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Abstract

We propose a simple and efficient clustering method
for high-dimensional data with a large number of clusters.
Our algorithm achieves high-performance by evaluating dis-
tances of datapoints with a subset of the cluster centres. Our
contribution is substantially more efficient than k-means as
it does not require an all to all comparison of data points
and clusters. We show that the optimal solutions of our ap-
proximation are the same as in the exact solution. However,
our approach is considerably more efficient at extracting
these clusters compared to the state-of-the-art. We compare
our approximation with the exact k-means and alternative
approximation approaches on a series of standardised clus-
tering tasks. For the evaluation, we consider the algorithmic
complexity, including number of operations to convergence,
and the stability of the results. An efficient implementation
of the algorithm is available online.

1. Introduction
Data clustering is an ubiquitous problem in Machine

Learning literature. One of the most popular approaches for
clustering is the k-means algorithm. Due to the simplicity of
the algorithm and relative efficiency of identifying clusters
the algorithm has found use in a wide range of fields, e.g.
medicine, physics and computer vision among many others.
With the increasingly large supply of data, computational

∗Corresponding Author.

efficiency improvements become all the more significant.
Recent advances in approximate inference methods have
allowed for training algorithms with convergence perfor-
mance that is sub-linear to the number of clusters [16]. This
is typically achieved by avoiding the comparison between
datapoints and clusters that lie far away in feature space.

Probabilistic data models that relate to the k-means al-
gorithm can be found in Gaussian Mixture Models (GMM).
In particular, Lücke and Forster [31] detail the relation-
ship between k-means and a variational approximation of
the Expectation Maximisation (EM) algorithm for isotropic
GMMs. In most cases, the GMM-based formulation of the
clustering problem provides higher likelihoods without in-
troducing impractical constraints [31]. Theoretical develop-
ments in convergence analysis of Gaussian Mixture Models
(GMM) [9, 32, 35] concerning global and optimal conver-
gence have sparked renewed interest in the field. Novel train-
ing algorithms that aim for stability [22,24] and increased ef-
ficiency [16,21] are actively being developed. Markov Chain
Monte Carlo (MCMC) methods have also been employed
for fitting GMMs to account for input variation [13, 27, 36].
Tree-based methods have also been proposed for efficient
inference in k-means [19, 34]. However, tree-based methods
are known to exhibit instabilities when faced with small per-
turbations in the data, due to their recurrent structure, and
therefore are likely to produce substantially different clusters
for small changes in the input.

In this work, we propose a method for efficient EM-based
learning that uses a truncated approximation [29, 30] of the
posterior in the E-step. To identify the truncated space, we
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draw samples from a proposal distribution that is based on
the truncated subspace of the previous iteration and favours
clusters near the optimal cluster of the previous truncated
posterior. Our algorithm integrates recent developments in
initialisation methods [1, 2] and can be applied on coresets
[3, 20] to maintain comparable performance to state-of-the-
art approaches.

Truncated approximations have been used in the past for
multiple-cause models [8,11,12,15] to achieve efficient train-
ing in discrete latent variable models. Stochastic approxima-
tions on a truncated space [18,29] focusing on deep learning
models have also been proposed. We expect a stochastic ap-
proach to avoid well-known local optima issues [23] related
to EM-based learning for GMMs.

Truncated approximations on clustering algorithms have
only been attempted with deterministic approximation tech-
niques [16, 21]. In fact, our literature research shows that
the vc-GMM [21] sets the state-of-the-art in terms of com-
putational efficiency for a GMM with similar constraints to
the ones we study. vc-GMM relies on a set of indices of
datapoints that get assigned to the same cluster in order to
identify similar clusters. The most similar cluster is identi-
fied at each step and immediately assigned to the truncated
space of a datapoint to efficiently navigate to the optimal
clustering solution. The approach, however, is determinis-
tic and such methods typically exhibit results unstable to
initialisation and frequently converge to local optima. It
would be therefore prudent to explore stochastic analogues
to these approximations. The approach we take in this work
largely resembles vc-GMM, however, we utilise a similarity
matrix over the clusters in order to identify clusters with a
higher probability of being near a datapoint without having
to evaluate its distance to all clusters. Estimating the simi-
larity matrix relies on posterior approximations from earlier
iterations and does not require excessive computation. We
show that our stochastic approach improves over the per-
formance of vc-GMM and we consider the definition and
implementation of our algorithm to be significantly simpler.

In the numerical experiments section, we evaluate the
performance of the algorithm and compare with relevant
literature. In the artificial data section, we evaluate our
algorithm in terms of extracting the ground truth and we
compare it to k-means to observe an improved performance.
In the real data clustering section, we apply the algorithm on
four different datasets, namely, KDD, a protein homology
dataset [7], CIFAR-10, an image dataset [25], SONG, a
dataset of music metadata [5] and SUSY, a high energy
physics dataset [4]. We compare our algorithm to the state-
of-the-art in terms of efficiency, stability and accurate cluster
recovery.

Results show that our algorithm sets the state-of-the-art
in terms of efficiency without compromising, and probably
improving, stability. Our method can be applied on a wide

variety of tasks while maintaining a competitive clustering
performance.

2. EM with sparsely sampled clusters for
GMMs

To introduce the k-means algorithm in terms of an opti-
misation framework, we consider a Gaussian Mixture Model
fitted with the Expectation Maximisation algorithm. The re-
lationship between k-means and variational approximations
to a GMM are detailed by Lücke and Forster [31]. Using the
GMM-based formalisation, we can derive a novel clustering
algorithm with same global optima as the original algorithm,
and substantial computational efficiency benefits.

For a dataset of N data points, Y =
{
y(1), . . . ,y(N)

}
we wish to identify,M , cluster centres µc,∀c ∈ {1, . . . ,M}.
To that end, each datapoint y(n) is treated as an instance of
a random variable Y that follows one of M possible Gaus-
sian distributions p (Y |C = c; θ) = N (Y ;µc, σ1) with a
prior probability distribution p (C) = 1

M , where C takes
values in {1 . . . ,M} and θ = {µ1:M , σ} denotes the set
of model parameters. We can learn the optimal parameters,
θ = {µ1,...,M , σ}, by maximising the data log-likelihood
L (θ) , log p (Y = Y|θ) using the EM algorithm. The EM
algorithm optimises the variational lower bound to the log-
likelihood:

L (Y, θ) ,
∑
n

∑
c

p(n)
c log p

(
C = c, Y = y(n)|θ

)
+
∑
n

H
(
p(n)
c

)
(1)

=
∑
n

∑
c

p(n)
c log

p
(
C = c|Y = y(n), θ

)
p

(n)
c

+
∑
n

log p
(
Y = y(n)|θ

)
(2)

whereH
(
p

(n)
c

)
denotes the Shannon entropy of the distri-

bution p(n)
c . The distribution p(n)

c is typically set to be the
posterior distribution p

(
C = c|Y = y(n); θ̂

)
, as it sets the

first term of Eq. 2 to 0 and the variational lower bound
to be equal to the log-likelihood1. Under the assumed
model constraints each Gaussian distribution is defined

as p
(
Y = y(n)|C = c; θ

)
=
(
2πσ2

)−D2 e− d(n)
c

2σ2 , where

d
(n)
c =

∥∥y(n) − µc

∥∥2
is the squared euclidean distance be-

tween the datapoint y(n) and the mean of Gaussian indexed
by c, and D is the number of observed variables.

Exact EM is an iterative algorithm that optimises the
likelihood by alternating between two steps. The first step,

1The first term of Eq. 2 is the negative KL-divergence between the
distribution p(n)

c and the exact posterior, p
(
C = c|Y = y(n), θ

)
.
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E-step, is to identify the distribution p(n)
c that sets the lower

bound in Eq. 2 to be equal to the log-likelihood. That is
p

(n)
c has to be equal to the posterior in order to set the KL-

divergence in Eq. 2 to be equal to 0. For the Gaussian
Mixture Model in this work that would be:

p(n)
c = exp

(
−d(n)

c /2σ2
)
/

M∑
c′=1

exp
(
−d(n)

c′ /2σ
2
)

(3)

Here we notice that Eq. 3 is a softmax function which pro-
duces mostly 0 values. In fact, for σ2 → 0 it is exactly
equal to the maximum indicator function for the (negative)
distances, i.e. it returns the value 1 for the smallest distance
and 0 for all others, and is often considered as the proba-
bilistic analogue of k-means [6, 26, 31]. The second step,
M-step, amounts to maximising Eq. 1 with respect to θ using
a gradient update as:

µc =

∑N
n=1 p

(n)
c y(n)∑N

n=1 p
(n)
c

(4)

σ2 =
1

DN

N∑
n=1

M∑
c=1

p(n)
c

∥∥∥y(n) − µc

∥∥∥2

(5)

The EM algorithm iterates between the E-step and M-step
until θ converges. Updating σ2, as opposed to the hard-
assignment produced by σ2 → 0 in k-means, increases the
variational lower bound [31] and offers a better and more
efficient approximation of the log-likelihood.

The E-step requires estimating the differences between
all clusters and all the datapoints. Thus, the complexity of
the E-step isO (DNM) making it a very efficient algorithm.
Here, we focus on a method to avoid estimating the softmax
over all dimensions since it leads to redundant computation.
In order to avoid the dependency of the complexity on M ,
we use an approximation q(n)

c of the posterior, p(n)
c , over a

subset K(n) ⊂ {1, . . . ,M}, with |K(n)| = H as:

q(n)
c =

exp
(
−d(n)

c /2σ2
)

∑
c′∈K(n) exp

(
−d(n)

c′ /2σ
2
)δ (c ∈ K(n)

)
(6)

where δ
(
c ∈ K(n)

)
is the Kronecker delta. In other words,

we assume that clusters outside K(n) have a probability of
0 for datapoint y(n), and therefore are not estimated. Using
q

(n)
c instead of p(n)

c , modifies the exact EM algorithm by
not setting the KL-divergence to 0 at the E-step. However,
we can derive an algorithm an algorithm that monotonically
increases the variational lower bound by identifying a q(n)

c

that decreases the KL-divergence at each E-step.

Proposition 1. Let K(n) be a set of cluster indices, and
K′(n)

= K(n) \ {i} ∪ {j}, where i ∈ K(n), j /∈ K(n). Then
KL[q(n)‖p(n)] < KL[q′

(n)‖p(n)] if and only if d(n)
i < d

(n)
j .

Proof. Since all the Gaussians are equiprobable d(n)
i <

d
(n)
j ⇒ p

(n)
i > p

(n)
j . Note that limx→0 x log x = 0. It

follows that:

KL[q(n)‖p(n)] < KL[q′
(n)‖p(n)]⇔∑

c∈K(n)

q(n)
c log

q
(n)
c

p
(n)
c

<
∑

c∈K′(n)

q′
(n)
c log

q′
(n)
c

p
(n)
c

⇔

∑
c∈K(n)

q(n)
c log

p
(n)
c /

∑
c′∈K(n) p

(n)
c′

p
(n)
c

<

∑
c∈K′(n)

q′
(n)
c log

p
(n)
c /

∑
c′∈K′(n) p

(n)
c′

p
(n)
c

⇔

∑
c∈K(n)

q(n)
c log

∑
c′∈K(n)

p
(n)
c′ >

∑
c∈K′(n)

q′
(n)
c log

∑
c′∈K′(n)

p
(n)
c′ ⇔

log
∑

c′∈K(n)

p
(n)
c′ > log

∑
c′∈K′(n)

p
(n)
c′ ⇔ p

(n)
i > p

(n)
j

Proposition 1 shows that in order to decrease the KL-
divergence at each E-step we only need to iteratively update
the set K(n) with clusters that are closer to the data-point,
y(n). The M-step can be modified to utilise q(n)

c , instead of
p

(n)
c , and maintain monotonic convergence [33].

To identify the clusters in K(n), we start by selecting
H clusters uniformly at random. We iteratively update
K(n) by using R randomly sampled clusters in the vicin-
ity of the one that is nearest to the datapoint y(n). To
efficiently identify the clusters centred near a datapoint,
we define a distribution p (Ct|Ct−1 = c̄n;S), where c̄n =

arg minc

{
d

(n)
c |c ∈ K(n)

}
. The parameter S ∈ RM×M de-

notes a similarity matrix among the clusters that assigns
higher values, Si,j , to cluster pairs, {i, j}, that are likely to
be close to the same datapoints, as in Eq. 12. The iterative
update of K(n) is defined as:

K̄(n)
t = K(n)

t−1 ∪
{
c1:R|ci ∼ p (Ct|Ct−1 = c̄n) ∧ ci /∈ K(n)

t−1

}
(7)

K(n)
t =

{
c|c ∈ K̄(n)

t with the H smallest d(n)
c

}
(8)

where t denotes the EM iteration. p (Ct|Ct−1 = c̄n;S) is
the distribution that is given by the normalised row of a
cluster similarity matrix S after setting the probabilities cor-
responding to K(n) to 0:

p (Ct = c|Ct−1 = c̄n;S) =
Sc̄n,c∑

c′∈K(n) Sc̄n,c′
δ
(
c /∈ K(n)

)
(9)
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i.e. the distribution at time t is given by the row defined
by the cluster c̄n that had the minimal distance with the
datapoint y(n) at time t− 1.

The parameter updates, from Eq. 4 and 5, are adapted to
the approximate posterior.

µc =

N∑
n=1

q(n)
c y(n)/

N∑
n=1

q(n)
c (10)

σ2 =
1

DN

N∑
n=1

∑
c∈K(n)

q(n)
c

∥∥∥y(n) − µc

∥∥∥2

(11)

The similarity matrix is defined based on the distances
d

(n)
c under the assumption that nearby clusters have small

distances to similar datapoints

Si,j =
1

N

N∑
n=1

e
−
(
d

(n)
i +d

(n)
j

)
δ
(
{i, j} ⊂ K(n)

)
(12)

Algorithm 1 Data Similarity Gaussian Mixture Model (D-
GMM)
Require: Dataset X , # of centres M

1: initialise µ1:M , σ, K(n) and S = 0 for all n;
2: repeat
3: µnew

1:M = 0, σnew = 0, and Snew = 0
4: J = {1, . . . , N}
5: for n ∈ J do
6: c̄n = arg minc

{
‖y(n) − µc‖2|c ∈ K(n)

}
7: p (Ct = c|Ct−1 = c̄n;S) :=

Sc̄n,c∑
c′ Sc̄n,c′

8: K̄(n) =
{
c1:R|ci ∼ p (Ct|Ct−1 = c̄n;S) ∧ ci /∈ K(n)

}
9: K̄(n) = K̄(n) ∪ K(n)

10: for c ∈ K̄(n) do
11: d

(n)
c =

∥∥y(n) − µc

∥∥2

12: end for
13: K(n) =

{
c|c ∈ K̄(n) with the H smallest d(n)

c

}
14: end for
15: Calculate µ1:M ,σ2, and S using Eqs. 10–12
16: until µ1:M and σ2 have converged

Eq. 12 produces a symmetric positive definite matrix,
that is used to sample datapoints near the optimal at each
step of the process, with a simple reduction operation over
pre-computed values. Iterating between Eq. 6 and the pa-
rameter updates, Eqs. 10-12, details an algorithm that we
call Data Similarity GMM (D-GMM), Alg. 1, due to the
similarity matrix being based on a data “voting” process.
The complexity of an E-step of the D-GMM algorithm re-
duces compared to an E-step of the exact EM algorithm
for GMMs from O (NMD) to O (N (R+H)D), where

typically R + H << M . For the M-step, the complexity
becomesO

(
NHD +NH2

)
fromO (NMD), however, as

we will show in the experiments’ section, H2 << M to be
sufficient for most applications.

Initialisation. During the first epoch of the proposed algo-
rithm the sets K(n) are initialised using prior samples. The
centres of the gaussians, µ1:C , are initialised using the AFK-
MC2 [1] initialisation method. After an epoch has passed, the
K(n) is updated as in algorithm 1. The AFK-MC2 algorithm
samples an initial centre µ1 ∈ Y uniformly at random and
then uses it to derive the proposal distribution g(y|µ1). A
markov chain of length m is used to sample sufficiently dis-
tinct new centres, µ2:M , iteratively. The complexity of AFK-
MC2 isO (ND) to define the proposal distribution g (y|µ1).
The centres are sampled from the data using Markov chains
of length m with a complexity of O

(
m(M − 1)2D

)
.

Lightweight Coresets (lwcs). To further improve compu-
tational efficiency we can optionally use coresets of the
dataset [3, 14, 28]. Coresets are smaller, N ′ << N , rep-
resentative subsets, Y ′ = {(y1, w1) , . . . , (yN ′ , wN ′)}, of
a full dataset, Y , in which each datapoint is individually
weighted by a weight w1:N ′ depending on its significance
in describing the original data. The objective on a coreset is
adjusted to account for the weights on each data point:

L (Y ′, θ) ,
∑
n

wn

∑
c∈K(n)

q(n)
c log p

(
C = c, Y = y(n)|θ

)
+
∑
n

wnH
(
q(n)
c

)
(13)

Since the parameter updates are gradient-based updates
of Eq. 13, the weights w1:N ′ are a multiplicative constant on
the parameters and therefore the parameter updates become:

µc =

N ′∑
n=1

wnq
(n)
c y(n)/

N ′∑
n=1

wnq
(n)
c (14)

σ2 =
1

DN ′

N ′∑
n=1

∑
c

wnq
(n)
c

∥∥∥y(n) − µc

∥∥∥2

(15)

Si,j =
1

N ′

N ′∑
n=1

wne
−
(
d

(n)
i +d

(n)
j

)
δ
(
{i, j} ⊂ K(n)

)
(16)

These updates can replace Eq. 10 to 12 in algorithm 1 to
allow applications on a coreset Y ′. Working on coresets
introduces an error in the approximation that has been anal-
ysed rigorously in earlier work [3]. Constructing the coreset
requires two iterations of complexity O (ND) over the data.
Working on coreset reduces the complexity of D-GMM to
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Figure 1. Validation on a two-dimensional synthetic dataset: D-
GMM outperforms other methods across 500 trials (top) and fully
recovers all centres (bottom)

O (N ′ (R+H)D) for the E-step andO
(
N ′HD +N ′H2

)
for the M-step. The complexity of AFK-MC2 is also reduced
since the proposal distribution is defined on the coreset with
complexity O (N ′D).

3. Experiments and results
We evaluate the performance of the algorithm experimen-

tally on three classes of tasks. The software used for the
experiments is a vectorised C++ implementation provided in
the supplementary material. First, we examine convergence
on artificial data where the ground truth is known. We pro-
ceed with a comparison against the state-of-the-art algorithm
for training GMMs with similar constraints vc-GMM [21]
on popular clustering datasets.

For all tasks, the Gaussian centres are initialised using the
AFK-MC2 algorithm with m = 5. Furthermore, we follow
the same convergence protocol as in [21] and terminate
the algorithm when the variational lower bound increment
following Eq. 13 is less than ε = 10−3. Unless stated
otherwise, we evaluate the stability of the results on 10
repetitions for all experiments.

For clarity, below is a reminder for the hyperparameter
notations:

• M denotes the number of centres

2 4 6 8 10
Iterations

-2000

-1800

-1600

-1400

-1200

-1000

-800

Va
ria
tio
na
lL
ow
er
Bo
un
d

exact GMM
D-GMM

Figure 2. Variational lower bound values of D-GMM through
EM iterations compared to the log-likelihood of the exact algo-
rithm: We can see that our approximation is slower to converge,
however, each iteration is considerably more efficient.

• N ′ denotes the coreset size

• H and C ′ denote the size of the truncated subspace for
D-GMM and vc-GMM respectively.

• R and G are the search space hyperparameters for D-
GMM and vc-GMM respectively.

When choosing the truncation hyperparameters H (C ′),
we consider that the probability values of the exact posterior
decays exponentially and accordingly set H = 5 (C ′ = 5)
under the assumption that lower probability values will be
negligible. We follow the same rationale for the truncation
updates R (G). We use various configurations for M and N ′

so we can compare with the state-of-the-art.

3.1. Artificial Data

In this section, we present a convergence analysis on arti-
ficial data [17] with N = 5000 data points and 15 Gaussian
centres. Fig. 1 on the left shows the root mean squared error
between the learned centres of the algorithms and the ground
truth centres. We compare our algorithm, D-GMM, against
vc-GMM, and standard k-means, setting the hyperparameters
to M = 15, N ′ = 1000, H = 3 and R = 5. The vc-GMM
is parametrised with C ′ = 3 and G = 5. The results suggest
that both truncated algorithms are able to recover the cen-
tres as well as the exact algorithm. The slight improvement
(below a standard deviation) might be attributed to the fact
that a truncated approximation will “hard–code” very low
probabilities to 0 which may enhance numerical stability.
With the D-GMM algorithm, the stochastic behaviour might
also have an effect on avoiding locally optimal solutions. In
Fig. 1 on the right, we present an example of a run where
the centres were successfully recovered.

3.2. Clustering Analysis

For a more detailed comparison with the state-of-the-art,
we consider a series of well-known clustering datasets. Tab.
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Table 1. Relative quantisation error and distance evaluation speedup

Dataset Algorithm Relative
Error η

Distance Eval.
Speedup Iters.

name N ′ H(C′) R(G)

KDD
N = 145, 751

D = 74

M = 500

k-means - - - 0.0± 0.7% ×1.0± 0.0 5.0± 0.0

k-means + lwcs 212 - - 14.0± 0.5% ×35.1± 0.0 5.0± 0.0

vc-GMM 212 5 5 12.0± 0.4% ×533.1± 36.5 11.7± 1.0

D-GMM 212 5 5 12.0± 1.0% ×622.1± 28.0 17.0± 0.7

CIFAR-10
Ntrain = 50, 000

Ntest = 10, 000

D = 3, 072

M = 500

k-means - - - 0.0± 0.0% ×1.0± 0.0 7.6± 0.4

k-means + lwcs 212 - - 7.0± 0.1% ×48.9± 3.5 5.4± 0.4

vc-GMM 212 5 5 7.0± 0.0% ×674.7± 45.8 11.8± 0.8

D-GMM 212 5 5 8.0± 0.0% ×731.5± 41.9 21.4± 1.2

SONG
N = 515, 345

D = 90

M = 4000

k-means - - - 0.0± 0.0% ×1.0± 0.0 5.0± 0.0

k-means + lwcs 216 - - 8.0± 0.0% ×7.8± 0.0 5.0± 0.0

vc-GMM 216 5 5 8.0± 0.1% ×698.2± 0.7 12.0± 0.0

D-GMM 216 5 5 8.0± 0.2% ×862.1± 18.3 21.7± 0.4

SUSY
N = 5, 000, 000

D = 18

M = 2000

k-means - - - 0.0± 0.0% ×1.0± 0.0 14.7± 0.4

k-means + lwcs 216 - - 6.0± 0.1% ×11.1± 0.4 14.1± 0.5

vc-GMM 216 5 5 6.0± 0.1% ×663.1± 17.1 25.4± 0.6

D-GMM 216 5 5 5.0± 0.1% ×605.7± 11.1 55.6± 1.0

1 details a comparison between k-means, vc-GMM [16, 21],
and D-GMM. We use the k-means algorithm on the full
dataset to define a baseline for the centres. The accuracy
of the rest of the algorithms is measured using the relative
error η = (Qalgorithm −Qk–means) /Qk–means, where Q stands
for an algorithm’s quantization error. Since D-GMM and vc-
GMM are going through fewer clusters per datapoint in each
iteration, convergence is slower for these two algorithms
(see Fig. 2). However, the efficiency of the algorithm is
determined by the overall number of distance evaluations.
In the last two columns of Tab. 1, we present the average
number of iterations from initialisation to convergence as
well as the average speedup in terms of distance evaluations,
d

(n)
c , relative to k-means. The results show a clear speedup

for D-GMM in most cases and comparable relative error.
Fig. 3 presents a comparison between the efficient cluster-

ing algorithms with increasing coreset size. K-means on the
full dataset is presented as baseline. The size of each marker
in Fig. 3 represents the size of the coreset. We find that in
most cases D-GMM clusters data with a low relative error to
the baseline for the least amount of distance evaluations.

Complexity The approximation method we use is focused
on avoiding distance evaluations, d(n)

c with all available
clusters. Therefore, it is very efficient in problems where
a high number of clusters is expected to be present in the
dataset. Fig. 4 (left) shows the scaling behaviour of our
algorithm with an increasing number of clusters M on the
CIFAR-10 dataset, with M ranging from 100 to 1500 cluster

centres. The distance evaluations for each algorithm are nor-
malised by the minimum value across all M and presented
in a log-log plot which indicates the power of the relation-
ship between operation complexity and number of clusters.
We normalised both axes for an easier visualisation of the
complexity. As expected, the scaling behaviour of k-means
is linear to the number of clusters while the approximations
are sub-linear. D-GMM is the most efficient algorithm in
terms of distance evaluations as the number of cluster centres
increases.

Stability We test the ability of the algorithm to recover
the same clusters using different initialisation. We run the
clustering algorithm on CIFAR-10 100 times with hyper-
parameters M = 500, H = 5, R = 5, and compare the
recovered centres of every distinct pair of runs using the
l2-norm between the centres after reshuffling them. The
average and standard deviation between all errors are plotted
in Fig. 4 (right).

Hyperparameter Search In Fig. 5, we see the effect that
the hyperparametersH andR have to the optimisation speed-
up. At the top plot, we fix H = 5 and view the effect R has
to the algorithm’s number of operations and runtime. We
see that reducing the values of R progressively decreases
the amount of required operations. In terms of runtime,
values lower than R = 40 introduce a lower speedup. This
is due to the fact that we need to perform more iterations
and therefore spend more time instantiating samplers than
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drawing samples from them

To identify the optimal hyperparameter H , we fix R =
10 and observe the effect varying values of H have to the
runtime and number of operations of the algorithm. Both
runtime and number of operations monotonically reduce

with smaller truncated space H . Suggesting that caching
only a small number of centres is sufficient to efficiently
cluster datapoints.

To test the scalability of D-GMM to larger datasets, we
use the full ImageNet dataset downsampled to a 64x64 res-
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Figure 5. Hyperparameter search for R (top) and H (bottom).
The blue line shows performance gains with respect to computation.
The green line shows performance increase in terms of runtime.
The results are relative to the dotted black line which is the exact
k-means.

olution [10]. For such a large dataset it was impractical to
use k-means as a baseline, as it would not converge in a rea-
sonable time, so we resort to comparing the improvement in
number of distance evaluations from initialisation to conver-
gence of the two algorithms. For coreset sizes 213, 214, 215,
216, and 217 we get a reduction on the number of distance
evaluations of a factor of 22%, 31%, 40%, 44%, and 49%
respectively when we use D-GMM compared to vc-GMM.

4. Discussion

We have presented a novel data clustering algorithm. Our
algorithm considerably increases computational efficiency
compared to k-means by calculating the posterior over a data-
specific subset of clusters. The subset is iteratively refined
by sampling in the neighbourhood of the best performing
cluster at each EM iteration. To identify the neighbourhood
of each cluster we propose a similarity matrix based on ear-
lier computed distances between the clusters and datapoints,
thus avoiding additional complexity. Furthermore, we im-
plemented lightweight coresets and the AFK-MC2 initialisa-
tion [1,3] which are state-of-the-art methods in the literature
for data pre-processing and GMM centre initialisation respec-
tively. We compare our algorithm to vc-GMM [16,21] which

is, to our knowledge, the most efficient GMM algorithm cur-
rently available. In terms of computational complexity, our
algorithm is more efficient in most cases, improving both
with an increasing number of datapoints and with an increas-
ing number of clusters compared to vc-GMM. Furthermore,
the advantage in efficiency is complemented by a more stable
recovery of clusters centres, as demonstrated on the CIFAR-
10 database.

It is significant to emphasise that D-GMM is substan-
tially simpler to intuit and implement compared to vc-GMM.
Arguably, the use of elementary operations on matrix con-
tainers is easier to implement than task specific containers for
comparison. Simplicity of an algorithm is a considerable ad-
vantage when it comes to communicating and implementing
the algorithm in different contexts.

Our experiments suggest that the bottleneck for D-GMM
lies with the efficiency of low-level operators like calculat-
ing exponentials and sampling from discrete distributions.
Improving these operators could be an interesting future
direction in this work, affecting an even larger body of liter-
ature. A key feature of D-GMM that we consider valuable
for further development is that reduced computational com-
plexity implies lower energetic demands. Therefore, when
setting future software development strategies considering
considering low-level operators used in clustering algorithms
we can take into account the reduced number of operations
of D-GMM. The constraints we introduce on the GMM data
model are crucial for the D-GMM approximation, however,
they have an impact on the expressive potential of our al-
gorithm. Future work aims at developing the optimisation
algorithm in a way that would allow training GMMs with
fewer constraints on covariance and prior structure.

To enable further development of this work, we partic-
ipate in the “variational sublinear clustering” organisation
with an international team of independent researchers to
jointly develop software for efficient probabilistic clustering.
The D-GMM implementation, found in the supplementary
material, will be contributed to this organisation, under an
open source license, and further developed through a collab-
oration with a larger pool of researchers.

In conclusion, we find that D-GMM sets the state-of-
the-art in terms of efficiency and stability for GMM-based
clustering. There is room for improvement in terms of op-
timisation of low-level operators and loosening the GMM
constraints. A long-term plan to develop and popularise
efficient clustering is under way.
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