)

Learning Actions. Each bounding box is annotated with
one pose-based and an arbitrary number of interaction-
based action labels and the occurrence of action classes is
highly unbalanced in the dataset. One naive way to learn
actions is to use a cross entropy loss to learn pose-based
and a binary cross entropy loss to learn interaction-based
actions. However, we empirically observe that action clas-
sifier’s performance is highly harmed by the unbalanced
nature of action labels. To overcome this problem, we
divide the pose-based and interaction-based action classes
into several disjoint partitions. The number of samples of
the least frequent class in each partition, is greater than 0.1
of the number of samples of the highest frequent class in
that partition. In each partition excluding the last one, we
add an “Other” class which shows the presence of an ac-
tion class in the less frequent partitions. We have 3 and
4 partitions for pose-based and interaction-based partitions
respectively. The list of action labels in each partition is
provided in the supp. material. We then train each pose-
based and interaction-based partition separately by using
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Figure 4. Overview of our framework during training. Given the spatio-temporal feature representation of the individuals denoted by hi
θ

in the key-frame, we optimize two tasks. First, to learn the individual actions, we compute the individual’s feature map by concatenating
the individual’s visual feature and its corresponding social group’s feature map (SGi

θ) obtained by max-pooling the feature maps of its
members. Then, to compute LAct, we compute cross entropy and binary cross entropy losses for each pose-based (P ) and interaction-
based (I) action groups. Second, to learn the social group formation and the social group cardinality, we calculate the similarity matrix Aθ

between individuals based on their pair-wise geometrical (DG(i, j)) and feature distance extracted from the backbone (DV (hi
θ, h

j
θ)) and

utilise it along with the extracted spatio-temporal feature (hθ) to compute different loss terms as in LG.

cross entropy and binary cross entropy losses respectively
as in Eq. 3. Further, to maintain the balance, we only train
partitions with an existing groundtruth label for each train-
ing sample. An illustration of our action learning strategy is
shown in Fig. 5.

LAct =

2∑
i=0

λiLCE(P
i
θ , P

i) +

3∑
j=0

λjLBCE(I
j
θ , I

j) (3)

In Eq. 3, λ is a coefficient, P i
θ and Ijθ are the predicted pose-

based and interaction-based actions, and P i and Ij are the
corresponding groundtruth labels respectively.
Training. Our model takes as input a video clip with the

key-frame located at the end. The input clip is then fed to
the backbone to obtain spatio-temporal feature map of the
individuals in the key-frame denoted by hi

θ. The similarity
matrix Aθ between individuals is calculated based on their
pair-wise geometrical and feature distance. The calculated
similarity matrix and the extracted spatio-temporal features
are then utilised to learn the social grouping loss LG de-
noted by Eq. 2. Given the groundtruth social connections
in training, we obtain each social group’s feature map by
max-pooling the features of its members. Each individual’s
feature representation is concatenated with its social group
feature map. Individual’s obtained feature map are utilised
to learn the action loss LAct as in Eq. 3. As shown in Fig. 5,
For each training sample we only activate the terms of LAct

in which there exists a groundtruth label and set the other
terms to zero to avoid training with groundtruth vectors of

Pose: Walking 
human-object 1: Holding sth 
human-object 2: Looking at robot

[Walking, Standing, Sitting, Other]

[No interaction, at least one interaction]

[Holding sth, Listening to sb, Talking to sb, Other]

[Looking into sth, Looking at robot, Looking at sth, Typing, 
 Interaction with door, Talking on the phone, Other]

Softmax 1

Sigmoid 1

Sigmoid 2

Sigmoid 3

Effective loss term
s

Bounding box groundtruth lables

Figure 5. Illustration of different softmax and sigmoid terms of
LAct for a training sample. As shown, there are 3 groundtruth
actions in this sample including one from the pose-based and two
from the human-object interaction categories. For the pose-based
action, only one softmax is activated as “Walking” belongs to
“Softmax 1”. The first sigmoid determines whether there is an
interaction-based action. The subsequent sigmoids specifically de-
termine the present interaction-based action labels. Here, “Hold-
ing sth” belongs to “Sigmoid 2” and “Looking at robot” falls into
the “Other”. Thus, the third sigmoid is activated to recognise the
“Looking at robot” action.

all zeros. The total training objective is stated in Eq. 4.

Ltotal = LG + LAct (4)

Inference. At test time, for individual action prediction, we
perform softmax operation on the predictions of each cross
entropy and sigmoid operation on predictions of each bi-
nary cross entropy functions. We then choose the predicted
action labels based on a hierarchical approach starting from
the first partition and going to the next one in the hierarchy
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Method grouping loss Cardinality Geo feature G1 AP↑ G2 AP↑ G3 AP↑ G4 AP↑ G5+ AP↑ overall AP↑
Baseline1 [13] BCE H - 8.0 29.3 37.5 65.4 67.0 41.4

Baseline2 BCE H ✓ 26.1 57.0 61.2 63.0 53.7 52.2
Baseline3 BCE MSE ✓ 79.6 63.0 43.7 56.9 40.7 56.8

Ours BCE+EIGEN MSE ✓ 81.4 64.8 49.1 63.2 37.2 59.2

Table 1. Social grouping ablation study on JRDB-Act validation-set using groundtruth bounding boxes. G1, G2, G3, G4, G5+ indicate
social groups with 1, 2, 3, 4, 5 or more members.

Method Action mAP↑
[CE+BCE] 8.0

[W-CE+W-BCE] 8.1
[M-CE+M-BCE] [Ours] 9.0

Table 2. Individual action detection ablation study on JRDB-Act
validation-set using groundtruth bounding boxes.

only if the “Other” class is predicted. For social group pre-
diction, we perform graph spectral clustering [56] on the ob-
tained similarity matrix between individuals and by utilising
the predicted number of social groups. Since the social ac-
tivity label of each group is the most frequent action labels
of its members, we follow the same strategy and infer the
activity of each predicted social group from the predicted
action labels of its individuals.

5. Experiments

In this section, we provide implementation details of our
framework, evaluate different aspects of it, and present a
comparison against the existing method proposed in [13].
Implementation Details. The backbone setup and hyper-
parameters are identical to [13]. We utilize ADAM opti-
mizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8. α and β
in Eq. 1 are set to 1. Since the training objective includes
learning social groups and actions and to effectively learn
both tasks, we train the model in two stages. In the first
stage, we train the model with LG for 50 epochs with a
mini-batch size of 1 and an initial learning rate of 10−4. We
then fine-tune the network with Ltotal for 50 epochs. The
learning rate is reduced by a factor of 10−1 on validation
loss plateau. Input video clips to the model are 15 frames
long with the annotated key-frame at the end. See the supp.
material for more implementation details.
Ablation Studies. All the ablations in Tab. 1 and Tab. 2 are
performed using groundtruth bounding boxes on validation-
set to remove the effect of detection performance from the
experiments. Further, evaluation for each task is performed
by considering the corresponding groundtruth labels with
easy and moderate difficulty tags and difficult labels are re-
moved from the evaluation. Labels with difficult tags how-
ever are used for evaluation on test-set in Tab. 4.
A. Social Group Formation: We compare our framework
against three baselines for predicting social groups in terms
of grouping AP for groups with different number of mem-
bers and the average of obtained grouping APs. Within our

suggested framework, the network learns to estimate the
number of social groups by minimizing a mean square er-
ror loss during training; we indicate this by MSE in the
cardinality column in Tab. 1. On the contrary, the graph
clustering approach used in [13] requires the number of so-
cial groups to be known in advance and thus, relies on a
heuristic [36] to infer this number; we indicate this with
H in the cardinality column. Accordingly, we define three
baselines in Tab. 1. [Baseline1] [13], addresses the group
formation task with grouping loss consists of a single bi-
nary cross entropy based on the visual features of individ-
uals, indicated by BCE in the grouping loss column, and
the graph spectral clustering utilizes the heuristic to infer
the number of social groups. As validated by our experi-
ments, this heuristic underestimates the number of groups;
i.e., spectral clustering tends to group everyone into few or
even a single group. Thus, the performance of this baseline
for groups with sizes 4, 5 and above is fortuitously better
than the other methods while it performs significantly worse
on the lower group size categories. [Baseline2] extends
[Baseline1] by exploiting geometrical features in addition
to the visual features. Evidently, the geometrical features
lead to better performance in identification of small-sized
social groups. Similarly, [Baseline3] extends [Baseline2]
by learning the social group cardinality instead of adopting
the heuristic; this significantly boosts the group formation
performance for small-sized groups. Finally, [Ours] shows
the effect of utilizing the eigen-value loss in our framework
which yields the highest overall group formation results.
B. Action and Social Activity Prediction: We show the
effectiveness of our proposed strategy (i.e. loss partition-
ing) to deal with highly unbalanced individuals’ action la-
bels in Tab. 2. [Baseline1], utilizes a single cross entropy
loss and a single binary cross entropy loss [CE+BCE] to
learn pose-based and interaction-based action classes re-
spectively. [Baseline2] [13], utilizes the cross entropy loss
and the binary cross entropy loss functions in a weighted
manner [W-CE+W-BCE]. Normalized weights of action la-
bels is calculated based on the inverse of their occurrence
frequency in train and validation sets. Finally, in [Ours],
we utilize the loss partitioning strategy using multiple cross
entropy and binary cross entropy losses [M-CE+M-BCE]
as elaborated in Sec. 4. As validated by our experiments,
weighting strategy does not address the unbalanced distri-
bution of action classes in the data, whereas the proposed
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Method G1 AP↑ G2 AP↑ G3 AP↑ G4 AP↑ G5+ AP↑ overall AP↑ Action mAP↑ G-Act mAP1↑ G-Act mAP2↑
[13]+Faster-RCNN 9.5 24.3 21.2 39.8 10.8 21.1 4.4 3.5 1.3

[13]+MMPAT 11.8 27.5 22.4 38.8 24.6 25.0 4.9 3.5 1.3
Ours+Faster-RCNN 42.5 40.8 23.1 25.6 13.4 29.1 5.3 4.4 3.4

Ours+MMPAT 56.6 39.5 24.3 22.4 14.8 31.5 5.4 4.7 3.4

Table 3. Final results of our model against [13] on JRDB-Act test-set using two different sets of detection bounding boxes (Faster-
RCNN [38] and MMPAT [21]) and by considering labels with Easy and Moderate difficulty tags in evaluation.

[Ours] G1↑ G2↑ G3↑ G4↑ G5+↑ overall AP↑ Action mAP↑ G-Act mAP1↑ G-Act mAP2↑
[E,M,D] 34.9 37.3 18.3 16.4 7.6 22.9 4.4 3.5 2.7
[E,M] 42.5 40.8 23.1 25.6 13.4 29.1 5.3 4.4 3.4

[E] 44.4 42.7 27.1 28.4 13.9 31.3 5.7 4.4 3.5

Table 4. E:Easy, M: Moderate and D:Difficult. Performance of different tasks wrt the difficulty tag on JRDB-Act test-set.

loss partitioning approach shows improvement compared
to the baselines. Finally, social activity labels are inferred
from the predicted social groups and individuals’ actions as
the most frequent actions performed by the members of that
group. Social activity labels are evaluated by ignoring so-
cial groups indicated by the G-Act mAP1 column (similar
to individual actions evaluation) and by considering social
groups indicated by G-Act mAP2. For G-Act mAP2, we
consider a true positive as a box for which the social group
and the social activity labels are correctly predicted.
Test-set Results. In Tab. 3, we show that our suggested
framework outperforms [13], on JRDB-Act test-set using
the public detection provided in the JRDB benchmark [35]
obtained from Faster-RCNN [38] in each task. It is worth
noting that the performance of Faster-RCNN on JRDB-Act
test-set is 52.2 mAP which shows the complexity of the
dataset in the detection task. To study the effect of detection
on the performance of each task, we utilized MMPAT [21],
a better-performing detection on JRDB, with 68.1 mAP on
test-set in Tab. 3 and realized that more accurate detection
boosts the grouping performance by a large margin. How-
ever, it performs almost on par with Faster-RCNN detec-
tion boxes on individual action and social activity detection
tasks. This finding shows that understanding human actions
in JRDB-Act is inherently complex due to the unique chal-
lenges in the data including robot motion and camera per-
spective. These challenges and results highlight the need of
the existing research methods, including human activity de-
tection frameworks, to support this new application in these
type of environments which are underrepresented in exist-
ing datasets. In Tab. 4, we further investigate the effect of
the annotated difficulty tag for each provided label includ-
ing social group, individual action and social activity labels
in the evaluation of each task. As observed, using only easy
labels indicated by E in evaluation, yields the best perfor-
mance. Using easy and moderate tags [E,M], also used in
ablation studies, perform worse with a relatively small gap
compared to [E] and using all the labels with easy, moderate
and difficult tags [E,M,D] performs the worst with a large
gap compared to [E,M].
Limitation and Discussion. The model’s performance in

the given tasks relies on the detector performance in pre-
dicting individuals’ boxes as well as the model’s perfor-
mance in classification and clustering of the detected boxes.
The current low action mAP in Tab. 2 using groundtruth
bounding boxes, evaluated on easy and moderate action la-
bels as well as the negligible effect of utilising more accu-
rate detected bounding boxes as validated in Tab. 3, show
the inherent complexity and challenges of JRDB-Act in un-
derstanding human actions due to the motion of the robot,
camera perspective, and highly unbalanced action distribu-
tion with different difficulty levels. Thus, this dataset may
challenge the existing action localization frameworks, de-
manding further research in this direction to tackle the as-
sociated unique complexities. Moreover, JRDB-Act is a
multi-modal dataset and provides annotation for 3D data
which can potentially contribute to the overall performance
of the tackled tasks. However, utilising 3D input can mainly
contribute to the downstream tasks, e.g. detection, tracking
and extracting more accurate geometrical features. A better
detection in turn, results in higher social grouping perfor-
mance as substantiated in Tab. 3. Exploring the 3D sensor
modality data and investigating sensor data fusion strategies
can be considered as potential future work.

6. Conclusion

Learning to recognise human actions and their social
groups in an unconstrained environment including crowded
scenarios, with potentially highly unbalanced human daily
actions from a stream of sensory data captured from a
mobile robot, remains a challenge, due to the lack of
a reflective large-scale dataset. In this paper, we intro-
duced JRDB-Act, a dataset captured from a moving so-
cial robot platform, including spatio-temporal individual ac-
tion and social group annotations conducive to the task of
simultaneously detection of social groups, individual ac-
tions and social activities. We also developed an end-
to-end trainable pipeline to serve as a baseline to tackle
this multi-task problem. We believe the dense annota-
tions, and natural complexities of JRDB-Act pose new chal-
lenges for future research in the vision and robotics commu-
nity.
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