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1TUM 2NVIDIA 3CALTECH

Abstract

Deep neural networks have reached high accuracy on
object detection but their success hinges on large amounts
of labeled data. To reduce the labels dependency, vari-
ous active learning strategies have been proposed, based
on the confidence of the detector. However, these meth-
ods are biased towards high-performing classes and lead to
acquired datasets that are not good representatives of the
testing set data. In this work, we propose a unified frame-
work for active learning, that considers both the uncertainty
and the robustness of the detector, ensuring that the net-
work performs well in all classes. Furthermore, our method
leverages auto-labeling to suppress a potential distribution
drift while boosting the performance of the model. Exper-
iments on PASCAL VOC07+12 and MS-COCO show that
our method consistently outperforms a wide range of ac-
tive learning methods, yielding up to a 7.7% improvement
in mAP, or up to 82% reduction in labeling cost. Code is
available at https://github.com/NVlabs/AL-SSL.

1. Introduction
The performance of deep object detection networks [1,2]

depends heavily on the size of the labeled dataset. Adding
more labeled data helps, yet adding more data costs. There-
fore, it is imperative to adopt active learning (AL) strate-
gies to select the most informative samples in the dataset
for labeling, and self and semi-supervised learning (SSL)
approaches to leverage unlabeled data whenever possible.

Consistency-based Semi-Supervised Learning (SSL)
methods for object detection [3] train a network to mini-
mize the inconsistency between its predictions. However, as
shown in Fig. 1, some images still give inconsistent predic-
tions, and thus the network does not learn from them. Auto-
labeling uses self-learning to label high confident predic-
tions, i.e. pseudo-label (PL), but, since networks are miscal-
ibrated, they can generate wrong labels, potentially harming
the training. Moreover, by targetting high-confident predic-
tions, they ignore objects of low-performing classes.

*Work performed while interning at NVIDIA.
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Figure 1. An object from a low-performing class (Pottedplant),
original image in blue, augmented version in orange. a) Because
of its low-entropy, uncertainty-based AL methods do not label the
image. b) Because of its high confidence, pseudo-label SSL meth-
ods wrongly pseudo-label the image and thus harm the training. c)
Because of its high-inconsistency, consistency-based SSL meth-
ods cannot learn from it. d) Our method selects the image for
labeling and prevents it from getting pseudo-labeled.

When samples cannot be pseudo-labeled, an alternative
is to obtain the ground truth via manual labeling. Active
learning (AL) for object detection [4, 5] is a common ap-
proach to select the most promising samples for labeling
to reduce labeling costs. The selection is based on an ac-
quisition function to assess the informativeness of an im-
age, typically computed based on the network’s uncertainty.
However, the acquisition function is only meaningful if the
network is already well-trained for the task, which is not
always the case, especially in the early AL cycles. Even
if the network performs well in most classes, significant
intra-class variance can lead to a low accuracy on a par-
ticular class, see Fig. 1a. In those cases, using the network
predictions to compute the acquisition function can lead to
worse performance than random sampling. Furthermore,
we change the dataset distribution at every AL cycle by se-
lecting only the most uncertain (hard) samples until they no
longer resemble the test distribution.

In this work, we advocate for a holistic view of the la-
beling problem, that is, a unified strategy to choose which
samples to manually label and which samples can be auto-
matically labeled. We start from an uncertainty-based AL
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framework and generalize its acquisition function by intro-
ducing the concept of robustness, which is commonly not
present on AL. If a network’s predictions of an image and its
random augmentations, i.e., horizontal flipping, are not con-
sistent, the image needs to be manually labeled. This simple
yet effective change allows us to select informative sam-
ples for both low and high-performing classes. This is un-
like classic SSL settings, where samples with inconsistent
predictions would neither be labeled nor pseudo-labeled,
hence, the information contained in them would not be used.

We are still left with the dataset distribution drift, for
which we propose to use auto-labeling to not increase the
labeling costs. For every active learning cycle, we use the
previously trained network to mine easy samples, i.e., sam-
ples where the network is confident about its prediction, and
use the network’s own prediction as labels. Note, that easy
samples are typically not used in AL cycles. Only by holis-
tically thinking about which samples to manually label and
which to auto-label can we take full advantage of the entire
dataset. In summary, our contributions are the following:

• We propose a novel class-agnostic active learning score
based on the robustness of the network, using a novel in-
consistency score.

• We use auto-labeling to leverage the less informative sam-
ples, expanding the labeled dataset for free.

• We demonstrate the benefits of our method in two pub-
licly available datasets: PASCAL VOC07+12 and MS-
COCO. Compared to state-of-the-art methods [4–8], our
approach yields up to a 7.7% and 7% relative mAP im-
provement for PASCAL-VOC and MS-COCO, respec-
tively. Importantly, we can achieve the same performance
as the baseline but reduce up to 82% of the labeling costs.

2. Related Work
Deep Active Learning (AL) for Object Detection. The

traditional way of doing AL is by training an ensemble of
neural networks [9] and then selecting the samples with the
highest score defined by some acquisition function, i.e., en-
tropy [10], or BALD [11]. Concurrent works [12, 13] ex-
plore a similar direction by approximating the uncertainty
via Monte-Carlo dropout [14]. These approaches are com-
pared [9], with the authors concluding that the ensemble
approach reaches higher results at the cost of more com-
putational power. Another Bayesian approach [15] trains a
variational autoencoder (VAE) [16] on both real and aug-
mented samples, and then chooses to label the samples with
the highest reconstruction error. A different approach is the
core-set [6] that chooses to label a set of points such that
a model trained over the selected subset is competitive for
the remaining data points. In the work of [17] the authors

use the inconsistency method of [18] to do AL. A similar
approach is that of [19] where the authors use an inconsis-
tency score that is based on the difference of predictions
based on different checkpoints of the network. Similar to
each other, and different to us, these methods are designed
for classification-based AL, do not explore the best usage
of inconsistency, its unification with entropy or the use of
pseudo-labeling. Other methods [20, 21] combine AL with
SSL, however they are different to our work considering
that they use label propagation instead of inconsistency, do
not use auto-labeling to balance active learning, and are fo-
cused solely in the problem of image classification

Recently, several methods have been adapted specifically
for the task of object detection [6,7,22–25], some of which
are based on the core-set approaches where the diversity
of the training examples is taken into account. However,
the state-of-the-art approaches are based on the uncertainty
[4, 5, 8, 26]. The work of [26] consists of an ensemble of
object detectors that provide bounding boxes and probabil-
ities for each class of interest. Then, a scoring function is
used to obtain a single value representing the informative-
ness of each unlabeled image. Similar to that is the work
of [8] where the authors compute the instance-based uncer-
tainty. Another work [4] gives an elegant solution, reaching
promising results compared with other single-model meth-
ods. The authors train a network in the task of detection
while learning to predict the final loss. In the sample ac-
quisition stage, samples with the highest prediction loss are
considered the most interesting ones and are chosen to be
labeled. In the state-of-the-art approach [5], authors define
the aleatoric and epistemic uncertainty, in both class and
bounding box level, and use the combined score to deter-
mine the images that need labeling. Our work is related but
different from the above-mentioned works. Similarly, we
consider the uncertainty of the detector as part of the solu-
tion. Unlike them, we find that the robustness of the detector
is even more reliable as an acquisition function, especially
for the low-performing classes. We then unify these two
scores to reach high performance in the majority of classes.

Deep Semi-Supervised Learning (SSL) for Object De-
tection is a deep learning approach that combines a small
amount of labeled data with a large amount of unlabeled
data during neural network training. Unlike in AL, where
the unlabeled data is used only during the acquiring stage,
in SSL, the unlabeled data are used during the training. Sev-
eral methods have shown excellent results [27–30] by cast-
ing the problem of semi-supervised learning as a regulariza-
tion problem, in effect adding a new loss for the unlabeled
samples. Follow-up works significantly improved the per-
formance of SSL in object classification [18, 31–35].

While going from semi-supervised image classification
to semi-supervised object detection is challenging, some
promising directions are given in recent works [3, 36, 37]
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Figure 2. Overview of our method.
We first train the network in a semi-
supervised manner. During active
learning, for each image, we use
the network to compute the acqui-
sition function and based on it de-
cide if we actively label the image,
if we pseudo-label it, or if we only
use it as part of the unlabeled data
for the next training cycle.

where the authors develop loss functions that minimize the
inconsistency between images and their augmented version.
The methods significantly improved the mAP score in Pas-
cal VOC dataset [38]. Our work is inspired by [3] but we
instead develop an acquisition function that computes the
inconsistency between an image and an augmented version
of it, and show that such a score is more reliable than the
uncertainty, especially for low-performing classes. Further-
more, we add a pseudo-labeling module that labels the easy
images for free. Together with our developed AL method,
it ensures that our acquired dataset is a good representative
of the original dataset, in turn, improving the results.

3. Method

Let D be a dataset divided into a labeled set L and a pool
of unlabeled data U . We describe our acquisition function
for AL in Sec. 3.1. This consists of mining a subset of
samples from the pool of unlabeled data U and transferring
them to the labeled set L, incurring a labeling cost. How-
ever, arbitrarily augmenting the set L with only hard sam-
ples creates a distribution drift in our training data. Hence,
we propose to include in training the easy samples, i.e., ob-
jects for which the network’s confidence is high, by using
pseudo-labeling (Sec. 3.2). Finally, we describe the train-
ing procedure in Sec. 3.3. We show a high-level description
of the method in Fig. 2.

Notation. Let ∆ be the object predictions for an im-
age, and let ∆i be its i-th object prediction. ∆i con-
sists of the bounding box bi and ci represents the proba-
bility distribution after the softmax layer of the neural net-
work. We denote the p-th category of the distribution with
cpi . The bounding box bi consists of the displacement of
the center and scale coefficients, represented by the tuple
[δx, δy,w,h]. Given a weakly augmented version of the
original image, e.g., by doing a horizontal flip, we define ∆̂
to be the set of its object predictions, and ∆̂i consisting of
the bounding box b̂i and ĉi, its i-th prediction.

3.1. Inconsistency-based AL

Most AL methods use some measure of uncertainty, e.g.,
the entropy, to compute the acquisition function. A predic-
tion that has a high entropy suggests that the object is highly

dissimilar to the images the network is trained on. Thus, if
labeled, it will provide different information to the ones we
have. However, we empirically find that using only an un-
certainty-based acquisition function is not an ideal solution,
especially for images coming from low-performing classes.
As we show in the experiments, if the network’s predictions
for a class are incorrect, they are also unreliable to compute
the acquisition function.

Inconsistency-based acquisition function. To solve
this issue, we propose a robustness-based score for AL
based on the consistency between an image and its aug-
mented version. If the predictions from an image and its
augmented version are very similar, then we say that the
network is robust for that image. On the other side, images
where the network is inconsistent provide information that
has not been captured in the training process and are prime
candidates to be labeled. By focusing on robustness, the
method is class-agnostic and performs well in most classes.

To measure the robustness of the network, we first define
the inconsistency acquisition function LconC

. To do so, we
feed the image and an augmented version of it to the de-
tector. In our case, we use horizontal flip as augmentation.
Given the sets of predictions for the original and augmented
image, we first need to match the predictions ∆ with ∆̂.
We do so by computing their intersection over union (IoU):

∆′
i = argmaxbi∈{b}IoU(bi, b̂i). (1)

For each matched pair, ∆′
i and ∆̂i, we define their incon-

sistency as:

LconC
(c′i, ĉi) =

1

2
[KL(c′i, ĉi) +KL(ĉi, c

′
i)], (2)

where KL represents the Kullback-Leibler divergence. The
higher the inconsistency, the more informative the sample
is for training and therefore potentially worth labeling.
Aggregating object scores for image selection. Given
LconC

, the inconsistency for each object prediction in an
image, we define the inconsistency of an image by aggre-
gating the scores over ∆. Specifically, we first apply non-
maximum suppression over its predictions, and then, define
its inconsistency as:

I(∆) = maxi{LconC
(c′i, ĉi)}. (3)
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Similarly, we define the uncertainty of the image as:

H(∆) = maxi{H(ci)}, (4)

where H(ci) represents the entropy over distribution ci.
The intuition behind using the maximum score instead of
some other score, such as the average, is that labeling an
image that has at least one difficult object, independently
of the number of easy objects is beneficial because of the
difficult object. Considering that the inconsistency and the
uncertainty scores are on different scales, we unify them by
multiplying them. For ∆, we formulate our unified acqui-
sition score as:

A(∆) = H(∆)× I(∆). (5)

Having scored each image in U , we then sort all the im-
ages based on their acquisition score and select to label the
N/T images with the highest score, where N corresponds
to the acquisition budget, and T corresponds to the num-
ber of active learning steps. Note that we annotate every
bounding box that belongs to a selected image regardless
of whether the box has a high score or not. We repeat this
procedure for T active learning cycles.

3.2. Pseudo-labeling to prevent distribution drift

The active learning pipeline described above targets the
most informative (hard) samples, ignoring the confident
samples. We argue that the network should see some rep-
resentative easy samples in order to ensure that no distri-
bution drift happens. At the same time, we want to avoid
labeling confident samples to not spend labeling resources.
Hence, we propose to use pseudo-labeling, where the net-
work trained in the previous AL cycle provides pseudo-
labels for the network that is being trained on this cycle.
We pseudo-label an object if the network is confident, the
confidence is above some threshold τ :

ŷpi =

{
1, if p = argmax(ci) and cpi ≥ τ

0, otherwise.
(6)

We then use the one-hot pseudo-labels as ground truth
for the training of the current network. We note that in an
image, the network might be confident for some predicted
bounding box, and not confident for the others. As a toy
example, given an image containing a cat and a dog, the
network might be confident for the cat and pseudo-label it,
but not confident for the dog. If we do not consider this, the
standard loss functions will penalize the predictions of the
network for the region of the image which contains the dog.
However, because the region is unlabeled, the ground truth
of that object will be set to background, in turn giving a high
loss even if the network makes accurate prediction (as dog).
In the next section, we describe how to fix this issue.

3.3. Deep Object Detection Training

In this section, we describe the different losses used in
our unified framework for training the deep object detector.
First, we describe the multibox, consistency, and pseudo-
labeling losses and finally the overall training loss.

Multibox loss for labeled samples. For the labeled im-
ages, the network is trained with the standard MultiBox loss
for class predictions, and a smooth L1 loss for bounding
box predictions. Given the network’s class predictions c
and an indicator yp

ij = {0, 1} for matching the i-th box to
its corresponding j-th ground truth box of category p, the
MultiBox loss is defined as [2]:

Lconf (c,y) = −
∑

i∈Pos

|classes|∑
p=1

yp
ij log(c

p
i )−

∑
i∈Neg

log(c0i ), (7)

where Pos defines positive bounding boxes (containing objects),
Neg defines bounding boxes of class background.

Consistency loss for unlabeled samples. Our approach
leverages the inconsistency of the detector in the acquisition
function. Intuitively, if the detector has high inconsistency
in an image, it can not learn from it in a self-supervised
manner, and the only way to learn from that image is to label
it during the AL cycle. During training, we need to guide
the detector to provide consistent predictions. To this end,
we mirror the active learning procedure and feed an image
and its augmented version to the detector using horizontal
flips. After matching the predictions, as described in Eq.
1, we use the class acquisition function, LconC

, as the loss
function for class inconsistency. To stabilize the training,
we compute the localization inconsistency loss as [3]:

LconL(b
′
i, b̂i) =

1

4
(||δx′

i − (−δ̂xi)||2 + ||y0′
i − ŷ0i||

2+

||w′
i − ŵi||2 + ||h′

i − ĥi||2),
(8)

where, as we use horizontal flipping, we apply the negation
on the displacement of the center δ̂xi.

We compute the total consistency loss by averaging the
losses from all matched pairs of predictions:

Lcon = E[LconC
(c′, ĉ)] + E[LconL

(b′, b̂)]. (9)

Pseudo-labeling loss. Our approach only pseudo-labels
those objects in an image where the detector is highly con-
fident, leaving the rest of the image unlabeled. Using the
loss described in Eq. 7 would cause problems for those pre-
dictions in the regions where there are no pseudo-labels as
they would be considered false positives. We thus modify
the MultiBox Loss as:

Lconf (c,y, ŷ) =−
∑

i∈Pos

|classes|∑
p=1

yp
ij log(c

p
i )

−
∑

i∈Neg

log(c0i )−
∑

i∈ ˆPos

|classes|∑
p=1

ŷp
ij log(c

p
i ),

(10)
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where ŷ and ˆPos represent the indicator and the positive
bounding boxes for the pseudo-labels.

Overall Training loss. Finally, to train the deep detec-
tion network, we aggregate the multibox, L1 and consis-
tency losses as:

Ltotal = Lconf + Lcon + L1, (11)

where Lcon is used in all samples, while Lconf and L1, the
smooth L1 for bounding boxes, are used in the labeled and
pseudo-labeled samples.

4. Experiments
In this section, we demonstrate the effectiveness of our

approach to improve the performance of object detection.
For all experiments, we report mean average precision
@0.5 (mAP) as main metric, and use two public datasets:
PASCAL VOC07+12 (VOC07+12) [38] and MS-COCO
train2014 [39]. VOC07+12 consists of 16, 551 images for
training, and 4, 952 testing images taken from VOC07 test-
set. MS-COCO consists of 83K images for training, and
valset2017 contains 5, 000 images for testing.

Following [4, 5], on VOC07+12 we start by randomly
sampling 2, 000 images. On the larger MS-COCO, we start
by randomly sampling 5, 000 images. We perform 5 active
learning cycles, and in each cycle, we choose 1, 000 images
to label. To ensure that the network does not diverge, we
define each mini-batch to have half the images labeled. We
set the confidence threshold for the pseudo-label threshold
to τ = 0.99 for VOC07+12 and τ = 0.75 for MS-COCO,
based on the results of the zeroth active learning step. We
set the IoU threshold at ≥ 0.5.

For a fair comparison with [4–7], we use the Single-Shot
Detector 300 (SSD300) [2] based on a VGG [40] backbone
for all our experiments. We train the model for 120, 000
iterations using SGD with momentum. We set the initial
learning rate to 0.001 and divide it by 10 after 80, 000 and
100, 000 iterations, respectively. We use batches of size 32
and a constant L2 regularization parameter set to 0.0005.
We use the same model, hyperparameters, and the same
public implementation1. We train all networks using four
NVIDIA V100 GPUs. In all experiments, we train three in-
dependent networks using the same initial split of randomly
sampled images and report the mean. We give the numbers
of the mean and standard deviation in the supplementary.

4.1. Main results: Comparison with other methods

We compare our method with two baselines, random and
entropy sampling, in addition to five state-of-the-art single-
model methods: Coreset [6], Learning Loss [4], CDAL-
AL [7], MI-ALD [8] and PM [5]. The last method uses a

1https://github.com/amdegroot/ssd.pytorch

mixture of SSD, thus adds extra parameters. We also com-
pare with two multimodel approaches, MC-dropout [12]
and ensemble-based [9] active learning (consisting of three
neural networks). Finally, we compare to the consistency-
based SSL method and to a pseudo-labeling method.

We present the comparisons with AL methods for
VOC07+12 in Fig. 3a. We observe that in the first active
learning cycle, our method has a relative improvement over
the random baseline by 10.5%, and over 8.2% compared to
the best overall active learning method [8]. We see that the
performance improvement of our method is maintained in
the other active learning cycles. In the last one, where we
use 7, 000 samples, 5, 000 of which are actively labeled, our
method outperforms the random baseline by 9.1% and the
best existing active learning methods by more than 2.8%
[5]. Multi-model active learning networks, namely, ensem-
ble [9] or MC-dropout [12] outperform single models at the
cost of longer training and active learning time, and in the
case of the ensemble has 3 times more training parameters.
Nonetheless, our proposed single model still reaches bet-
ter results than multi-model methods, outperforming the en-
sembles by 8% in the first AL cycle, and 1.8% in the last cy-
cle. In Fig. 3b. we compare the results of our method, with
the two semi-supervised learning methods. In the first AL
cycle, our method outperforms the consistency-based SSL
by 5.6%, and the pseudo-labeling method by 2%. In the last
cycle, we outperform the consistency method by 3.4% and
the pseudo-labeling method by more than 3%.

For MS-COCO, in Fig. 4a-b, we observe that in the
first active learning cycle, our method outperforms the ran-
dom baseline by 5.8%, the best-performing AL method
by 2.7% [5], the semi-supervised method by 5.4%, and
the ensembles by 5%. In the second cycle, our approach
outperforms all the other methods, including PM [5], by
almost 4% or more. We observe that this difference is
maintained in the other cycles, including the last active
learning cycle where our method outperforms the semi-
supervised method, multi-model methods [9, 12] and the
best AL method [5] by 1.6%.

4.1.1 Ablation study.

The effect of active learning and auto-labeling. We now
analyze every module of our method, in order to disen-
tangle the contribution coming from them. In Fig. 3c, we
present the performance comparison of the semi-supervised
model on VOC07+12 under different acquisition functions
(random, entropy, inconsistency) and two instances of our
unified method: with and without pseudo-labels. We see
that on the first active learning cycle, neither entropy nor
inconsistency significantly outperforms the results of ran-
dom sampling. However, we immediately see a significant
effect, i.e., a relative improvement over 0.9% using entropy
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Figure 3. VOC07+12. Left: Comparison to state-of-the-art active learning methods; Middle: Comparison to the two SSL methods used in
this work when they do not use AL; Right: Ablation study on the effect of entropy, inconsistency, unified score without pseudo-labeling,
and our method. † denotes ensemble method; ‡ denotes mixture of SSD. Ours uses also unlabeled data during training.

Figure 4. MS-COCO. Left: Comparison to state-of-the-art active learning methods; Middle: Comparison to the two SSL methods used in
this work when they do not use AL; Right: Ablation study on the effect of entropy, inconsistency, unified score without pseudo-labeling,
and our method. † denotes ensemble method; ‡ denotes mixture of SSD. Ours uses also unlabeled data during training.

and 1.4% using inconsistency, in the second active learning
cycle. We see that the increase in performance gets bigger
in the next AL cycle and in the fifth active learning cycle,
the performance gain from entropy is 2.3% and from incon-
sistency is 2.4%.

We then show the results of our unified acquisition
function. In the first active learning cycle, we imme-
diately see a significant improvement in performance.
While entropy (67.24mAP ) and inconsistency (67.39mAP)
reach an insignificant improvement over random sampling
(67.19mAP ), our acquisition function reaches 68.40mAP ,
which is 1.5% better than random sampling. The perfor-
mance improvement gets larger in the next cycles: 2% in
the second cycle, 2.5% in the third cycle, and a peak im-
provement of 2.6% in the fifth active learning cycle. In all
cases, our proposed score outperforms both active learning
methods that are based on a single acquisition function.

We further study the effect of pseudo-labeling in our
framework. In Fig. 3c, we observe that on the first ac-
tive learning cycle, adding pseudo-labels comes with an im-
mediate boost, improving the results by 3.7% compared to
the already well-performing acquisition function for semi-
supervised learning (5.3% better than the semi-supervised
method that uses random sampling). We further observe
that on the second cycle, it gives an improvement of 2.9%
compared to using only our acquisition function (4.7% bet-
ter than the semi-supervised method that uses random sam-

pling). The Pseudo-labeling module continues to give a
boost in performance in all the following AL steps.

In Fig. 4c, we provide a similar ablation study for MS-
COCO. We again observe that the unified score outper-
forms both the entropy and inconsistency scores in isola-
tion. However, unlike in VOC07+12, we observe that us-
ing only the entropy, the improvement is marginal over ran-
dom sampling. On the other hand, we observe that inconsis-
tency works significantly better than random sampling and
entropy (we provide an explanation in the next section). We
further observe the effect of pseudo-labels. We see that in
the first AL cycle, adding pseudo-labels boosts the perfor-
mance by 3.1% and the performance boost is maintained up
to the last cycle. This is very different from the results of
pseudo-labeling alone, see Fig. 4b, where the performance
gain is marginal. In other words, pseudo-labeling in isola-
tion does not work well. However, pseudo-labeling comple-
mented with the unified score reaches high results.

Acquisition functions. We now focus on analyzing the
effects of aggregating the two acquisition functions. In Fig.
5, we check the performance of every individual class in the
zeroth and the last AL cycle in VOC07+12 dataset. We then
focus on three best-performing classes (”Train”, ”Car”,
and ”Horse”) and three worst-performing classes (”Bot-
tle”, ”Pottedplant”, and ”Chair”). A first observation is
that for the best-performing classes, entropy-based AL, on
average, tends to outperform inconsistency-based AL.

14497



Figure 5. VOC07+12. In the bar plots we show the accuracy per class using random sampling in the zeroth and last cycle. We present the
results of each AL method for the three best-performing (”Train”, ”Car”, and ”Horse”) and worst-performing (”Bottle”, ”Pottedplant”,
and ”Chair”) classes.

(a) (b)
Figure 6. MS-COCO. a) The percentage of classes where one
acquisition function outperforms another; b) The percentage of
classes where our unified acquisition function outperforms random
with and without pseudo-labels. Example: taking the entry ”uni-
fied” in the y-axis, and ”entropy” in the x-axis, we get the value
0.69 which means that ”unified” acquisition function outperforms
the ”entropy” acquisition function in 69% of classes.

On the other hand, we see that inconsistency-based AL
outperforms the entropy-based AL by a significant margin
in all three worst-performing classes. While the entropy-
based AL on average seems to only slightly outperform ran-
dom sampling, the inconsistency-based AL gives a relative
performance gain of up to 24%, 14% and 18% in classes
”Bottle”, ”Pottedplant”, and ”Chair”. Intuitively, one can
argue that this phenomenon is to be expected. The fact that
the network does a poor job on its predictions leads to its
class predictions being unreliable for any uncertainty-based
AL method. At the same time, a more general acquisition
function dependent only on the robustness of the network is
better suited for low-performing classes. Finally, we show
that our acquisition function reaches the best overall results.

Because of the massive number of classes, we aggregate
the results on MS-COCO dataset. In Fig. 6a, we show the
percentage of classes where one acquisition function out-
performs the other. We see that inconsistency outperforms
entropy in 62% of the classes, and our unified score outper-
forms entropy in 60% of the classes. This explains why in
MS-COCO, which contains many more challenging classes,
the robustness-based acquisition scores significantly outper-
form the uncertainty-based acquisition score. We provide

Figure 7. VOC07+12: Effect of pseudo-labels compared to AL
alone for every class.

the results for each AL cycle in the supplementary.
Do we need SSL training? The inconsistency acqui-

sition function computes the robustness of the network for
each image in the acquisition pool. If the network is incon-
sistent in an image, despite that it was trained to minimize
the inconsistency of that image, then that image provides in-
formation that was not captured by the SSL. We now check
what happens if the network is not trained in SSL, thus it
has never seen the images in the labeling pool. In Tab. 1a,
we show the results of inconsistency acquisition function
for a network trained with and without consistency loss. As
expected, the results with the SSL loss significantly outper-
form the results of the fully-supervised baseline. Interest-
ingly, the results of inconsistency AL are not better than
those of random. Clearly, in order to be able to exploit the
robustness information in samples, the network needs to try
minimizing their inconsistency during training.

PL performance boost per class. We now study if the
pseudo-labels help only some particular classes, or if they
help in all classes. We start the analysis on VOC07+12
dataset. In Fig. 7, we plot the performance gain coming
from the module for each class and compare it with the per-
formance gain from AL alone, and random sampling. In
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the first AL cycle, we see that pseudo-labels improve over
random sampling in all 20 classes, with AL alone giving
a negative boost in two classes: ”Pottedplant” and ”Din-
ingTable”. We also find out that pseudo-labels give a boost
over AL alone in all three worst-performing classes (”Bot-
tle”, ”Pottedplant”, and ”Chair”). We see a similar pat-
tern in the other cycles. In the second cycle, the pseudo-
labels module improves over AL alone in 14 classes and
gives a negative boost in only one class (”Dog”) compared
to AL alone that gives a negative boost in four classes. In
the third cycle, the pseudo-labels module improves over AL
alone in 11 classes and gives a negative boost in two classes
(compared to AL in five classes). In the fourth cycle, the
pseudo-labels module improves over AL alone in 15 classes
and gives a negative boost in one class (compared to AL in
three classes). Finally, in the fifth AL cycle, the pseudo-
labels module improves over AL alone in 10 classes with
class ”Car” being a tie and gives a negative boost in only
one class, compared to AL in three classes. We thus con-
clude that by focusing only on the hard samples, AL alone
harms the performance on several classes. However, adding
pseudo-labels diminishes this effect, making the network
much more robust and thus preventing a dataset drift.

We do a similar analysis on the larger MS-COCO, by ag-
gregating the results, showing the results in Fig. 6b. While
our unified acquisition function outperforms the random ac-
quisition in 60% of the classes, adding pseudo-labels in-
creases the number of classes this happens to 72%, showing
the usefulness of pseudo-labels. We provide the experiment
results for each AL cycle in the supplementary material.

Ratio of pseudo-labels. We now study the effect of
increasing the number of pseudo-labels by allowing more
noisy pseudo-labels. To do so, we lower the pseudo-
labeling threshold τ from 0.99 to 0.9 and 0.5. We present
the results in Fig. 8a. We observe that we reach the
best overall results by using an extremely high threshold
τ = 0.99. Decreasing τ to 0.9 and thus allowing more
pseudo-labels harms the performance. Further decreasing it
to 0.5, hence allowing many more pseudo-labels, actually
harms the entire training. We thus conclude that we need to
be selective in the choice of pseudo-labels.

To understand why the performance improvement of the
network trained with the pseudo-labels module diminishes
in the later active learning cycles, we study the pseudo-
labels gain as a function of the pseudo-labels ratio to the
entire labels. As we show in Fig. 8b, in the first active
learning cycle where the pseudo-labels bring a maximum
gain (3.7%), roughly half of the labels are pseudo-labels.
With the decrease of the number of pseudo-labels, we see a
tendency for the gain to lower. Our intuition is that when the
number of pseudo-labels is high, despite them being noisy,
they still help the training process. An interesting fact is
that while the total number of pseudo-labels decreases for

Cycle Random No SSL SSL
1 64.23 63.26 67.39
2 66.33 65.79 70.42
3 67.51 67.16 72.43
4 68.60 68.65 72.80
5 69.27 70.33 74.90

Cycle 0.5 0.9 0.99
1 80.04 91.13 96.68
2 84.00 92.21 96.01
3 86.00 93.32 95.80
4 87.55 93.41 95.61
5 90.05 94.64 95.57

(a) (b)
Table 1. VOC07+12. a) The effect of training on SSL. b) PL
correctness with τ .

(a) (b)
Figure 8. VOC07+12. Left: Accuracy as a function of τ for se-
lecting pseudo-labels. Right: Accuracy improvement with respect
to the pseudo-labels ratio to the entire labels.

each AL cycle (because 1, 000 images are removed from
the labeling pool) the number of pseudo-labels for an im-
age increases with each cycle, starting from 0.58 in the first
cycle, to 0.81 in the last one. Thus, the network becomes
better at selecting pseudo-labels during AL cycles.

On MS-COCO, where the number of images that can
be potentially pseudo-labeled is higher (78K compared
to 14, 651 in VOC0712), the performance gain from the
pseudo-labels module does not diminish. This is because
the ratio of pseudo-labels in all cycles remains high.

Pseudo-labels noise. Deep neural networks are over-
confident and not well-calibrated, thus inducing pseudo-
labeling errors. We consider a pseudo-label correct if the
predicted class is the same as the ground truth and intersec-
tion over union with the ground truth object is over 0.5. We
provide the correctness of the pseudo-labels given by our
model in Tab. 1b. We see that setting the pseudo-labeling
threshold to 0.99 leads to 3.7% pseudo-labeling errors. This
percentage remains constant over different AL cycles sug-
gesting the network is robust to this amount of noise.

5. Conclusions

In this work, we developed a framework that reduces the
labeling costs for object detection. Our framework consists
of a novel acquisition function based on the robustness of
the neural network with respect to its predictions, and an
auto-labeling scheme that prevents a potential distribution
drift. In this way, our unified model chooses to actively
label the most informative samples in the dataset, while it
pseudo-labels the easiest samples. This allows us to use the
majority of the dataset in a supervised manner while reduc-
ing the labeling costs. As we showed in the experiments,
we can reduce the labeling costs by up to 82% in order to
reach the same results as a fully-supervised baseline.
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